水质邻苯二甲酸酯的测定液相色谱法
- 格式:pdf
- 大小:322.26 KB
- 文档页数:4
高效液相色谱法测定农田土壤中的邻苯二甲酸酯含量探讨随着农田土壤中化学农药的使用日益广泛,农田土壤中的污染物也成为了一个备受关注的问题。
邻苯二甲酸酯是一类常见的农田土壤污染物,它们广泛存在于食品包装、玩具、家具等日常用品中,由于其在生产和使用过程中易溶于水和有机溶剂,因此极易进入农田土壤中,对土壤生态系统和人体健康带来潜在威胁。
对农田土壤中邻苯二甲酸酯含量进行准确测定尤为重要。
高效液相色谱法是一种常用的分析技术,具有分离效率高、操作简便、准确度高等特点,已经广泛应用于农田土壤中有机污染物的测定。
本文旨在探讨高效液相色谱法在测定农田土壤中邻苯二甲酸酯含量方面的应用及相关问题,为农田土壤环境质量的监测提供参考。
一、高效液相色谱法测定原理高效液相色谱法是一种通过色谱柱分离混合物中各组分的方法,它利用样品中各组分在不同的条件下与色谱柱固定相互作用强弱不同,从而实现各组分的分离和测定。
在测定邻苯二甲酸酯含量时,通常采用反相色谱柱作为分离柱,选择合适的流动相和检测器进行分析。
通常情况下,首先将待测样品中的邻苯二甲酸酯提取到有机溶剂中,再将有机溶剂蒸发浓缩,得到待测物溶液。
然后将溶液注入色谱仪中,经过色谱柱分离后,利用检测器对各组分进行定量分析,从而得到邻苯二甲酸酯的含量。
1. 样品制备:取农田土壤样品,经过干燥和颗粒度分析后,加入适量提取剂,振荡提取,获得待测物溶液。
2. 色谱条件设置:选择合适的反相色谱柱和流动相,设置流动相温度和流速等参数,进行色谱条件的优化。
3. 样品分析:将待测物溶液注入色谱仪中,根据色谱条件进行分析。
4. 数据处理:利用色谱软件处理得到的数据,进行定量分析,获得邻苯二甲酸酯的含量。
5. 方法验证:对测定方法进行准确性、精密度、重复性等方面的验证,确保测定结果的准确性和可靠性。
1. 样品制备问题:样品制备是高效液相色谱法测定中的重要环节,对土壤样品进行有效的提取和净化是关键。
农田土壤中的有机物和杂质较多,提取方法的选择和提取效率对测定结果影响较大。
高效液相色谱法测定邻苯二甲酸酯实验报告实验目的:1.学习掌握高效液相色谱法(HPLC)的基本原理和操作方法;2.通过测定邻苯二甲酸酯的含量,了解其在环境中的污染状况。
实验原理:高效液相色谱法是一种常用的分析技术,具有高分辨率、高灵敏度和高重复性的特点。
此实验中使用的HPLC仪器由进样系统、流动相系统、色谱柱和检测器组成。
样品进样后,通过流动相在色谱柱中分离,不同组分按照特定的时间顺序通过,再通过检测器检测并计算得到定量结果。
实验步骤:1.仪器和色谱柱的准备:打开和保持HPLC仪器的电源,并预热至工作温度。
选择合适的色谱柱,并平衡至稳定状态。
2.样品的制备和进样:取一定质量的待测样品,加入适量的提取液,并充分混合。
用适当的过滤器进行过滤,将过滤后的样品进样到色谱柱中。
3.进样和流动相参数的设置:根据样品的性质和分析要求,设置进样量和流动相组成。
常用的流动相为二氯甲烷和甲醇的混合物。
4.色谱柱运行:开启HPLC仪器,并调整流动相的流速和温度。
根据不同的物质特性,选择合适的梯度程序进行分离。
在分离过程中,对流动相温度和流速进行实时监测和调整。
5.检测器的设置和数据处理:选择合适的检测器,并设置检测参数。
在检测过程中,记录不同时间点的信号强度,并输入到计算机软件中进行峰面积和浓度的计算。
实验结果:根据上述实验步骤,测定了待测样品中邻苯二甲酸酯的含量。
根据HPLC测定结果,经过数据处理和计算,得到待测样品中邻苯二甲酸酯的浓度为x mg/L。
结论:通过本实验,成功地应用高效液相色谱法测定了待测样品中邻苯二甲酸酯的含量,得到了可信的分析结果。
该方法操作简便、准确可靠,可用于环境监测和化学分析中对邻苯二甲酸酯的定量测定。
液液萃取-气相色谱质谱法测定环境水体中邻苯二甲酸酯摘要:本文研究了一种液液萃取-气相色谱质谱法测定水中邻苯二甲酸酯的方法。
结果表明:11种邻苯二甲酸酯在0.2-10mg/L的浓度范围内具有良好的线性关系。
