第16讲 剩余类环
- 格式:ppt
- 大小:1.92 MB
- 文档页数:12
关于模n的剩余类环zn的注记
模n的剩余类环是数论中的重要概念,它在许多数学方面都有十分广泛的应用。
模n的剩余类环(简称zn)是一组相互不等的、分布在(0,n-1)的元素的集合,它是以模n的同余定义的,即一个数有表示如下:rn=a(mod n),其中a∈z(所有整数),r 是模n的剩余类环zn中的元素。
zn是一个环,具有加法和乘法的运算,也就是说,它是一个乘法群和一个加法群,满足群中元素的乘法、加法的结果也仍然是该群中的元素,而且对每一个元素都存在幺元,例如有幺元1,幺元0,相应的有加法逆元,乘法逆元,最后的结果就是依然是该zn环中的元素。
模n的剩余类环zn有着广泛的应用,它经常被用于求解数论中的一些难题,例如质因数分解,以及求解符号问题等,它也被用于做密码学算法,如椭圆曲线加密等。
另外,zn
也经常用于信号与系统理论中的一些应用中,例如滤波器设计、调制和解夫尔解调等。
由于模n的剩余类环zn有着广泛的应用,它也一直是数论中重要的研究课题。
因此,在近年来,学者们从不同的角度在探索和研究zn的性质,做出了大量的成果,丰富了zn的理论研究,也为实际应用提供了极大的便利。
2014届本科毕业生毕业论文题目=剩余类环巳2上的多项式环及因式分解和可约性学院:专业班级学生姓名:指导教师:答辩日期:大学教务处1引言 (1)2群,环的相关理论....................................... 错误!未定义书签。
2.1交换群,环的定义..................................... 错误!未定义书签。
2.2多项式环 (2)2. 3剩余类环和模为2的剩余类环的证明 (3)2.4剩余类环上的多项式环 (5)3 剩余类环上的因式分解及可约性 (5)3.1模为2的剩余类环上多项式环的的因式分解,可约不可约性 (5)4结论 (10)附录 (11)参考文献 (11)致谢 (12)剩余类环5上的多项式环及因式分解和可约性摘要:给出群,交换群,环的定义,可逆元的判定;证明剩余类环Z2为环,构造剩余类环z2上的多项式环,给出剩余类环z2上的多项式环的因式分解及判断可约性。
关键字:环;剩余类环;剩余类环上的多项式环;多项式环的因式分解;多项式环的可约性。
Factorization of polynomial ring and the residue class ringZ2 decomposition and reducibilityAbstract: This paper presents group, abelian groups, rings, determination of invertible elements; prove the residue class ring ring, polynomial ring over residue class rings, given the residue class ring ring of polynomials factorization and determine the reducibility・Keywords: ring; residue class ring; polynomial ring over residue class rings;the ring of polynomials factorization; polynomial ring reducibility・1引言19世纪以及整个20世纪里,人们建立并发展了众多的代数理论,其中对群,环,域等代数结构的研究获得了巨大的成功,使得代数成为20世纪最活跃的数学学科。
剩余类环上矩阵的等价标准形矩阵是现代数学中的一个重要概念,在众多数学领域中都有广泛的应用。
矩阵论是线性代数的一个分支,研究矩阵的基本性质和运算规则,以及矩阵与线性变换之间的联系。
在矩阵论中,矩阵的等价标准形是一个重要的概念,它可以帮助我们更好地研究矩阵的性质和特征。
在剩余类环上矩阵的等价标准形中,我们将研究矩阵在剩余类环上的性质和等价标准形。
