遗传学 第04章 基因精细结构的遗传分析
- 格式:ppt
- 大小:1.69 MB
- 文档页数:50
第2章孟德尔式遗传分析: 习题解1 题解a:(1) 他们第一个孩子为无尝味能力的女儿的概率是1/8;(2) 他们第一个孩子为有尝味能力的孩子的概率是3/4;(3) 他们第一个孩子为有尝味能力儿子的概率是3/8。
b:他们的头两个孩子均为品尝者的概率为9/16。
2 题解:已知半乳糖血症是常染色体隐性遗传。
因为甲的哥哥有半乳糖症,甲的父母必然是致病基因携带者,而甲表现正常,所以甲有2/3的可能为杂合体。
乙的外祖母患有半乳糖血症,乙的母亲必为杂合体,乙有1/2的可能为杂合体,二人结婚,每个孩子都有1/12的可能患病。
3 题解:a:该病是常染色体显性遗传病。
因为该系谱具有常显性遗传病的所有特点:(1)患者的双亲之一是患者;(2)患者同胞中约1/2是患者,男女机会相等;(3)表现连代遗传。
b:设致病基因为A,正常基因a,则该家系各成员的可能基因型如图中所示c:1/24 题解a:系谱中各成员基因型见下图b:1/4X1/3X1/4=1/48c:1/48d:3/45题解:将红色、双子房、矮蔓纯合体(RRDDtt)与黄色、单子房、高蔓纯合体(rrddTT)杂交,在F2中只选黄、双、高植株((rrD-T-))。
而且,在F2中至少要选9株表现黄、双高的植株。
分株收获F3的种子。
次年,分株行播种选择无性状分离的株行。
便是所需黄、双、高的纯合体。
6 题解:正常情况:YY褐色(显性);yy黄色(隐性)。
用含银盐饲料饲养:YY褐色→黄色(发生表型模写)因为表型模写是环境条件的影响,是不遗传的。
将该未知基因型的黄色与正常黄色在不用含银盐饲料饲养的条件下,进行杂交,根据子代表型进行判断。
如果子代全是褐色,说明所测黄色果蝇的基因型是YY。
表现黄色是表型模写的结果。
如果子代全为黄色,说明所测黄色果蝇的基因型是yy。
无表型模写。
7 题解: a:设计一个有效方案。
用基因型分别为aaBBCC、AAbbCC、AABBcc的三个纯合体杂交,培育优良纯合体aabbcc。
Lyon 假说:指阐明哺乳动物剂量补偿效应和形成Barrbody的X 染色体失活的假说,其主要内容包括四点:正常雌性哺乳动物的体细胞中,两条X 染色体只有一条在遗传上有活性,而另一条在遗传上无活性;失活是随机的;失活发生在胚胎发育的早期;杂合体雌性在伴性基因的作用上是嵌合体。
SRY基因:位于Y 染色体的短臂上,具有决定男性性别作用的基因。
互引相:当两个非等位基因a 与b 处在一个染色体上,而在其同源染色体上带有野生形A、B 时,这些基因被称为处于互引相互斥相:每个同源染色体上各有一个突变基因和一个野生型基因,则称为互斥相。
三点测交:为确定三个连锁基因在染色体上的顺序和相对距离所作的一次杂交和一次测交连锁群:一对或一条染色体上的所有基因总是联系在一起而遗传,这些基因统称为一个连锁群。
染色体图:(chromosome map)又称基因连锁图。
根据基因之间的交换值(或重组值),确定连锁基因在染色体上的相对位置而绘制的一种简单线性示意图第一次分裂分离:顺序四分子:脉胞菌经减数分裂再进行一次有丝分裂,产生8 个子囊孢子(4个孢子对),由于子囊的外形是如些狭窄,以致分裂的纺缍体不能叠,只能纵产于它的长轴之中,这样的减数分裂产生的四分子从上到下顺序排列成行,称为顺序四分子。
外祖父法:根据双重杂合体的母亲X染色体上的基因组成,可以由外祖父的表型得知,这种基因定位的方法称为外祖父法。
拟等位基因:位于同一基因座位但不同位点的紧密连锁的功能性等位基因,但不是结构性等位基因。
外显子:DNA序列中能被体现在成熟mRNA上并编码蛋白质的片段。
内含子:在基因序列中成熟mRNA上未被反映出来的DNA片段。
突变子:突变后可以引起变异的最小单位称为一个突变子,一个核苷酸就是一个突变子。
重组子:不能由重组分开的最小单位就是一个重组子。
顺反子:负责编码特定的遗传信息的功能单位,其内部是可分的,包含多个突变的重组单位。
断裂基因:一个基因是由几个互不相近的段落组成,即基因内部有间隔序列。
(整理)遗传学期末复习题第二章孟德尔式遗传分析二、简述基因的定性、定量、定位作用基因定位(genetic mapping):是指确定基因在染色体上的位置和排列次序。
距离连锁强度交换机会交换值我们可依据交换值作为二个基因位点的相对距离表示方法:连锁基因a-b 的交换值为15%,则a-b连锁基因间的距离为15cM(厘摩)三、分离定律、自由组合规律的实质分离规律的实质:生物在有性繁殖形成配子的过程中,成对的遗传因子彼此分离到不同的配子中去,互不干扰。
详细地讲:一对基因在杂合状态中保持相对的独立性,而在配子形成时,又按原样分离到不同的配子中Mendel自由组合规律的实质:杂种在形成配子时,等位基因分离,而非等位基因自由组合,互不干扰。
四、如何理解“一因多效”和“多因一效”一因多效(pleiotropism):一个基因也可以影响许多性状的发育现象。
多因一效(multigenic effect):许多基因影响同一个性状的表现。