在水样体积取500ml时,11种邻苯二甲酸酯的检出限在0.15-0.22μg/L,定量限在0.60-0.88μg/L。
关键词:邻苯二甲酸酯;液液萃取;气相色谱质谱。
目前环境水体中PAEs的检测主要采用气相色谱质谱法和液相色谱法进行测定,前处理方法包括液液萃取、固相萃取、固相微萃取、固相膜萃取、液相微萃取、搅拌棒吸附萃取等方式[1],其中气相色谱质谱由于具有高效的分辨能力,成为测定PAEs的主流方法。
本文研究了一种液液萃取-气相色谱质谱法测定环境水体中PAEs的检测方法。
该方法前处理前处理检定,操作方便,能提高测定水体中PAEs的效率。
1试验部分1.1仪器与试剂仪器:Thermo Fisher Trace1300 ISQ LT气相色谱质谱仪(美国赛默飞世尔公司);平行浓缩氮吹仪(上海安谱科技有限公司);旋转蒸发仪(瑞士步琦公司)。
试剂:11种邻苯二甲酸酯标准溶液(1000mg/L,上海安谱科技有限公司);正己烷(农残级);无水硫酸钠(优级纯,上海国药有限公司);氯化钠(优级纯,上海国药有限公司);固相萃取柱(500mg/6mL,CNW公司)。
1.2样品前处理作者简介:李桂晓,1990.1,男,汉族,硕士研究生,中级工程师,研究方向为环境检测取500ml水样于1000ml分液漏斗中,加入20ml正己烷振荡萃取5min(中间过程要放气),收集有机相于平底烧瓶中。
再重复萃取一次,经无水硫酸钠除水后合并萃取液,将萃取液放置在旋转蒸发仪上浓缩至5ml左右,待净化。
用固相萃取装置将样品进行净化,加入5ml甲醇活化,然后再加入10ml正己烷平衡。
将萃取液转移至固相萃取柱中,用1-2ml正己烷洗涤浓缩管,洗涤液一并上柱,然后用10 ml正己烷溶液,分3次加入到萃取柱上进行洗脱,合并流出液和洗脱液,氮吹定容至1.0mL,待测。
高效液相色谱法测定邻苯二甲酸酯1553607 胡艺蕾实验时间:2017年4月1日实验温度:19.0℃一、实验目的1、了解高效液相色谱仪的组成及其工作原理和基本操作。
2、对邻苯二甲酸酯进行分离和测定。
3、探究不同流动相及不同流动相比例对流速、柱压、保留时间及分离度的影响。
4、了解液相色谱法定量测定的原理。
二、实验原理1、实验采用的反相液固吸附色谱法,其分离机理是:当流动相通过吸附剂时,在吸附剂(固体相)表面发生了溶质分子取代吸附剂上的溶剂分子的吸附作用。
固体相为非极性分子,如十八烷基键合相,流动相为极性分子。
2、组分分子与吸附剂之间作用力的强弱决定它的保留时间。
溶质分子官能团的性质和分子结构的空间效应都会影响其出峰的顺序。
本次实验为邻苯二甲酸酯,其分子官能团都相同,但由于DMP其官能团相邻的烷基较小,导致其保留值最小,因此出峰顺序为:DMP(邻苯二甲酸二甲酯)>DEP(邻苯二甲酸二乙酯)>DBP.(邻苯二甲酸二丁酯)。
3、在吸附色谱中,流动相的洗脱能力与溶剂的极性有关,极性越大,洗脱强度也越大。
本次实验使用的三个流动相的极性大小为:水>乙腈>甲醇。
通常选择二元混合溶剂作为流动相。
4、定量分析中,定量峰与其他峰之间的分离程度称为分离度R:通常用塔板数n来描述色谱的柱效:三、实验仪器与试剂1、仪器Agilent1260高效液相色谱仪:脱气机:真空室内半透膜管路,对流动相进行脱气四元泵:二元泵各控制一种溶剂可设置的流速范围:0.001–10 mL/min 0.001 mL/min步进UV检测器:用于检测通过样品后的紫外光类型:双光束光路设计光源:氘灯波长范围:190 –600 nm手动进样器:进样20μL色谱柱:填料:十八烷(适合中性、弱酸碱)4.6 ×100mm, 3.5µm2、试剂流动相:纯水、甲醇、乙腈样品:DMP、DEP、DBP四、实验步骤1、开启电脑,开启脱气机、泵、检测器等的电源,启动软件。
水中邻苯二甲酸酯的固相萃取-气相色谱-
质谱测定法
固相萃取(Solid-Phase Extraction, SPE)是目前应用较多的一种分离提取技术,它是将加入到纯化柱中的颗粒物质从溶液中以一定的速率萃取出来,利用样品平衡在固相和液相之间的化学分离作用,以达到检测的目的。
固相萃取的研究和应用主要聚焦在微量分析以及痕量成分的检测上。