剩余类环是现代数学中一个经典的概念,它是数学中一个很重要的工具,可以用来研究代数结构中的等价关系。
在剩余类环上研究矩阵的等价标准形,可以帮助我们更好地理解矩阵的性质和特征,为后续的矩阵计算和应用提供基础。
一、剩余类环的定义和性质剩余类环是一个经典的数学概念,它是由一个集合和一个等价关系构成的。
具体地说,设G是一个群,H是G的一个子群,对于g1,g2∈G,如果g1g2∈H,则称g1和g2在H下同余,记作g1≡g2(modH)。
这个等价关系可以构成一个等价类,所有和g1在H下同余的元素构成的集合称为g1在H下的剩余类,记作[g1]H。
所有在H下的剩余类组成的集合称为G模H的剩余类环,记作G/H。
剩余类环具有以下性质:1. 剩余类环是一个群,其乘法运算为[g1]H[g2]H=[g1g2]H,其单位元为H的剩余类,即[H]H。
2. 剩余类环是一个环,其加法运算为[g1]H+[g2]H=[g1+g2]H,其乘法运算为[g1]H[g2]H=[g1g2]H,其零元为H的剩余类,即[H]H,其单位元为1的剩余类,即[G]H。
3. 剩余类环的加法和乘法运算满足分配律、结合律和交换律。
4. 剩余类环的阶为|G:H|,即G模H的剩余类个数。
二、剩余类环上矩阵的定义和性质在剩余类环上,我们可以定义矩阵的加法和乘法运算。
具体地说,设G是一个群,H是G的一个子群,K是一个有限域,A和B是G模H 的剩余类环上的K矩阵,则矩阵的加法运算为A+B=[a(i,j)+b(i,j)]H,矩阵的乘法运算为AB=[∑a(i,k)b(k,j)]H。
模6的剩余类环的加法运算表剩余类的运算剩余类加法:[a] + [b] = [a + b]剩余类乘法:[a][b] = [ab]剩余类环:如果模n的剩余类集合中定义了剩余类加法和剩余类乘法运算,就把它叫做模n的剩余类环,记作:{[0],[1],[2]...[n-1];+,.}.我们已经知道整数的加法、乘法满足交换律、结合律和分配律,剩余类的加法、乘法运算也满足交换律、结合律和分配律。
另外,在模n的剩余类环中,对任意的剩余类[a],恒有[a] + [0] = [0] + [a] = [a][a][1] = [1][a] = [a][a][0] = [0][a] = [0]这样,我们可以发现,[0]、[1]与整数集中的0、1有着相同的运算性质,我们分别把[0]和[1]叫做模n的剩余类环的零元和单位元。
[0]*1=[0],[3]*2=[0],[2]*3=[0],[4]*3=[0],[1]*6=[0],[5]*6=[0]。
满足[x]*n=[0]的最小正整数n就是[x]的阶。
[2]的阶是3就是说满足方程[2]*n=[0]的最小整数n是3。
循环群定义为若—个群G的每—个元都是G的某—个固定元a的乘方,则称G为循环群,记作G=(a),a称为G的—个生成元。
循环群有无阶循环群和有阶循环群两种类型。
扩展资料:设(a)是—个循环群:(1)若|a|=∞,则(a)与整数加群Z同构;(2)若|a|=n,则(a)与模n的剩余类加群Zn同构。
证(1)|a|=∞,则当m≠n时,am≠an,(a)={…,a-2,a-1,e,a1,a2,…}。
于是令φ:(a)→Z,am→m可以证明这是循环群(a)到整数加群Z的一个双射,且φ(am·an)=φ(am+n)=m+n=φ(am)+φ(an),故φ是(a)到Z的一个同构映射,所以(a)≌Z。
完系、简系、剩余类定义1.剩余类:把关于模m同余的数归于一类,每类称为一个模m的剩余类. 即由关于模m同余的数组成的集合,每一个集合叫做关于模m的一个剩余类(又叫同余类).共有m个剩余类.设K r是余数为r的剩余类, 则K r={qm+r| m是模, r是余数, q∈Z}={a |a∈Z且a≡r(mod m)}.剩余类的性质:⑴Z=K0∪K1∪K2∪…∪K m−1,当i≠j时,K i∩K j=Ø;⑵对于∨−n∈Z,有唯一的r∈{0, 1, 2, …, m−1},使得n∈K r;⑶对∨−a, b∈Z,a, b∈K r ⇔a≡b (mod m)定义2.