五、抑制作用、上位作用、显性作用的比较抑制作用(inhibition effect):抑制基因(suppression gene):在两对独立基因中,其中一对显性基因本身不能控制性状的表现,但对另一对基因的表现有抑制作用,该基因称为抑制基因。
由抑制基因引起的作用称为抑制作用。
所谓上位是指某对等位基因的表现受到另一对等位基因的影响,随着后者的不同而不同,这种现象叫做上位效应,上位可分为显性上位和隐性上位。
而显性是指一对等位基因中,当其处于杂合状态时,只表现一个基因所控制的性状,该基因为显性基因,这种现象叫做显性。
所以上位是指不同对等位基因间的作用,而显性是指一对等位基因内的作用方式。
二、是非题1.不同亲本之间通过杂交,再经若干代自交,可育成多种类型的品种。
(+)2.两种白色糊粉层的玉米杂交后,有可能产生有色糊粉层的杂交种子。
( + )3.如果同时考虑4对基因,A A B b C C d d这样的个体,称为杂合体。
《遗传学》课程教学大纲一.基本信息课程编号:课程名称:遗传学英文名称:genetics课程性质: 专业必修课总学时:54学分: 3适用对象: 生物科学专业先修课程:高等数学植物学动物学生物化学二.编写说明(一)课程的性质遗传学是生物学所有专业的一门专业基础课程,是研究生物遗传和变异的科学,研究内容包括基因的结构与功能、基因从亲代传递到子代过程中的遗传与变异。
随着现代生物科学的发展,遗传学已成为21世纪生命科学领域发展最为迅速的学科之一,是生命科学各门学科的核心,它的分支几乎扩展到生物学的各个研究领域。
本课程的任务是全面系统地讲授遗传学的基本原理和遗传学分析的基本方法,同时介绍现代遗传学发展的最新成就,使学生对遗传物质的本质、遗传物质的传递、遗传物质的变异等基本规律有比较全面的、系统的认识,并能应用其基本原理分析遗传学数据,解释遗传学现象,同时对遗传信息的表达与调控有一个较为全面和深入的了解。
(二)课程教学目标基本要求1.系统了解遗传与变异的规律,分子基础及应用。
2.掌握遗传学的基本实验方法和技能、技巧,并在科学态度、独立工作能力方面获得初步的训练。
3.能够利用所学知识,说明和解决实践中有关遗传学的一般问题。
4.能够根据具体要求和目的查阅相关文献。
5.能够胜任中学生生物课中有关遗传学的讲授、实验和课外活动等教学工作。
(三)课程的重点和难点第二章第二节孟德尔的分离规律和独立分配规律;第二章第二节基因与环境的关系;第三章第二节连锁遗传和性连锁;第五章第二节病毒的遗传;第六章第三节细菌的遗传;第十章第三节细胞质遗传;第十一章第二节染色体结构和数目变异;第十二章第一节基因突变;第十三章第二、三节群体遗传与进化;第十四章第二节数量遗传。
(四)课程教学方法与手段以理论讲授为主,配合实践性教学、实验教学、多媒体教学、学生作业、撰写论文、自学等方法进行学习。
(五)实践环节1.名称洋葱根尖有丝分裂染色体标本制备及观察;植物多倍体人工诱导;大葱花粉母细胞减数分裂标本制备及观察;显微摄影;染色体组型分析;果蝇唾腺染色体制片观察;质粒DNA的提取;蚕豆根尖微核检测技术;遗传学实验的计算机模拟;人群中PTC味盲基因频率的分析;真核基因组DNA的快速提取;染色体分带技术。
第四章基因精细结构的遗传分析第四章基因精细结构的遗传分析(3h)教学目的:使学生掌握基因的本质及其基因的现代概念;明确基因的可分性和基因结构的多样性。
教学重点:基因的现代概念及基因的可分性。
教学难点:基因结构的多样性。
第一节基因的概念一、基因概念的发展二、基因的类别及其相互关系三、基因与DNA第二节重组测验一、拟等位基因二、噬菌体突变型三、Benzer的重组测验第三节互补测验一、互补测验原理和方法二、顺反子三、基因内互补第四节缺失作图一、缺失作图原理二、缺失作图方法第五节断裂基因与重叠基因一、外显子与内含子二、断裂基因的意义三、重叠基因的发现与重叠方式第六节基因的功能一、Garrod的先天性代谢缺陷二、一个基因一种酶假说三、一个结构基因一条多肽链的证据第四章基因精细结构的遗传分析(3h)第一节基因的概念一、基因概念的发展1、遗传“因子”人们对基因的认识随着遗传学的发展而不断地深入,最初由Mendal提出“factor”(遗传因子)。
认为生物性状本身是不能遗传的,生物性状是由遗传因子所控制,即亲代传递给子代的是控制性状的遗传因子,而不是性状本身。
到1909年,丹麦学者Johannson提出“gene"这一名词,代替了孟的factor,由此形成了“颗粒遗传”学说——即在杂种F1(Aa)中等位基因A与a并不融合,各自保持其独立性。
2、染色体是基因的载体1910年,Morgan等通过果蝇实验证明:控制性状的基因在染色体上,基因之间可以发生突变,可以发生交换。
故认为基因是一个功能单位,是一个突变单位,也是一个交换单位的所谓三位一体的概念。
3、DNA是遗传物质1928年Griffith首先发现了肺炎球菌的转化作用,即用高温杀死有致病力的S品系细菌,可改变无致病力的R品系成为有致病力细菌的效应。
这种改变遗传性状的现象称为细菌的转化。
1944年,Avery 等人证实了肺炎双球菌的转化因子是DNA。
认为基因是含有特定遗传信息的DNA分子片段。