电子科技大学,电磁场与电磁波。第一章__矢量分析
- 格式:ppt
- 大小:1.85 MB
- 文档页数:47
第一章 矢量分析仅具有大小特征的量为标量,标量的空间分布构成标量场,标量场可用一个标量函数),(t r u来描述;不仅具有大小而且具有方向特征的量称为矢量,矢量的空间分布构成矢量场,矢量场可用一个矢量函数),(t r F来描述。
矢量分析是研究场在空间的分布和变化规律的基本数学工具:标量场在空间的变化规律由其梯度来描述,矢量场在空间的变化规律通过场的散度和旋度来描述,因此本章的重点是标量场的梯度、矢量场的散度和旋度的概念及其运算规律。
1.1 矢量代数1.矢量的表示矢量A 可用一条有方向的线段表示,线段的长度表示矢量A的大小,称为矢量的模;箭头的指向表示矢量A 的方向。
用A e表示与矢量A 同方向的单位矢量,则A e A A=; AA e A=2.矢量的加法 矢量的加法遵循平行四边形法则,加法运算符合结合律和交换律。
交换律:A B B A+=+;结合律:)()(C B A C B A++=++两个矢量的相减可以归结为相加运算。
3.矢量的乘法(1)标量与矢量相乘矢量A 与标量k 的乘积A k 为矢量,大小为A k 。
若0>k ,A k 与A同向;若0<k ,Ak 与A反向。
(2)矢量的标积或点积 θcos AB B A =⋅标积的运算符合交换律和分配律:A B B A⋅=⋅;C A B A C B A ⋅+⋅=+⋅)((3)矢量的矢积或叉积大小:θsin AB ;即等于矢量A 和B构成的平行四边形的面积。
方向:与矢量A 和B垂直,其指向由右手螺旋决定。
矢量积不服从交换律,但服从分配律:A B B A⨯-=⨯;C A B A C B A ⨯+⨯=+⨯)( (4)标量三重积(三矢量的混合积)形式:)(C B A⨯⋅几何意义:等于矢量C B A,,构成的平行六面体的体积性质:a.把三个矢量按循环次序轮换,其积不变。
)()()(B A C A C B C B A⨯⋅=⨯⋅=⨯⋅b.只把两矢量对调,其积差一负号。