完系:设K0,K1,…,K m−1是模m的m个剩余类,从K r中各取一数a r 作为代表,则这样的m个数a0,a1,…,a m−1称为模m的一个完全剩余系,简称m的完系. 例如:1, 2, 3, …, m.若一组数y1, y2, …, y s满足:对任意整数a有且仅有一个y j,使得a≡y j (mod m),则y1, y2, …, y s是模m的完全剩余系.模m的完全剩余系有无穷多个,但最常用的是下面两个:①最小非负剩余系:0, 1, 2, 3, …, m−1;②最小绝对值剩余系:(随m的奇偶性略有区别) 当m=2k+1时,为−k, −k+1, …, −1, 0, 1, 2, …, k−1, k;当m=2k时,为−k+1, −k+2, …, −1, 0, 1, 2, …, k或−k, −k+1, …, −1, 0, 1, 2, …, k−2, k−1.例如,集合{0, 6, 7, 13, 24}是模5的一个完全剩余系,集合{0, 1, 2, 3, 4}是模5的最小非负完全剩余系.性质:(i) m个整数构成模m的一完全剩余系⇔两两对模m不同余;(ii) 若(a, m)=1,则x与ax+b同时跑遍模m的完全剩余系.完全剩余系的判断方法:定理1:a1, a2,…, a m是模m的一个完全剩余系⇔a i≡/a j (mod m), i≠j;定理2:设(a, m)=1, b∈Z, 若x1, x2, , x m是模m的一个完全剩余系,则ax1+b, ax2+b, …, ax m+b也是模m的一个完全剩余系;特别地,m个连续的整数构成模m的一个完系.设K r是模的一个剩余类, 若a, b∈K r,则a≡b(mod m), 于是(a, m)=(b, m).因此,若(a, m)=1,则K r中的任一数均与m互质, 这样,又可给出如下定义:定义3.简系:如果r与m互质,那么K r中每一个数均与m互质,称K r为与模m互质的剩余类.这样的剩余类共有φ(m)个,从中各取一个代表(共取φ(m)个),它们称为模m的简化剩余系,简称简系.当m为质数p时,简系由p−1个数组成.又如:m=6,在模6的六个剩余类中:K1={…, −11, −5, 1, 7, 13,…} K5={…, −7, −1, 5, 11, 17,…}是与模6互质的剩余类,数组1, 5;7, −7;1, −1;等等都是模6的简系.性质:①K r与模m互质⇔K r中有一个数与m互质;②与模m互质的剩余类的个数等于φ(m);③若(a, m)=1, 则x与ax同时跑遍模m的简化剩余系.简化剩余系的判断方法:定理3:a1,a2,…,aφ(m)是模m的简化剩余系⇔(a i, m)=1, 且a i≡/a j(mod m) (i≠j, i, j=1, 2, …, φ(m)).定理4:在模m的一个完全剩余系中,取出所有与m互质的数组成的数组,就是一个模m的简化剩余系.定理5:设(k, m)=1, 若a1, a2, …, aφ(m)是模m的简系, 则ka1, ka2, …, kaφ(m)也是模m的简系.这三个定理中,定理3与定理5是简化剩余系的判别方法,定理4是它的构造方法. 显然,模m的简化剩余系有无穷多个,但常用的是“最小简化剩余系”,即由1,2,…,m -1中与m 互质的那些数组成的数组.说明:由于任何整数都属于模m 的某一剩余类,所以,在研究某些整数性质时,选取适当的(模)m ,然后在模m 的每个剩余类中取一个“代表数”(即组成一个完全剩余系),当弄清了这些代表数的性质后,就可弄清对应的剩余类中所有数的性质,进而弄清全体整数的性质,这就是引入剩余类和完全剩余系的目的.例1、设n 为偶数,a 1, a 2,…, a n 与b 1, b 2,…, b n 均为模n 的完全剩余系,试证:a 1+b 1, a 2+b 2,…, a n +b n 不是模的完全剩余系.证明:假设a 1+b 1, a 2+b 2,…, a n +b n 是模的完全剩余系. ∴1(1)()1+2++(mod )22n i i i n n n a b n n =++≡≡≡∑ ∵a 1, a 2,…, a n 也是模的完全剩余系. ∴11(1)(mod )22n n i i i n n n a i n ==+≡=≡∑∑,同理有:1(mod )2n i i n b n =≡∑ 1()0(mod )n i i i a b n n =∴+≡≡∑,∴n |n2, 矛盾!