因此,对于固相萃取技术的优势和实际应用受到广泛的关注与重视。
针对水中邻苯二甲酸酯的检测,可以采用固相萃取-气相色谱-质谱分析技术,这是一种实验证明能够准确、有效快速检测水中邻苯二甲酸酯的高灵敏度分析方法。
此方法的原理是将样品中的有机物与固相富集柱单体结合,然后根据固体抽提物的物理性质和化学性质决定是否可以实现固体抽提过程;随后把固相抽提的有机物以溶剂重新溶解,使其满足气相色谱仪
的检测需要;最后采用气相色谱-质谱的分析用于鉴定检测样本中的邻苯二甲酸酯类有机物。
实验准备工作是检测过程中十分重要的部分,包括购买高质量的设备药品,样品前处理实验,建立样品的准备方案并注意试剂充足,同时还要充分认识检测样品的特殊性,分离方式的种类,抽取条件的选择等,确保提取样品的准确性以及后续的检测精准度。
从而能够在分析表征水溶液中邻苯二甲酸酯的方法中进行准确的检测,实现对水中痕量有机污染物的快速检测,从而保障水质干净、安全。
水中邻苯二甲酸酯的研究进展∙发布:2010-12-30 14:22:51∙来源:中国增塑剂网∙塑料助剂讨论区0前言邻苯二甲酸酯(PAEs)又称酞酸酯,是邻苯二甲酸酐与醇的反应产物。
该类化合物从邻苯二甲酸二甲酯到十三烷基酯共有20多种,均为无色透明的油状液体,无味或略带气味,难溶于水,易溶于有机溶剂。
邻苯二甲酸酯类常用作增塑剂和软化剂,其含量有时可达高聚体本身的60%,用于增大塑料的可塑性和韧性。
PAEs与塑料本身很难牢固结合,很容易从中溶解出来,从而进入环境。
PAEs是一种内分泌干扰物,含有雌激素成分[1,2]。
PAEs是全球生产量大,应用最为广泛的一类人工合成环境污染物。
全球每年PAEs的使用量在800万t以上,各种环境介质中PAEs的污染严重。
美国环保局将邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二异辛酯(DEHP)、邻苯二甲酸二正辛酯(DOP)以及邻苯二甲酸丁基苄基酯(BBP)列为优先控制污染物。
世界野生动物保护基金会将3种PAEs列入环境激素名单。
DMP、DBP和DOP被列入我国环境优先污染物黑名单。
同时,我国生活饮用水卫生标准(GB 5749—2006)中也规定了部分PAEs的限值,邻苯二甲酸二(2-乙基己基)酯为0.008 mg/L、邻苯二甲酸二乙酯为0.3 mg/L、邻苯二甲酸二丁酯为0.003 mg/L。
《地表水环境质量标准》(GB3838—2002)中规定集中式生活饮用水地表水源地邻苯二甲酸二丁酯的标准限值(液相色谱法)为0.003 mg/L、邻苯二甲酸二(2-乙基已基)酯的标准限值(气相色谱法)为0.008 mg/L。
我国许多城市水源水、矿泉水、桶装水等水环境中均受到不同程度PAEs污染,PAEs暴露已经成为威胁我国居民身体健康和子孙后代生存繁衍的重要公共卫生问题。
暴露水平的研究是制定和修订各种相关标准的基础,而样品的前处理和分析方法又是确定暴露水平的重中之重。
高效液相色谱(HPLC)法测定邻苯二甲酸酯一. 实验目的1、学习高效液相色谱仪的基本操作方法。
2、了解高效液相色谱仪原理和条件设定方法。
3、了解高效液相色谱法在日常分析中的应用。
二. 实验原理1、高效液相色谱法是以液体作为流动相,借助于高压输液泵获得相对较高流速的液流以提高分离速度、并采用颗粒极细的高效固定相制成的色谱柱进行分离和分析的一种色谱方法。
2、在高效液相色谱中,若采用非极性固定相,如十八烷基键合相,极性流动相,即构成反相色谱分离系统。
反之,则称为正相色谱分离系统。
反相色谱系统所使用的流动相成本较低,应用也更为广泛。
3、定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。
分离度(R)的计算公式为:R= 2[t(R2)-t(R1)] /1.7*(W1+W2)式中 t(R2)为相邻两峰中后一峰的保留时间; t(R1)为相邻两峰中前一峰的保留时间; W1及W2为此相邻两峰的半峰宽。
除另外有规定外,分离度应大于1.5。
4、本实验对象为邻苯二甲酸酯,又称酞酸酯,缩写PAE,常被用作塑料增塑剂。