故假设不成立,从而原命题成立.例2、设m >1, (a , m )=1,b ∈Z , 求和:∑-=+⋅10}{m i mb i a , 其中{x }为x 的小数部分. 解:∵i 取遍模m 的完系,令x i =a ·i +b ,则也取遍模m 的完系.故11110000111{}{}{}(1)22m m m m i i i k k x a i b k k m m m m m m m m ----====⋅+-====⨯-=∑∑∑∑总结:若a 1, a 2,…, a m 是模m 的一个完系,则①a 1+a 2+…+a m ≡1+2+…+m (mod m );②a 1·a 2·……·a m ≡1·2·…·m (mod m ); ③(a 1)n +(a 2)n +…+(a m )n ≡1n +2n +…+m n (mod m ).例3、已知m , n 为正整数, 且m 为奇数, (m , 2n -1)=1. 证明:m |∑=m k n k1.证明:∵1, 2, …, m 构成模m 的完系, (m , 2)=1,∴2, 4, …, 2m 也构成模m 的完系.∴)(mod )2(11m k k m k n m k n ∑∑==≡,即)(mod 0)12(1m k m k n n ≡-∑=. ∵(m , 2n -1)=1,∴∑=m k n k m 1|得证. 例4、求八个整数n 1, n 2,…, n 8满足:对每个整数k (-2014<k <2014),有八个整数a 1, a 2,…, a n ∈{−1, 0, 1},使得k =a 1n 1+a 2n 2+…+a 8n 8解:令G ={k | k =a 1+a 2·2+a 3·32+…+a n +1·3n ,a i ∈{−1, 0, 1},i =1,2,…,n +1}.显然max G =1+3+32+…+3n =3n +1-12(记为H ),min G =-1-3-32+…-3n =-H . 且G 中的元素个数有3n +1=2H +1个, 又∵G 中任意两数之差的绝对值不超过2H ,∴G 中的数对模2H +1不同余,∴G 的元素恰好是模2H +1的一个绝对值最小的完系,于是凡满足-H ≢k ≢H 的任意整数都属于G ,且可唯一地表示为a 1+a 2·2+a 3·32+…+a n +1·3n 形式,当n =7时,H =3208>2014,而n =6时,H =1043<2014,故n 1=1,n 2=3,…,n 8=37为所求.例5、已知p 为大于3的质数,且112+122+132+…+1(p -1)2=a b,a ,b ∈N *. (a , b )=1,证明:p a . 证明:对于不超过p −1的自然数k ,由于(k , p )=1,所以存在唯一的不超过p −1的自然数x ,满足1(mod )kx p ≡而且,当k =1或p −1有x =1或p −1,当22k p ≤≤-时,有22,x p x k ≤≤-≠,故当k 取遍1,2,……,p −1时,x 也取遍1,2,……,p −1,因为(,(1)!)1,1(mod )p p kx p -=≡由可得到(1)!(1)!(1)!(mod )(1)!(mod ),p p kx p p p x p k--≡--≡或所以 2211222211((1)!)((1)!)(1)(21)((1)!)((1)!)(mod )6p p k x p a p p p p p x p p b k --==----=≡-≡-∑∑ 因为p 是大于3的素数,所以p −1不小于4,所以(p −1)!含有因数6, 从而2(1)(21)((1)!)0(mod )6p p p p p ---≡,即2((1)!)0(mod )p a p b -≡, 因为(,(1)!)1p p -=,所以2(,((1)!))1p p -=,从而0(mod )0(mod )a p a p b≡⇒≡ 例6、(2003克罗地亚奥林匹克) 对于所有奇质数p 和正整数n (n ≣p ),试证:p n C ≡[n p] (mod p)例7、(第26届IMO) 设n 为正整数,整数k 与n 互质,且0<k <n . 令M ={1, 2, …, n −1}(n ≣3), 给M 中每个数染上黑白两种染色中的一种,染法如下:⑴对M 中的每个i ,i 与n −i 同色,⑵对M 中每个i ,i ≠k ,i 与|k −i |同色,试证:M 中所有的数必为同色.证明:∵(k , n )=1且0,1,2,…,n −1是一个模n 的最小非负完系,∴0·k ,1·k ,2·k ,…,(n −1)·k 也是一个模n 的完全剩余系.若设r j ≡j ·k (mod n )(其中1≢r j ≢n -1,j =1,2,…,n -1) ,则M ={1,2,…,n −1}={121,,,-n r r r } 下面只要证明r j 与r j +1(j =1,2,…,n −2)同色即可. 因为若如此,当r 1颜色确定后,M 中所有的数都r 1与同色. 由于(j +1)k ≡r j +1(mod n ),则r j +k ≡r j +1(mod n ),因此若r j +k <n ,则r j +1=r j +k ,由条件⑵知r j +1与| r j +1-k |=r j 同色;若r j +k >n ,由r j +1=r j +k -n ,由条件⑴知k -r j +1=n —r j 与n -(n —r j )=r j 同色,即k -r j +1与r j 同色, 由条件⑵知k -r j +1与|k -(k -r j +1)|=r j +1同色,因此r j +1与r j 同色.综上:此r j +1与r j 同色. 故M 中所有的数必为同色.例8、(2001第42届IMO)设n 为奇数且大于1,k 1, k 2,…, k n 为给定的整数,对于1, 2, …, n 的n !个排列中的每一个排列a =(a 1, a 2,…, a n ),记S (a )=∑=n i i ia k 1,试证:有两个排列b 和c ,使得n !| S (b )-S (c ).证明:假设对任意两个不同的b 和c ,均有S (b )≡/S (c )(mod n !),则当a 取遍所有1,2,…,n 的n !个排列时, S (a )也取遍模n !的一个完全剩余系,且每个剩余系恰好经过一次,所以()aS a ∑≡1+2+3+…+n !(mod n !)≡12(n !+1)n !≡n !2×n !+n !2≡n !2(mod n !) (n >1)其中()a S a ∑表示对取遍个排列求和(下同),下面用另一种方法计算1()()ni i a a i S a k a ==∑∑∑:对于k 1,i ∈{1,2,…,n },a i =1时,剩n -1个数,有(n -1)!个排列,a i =2时,有(n -1)!个排列,…∴k 1的系数为(n -1)!·(1+2+…+n )=12(n +1)!. ∴()a S a ∑=(1)!2n +1n i i k =∑ 但()a S a ∑=(1)!2n +1n i i k =∑≡0(mod n !) (∵n 为奇数),∴n !2≡0(mod n !), 矛盾. ∴n !| S (b )-S (c ).例9、设m 是给定的整数. 求证:存在整数a ,b 和k . 其中a ,b 均为奇数,k ≣0,使得2m =a 19+b 99+k ·21999.另解:设x ,y 为奇数,若x ≡/y (mod 21999),则x 19-y 19=(x -y )(x 18+x 17y +…+xy 17+y 18),∵x 18+x 17y +…+xy 17+y 18为奇数,∴x 18+x 17y +…+xy 17+y 18与21999互质,∴x 19≡/y 19(mod 21999)故当a 取遍模21999的简化剩余系时,a 19也取遍模21999的简化剩余系,∴一定存在a ,使得a 19≡2m -1(mod 21999),并且有无穷多个这样的a ,故2m -1-a 19=k ·21999令b =1,则2m =a 19+b 99+k ·21999. 当a 足够小时,不难知k ≣0.。