它被普遍应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品,如指甲油、头发喷雾剂、香皂和洗发液等数百种产品中。
但研究表明,邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,是一类内分泌干扰物。
待测物性质见表1。
表1色谱柱测试条件液,在不同条件下进行HPLC分离检测。
三.仪器与试剂1、仪器Agilent 1100高效液相色谱仪,50ul微量注射器。
2、试剂甲醇(色谱专用),高纯水四. 实验步骤1、色谱条件色谱柱:辛烷基硅烷键合硅胶(C8)柱温:室温流动相:初始为高纯水:30%,甲醇:70%检测器:DAD检测器;检测波长:220nm;进样体积:100µl定量环,实际注射每次可控制在200µl。
2、待测溶液的配制首先用甲醇做溶剂配制储备液:邻苯二甲酸二甲酯(0.3880g/L),邻苯二甲酸二乙酯(0.2770g/L),邻苯二甲酸二丁酯(0.3776g/L)。
FHZHJSZ0169 水质邻苯二甲酸酯的测定液相色谱法F-HZ-HJ-SZ-0169水质—邻苯二甲酸酯的测定—液相色谱法1 范围本方法适用于水和废水中邻苯二甲酸二甲酯、邻苯二甲酸二丁酯和邻苯二甲酸二辛酯的测定。
方法的检出限分别为邻苯二甲酸二甲酯0.1µg/L、邻苯二甲酯二丁酯0.1µg/L和邻苯二甲酸二辛酯0.2µg/L和邻苯二甲酸二辛酯0.2µg/L。
因为邻苯二甲酸酯广泛用于塑料制品中,所以,在采样及测试过程中一定要避免使用塑料制品。
2 原理水样用正己烷萃取,经无水硫酸钠脱水后,用K-D浓缩器浓缩,在腈基柱或胺基柱上,以正己烷-异丙醇为流动相将邻苯二甲酸酯分离成单个化合物,用紫外检测器测定各化合物的峰高或峰面积,以外标法进行定量。
3 试剂3.1 正己烷,优级纯。
3.2 异丙醇,分析纯。
3.3 丙酮,分析纯。
3.4 无水硫酸钠:用前在马福炉中350℃烘4h。
3.5 盐酸,分析纯:配制成1mol/L。
3.6 氢氧化钠,分析纯:配制成1mol/L。
3.7 甲醇:优级纯。
3.8 邻苯二甲酸二甲酯、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯,优级纯。
3.9 邻苯二甲酸二甲酯、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯,优级纯。
3.10 纯水:二次蒸馏水。
3.11 标准贮备液:1000mg/L,分别称取每种标准物100mg,准确至0.1mg,溶于优级纯甲醇中,在容量瓶中定容至100mL。
也可以购买商品标准贮备液。
3.12 中间标准溶液:100mg/L,分别准确移取三种标样的贮备液各10.00mL于同一100mL容量瓶中,用优级纯甲醇定容到100mL。
3.13 玻璃棉或脱脂棉(过滤用):在索氏提取器上用石油醚提取4h,晾干后备用。
4 仪器4.1 高效液相色谱仪,具紫外检测器。
4.2 样品瓶:100mL具玻璃磨口塞的细口瓶4.3 分液漏斗:250mL。
4.4 K-D浓缩器:具1mL刻度的浓缩瓶。
FHZHJSZ0169 水质邻苯二甲酸酯的测定液相色谱法
F-HZ-HJ-SZ-0169
水质—邻苯二甲酸酯的测定—液相色谱法
1 范围
本方法适用于水和废水中邻苯二甲酸二甲酯、邻苯二甲酸二丁酯和邻苯二甲酸二辛酯的测定。
方法的检出限分别为邻苯二甲酸二甲酯0.1µg/L、邻苯二甲酯二丁酯0.1µg/L和邻苯二甲酸二辛酯0.2µg/L和邻苯二甲酸二辛酯0.2µg/L。
因为邻苯二甲酸酯广泛用于塑料制品中,所以,在采样及测试过程中一定要避免使用塑料制品。
2 原理
水样用正己烷萃取,经无水硫酸钠脱水后,用K-D浓缩器浓缩,在腈基柱或胺基柱上,以正己烷-异丙醇为流动相将邻苯二甲酸酯分离成单个化合物,用紫外检测器测定各化合物的峰高或峰面积,以外标法进行定量。
3 试剂
3.1 正己烷,优级纯。
3.2 异丙醇,分析纯。
3.3 丙酮,分析纯。
3.4 无水硫酸钠:用前在马福炉中350℃烘4h。
3.5 盐酸,分析纯:配制成1mol/L。
3.6 氢氧化钠,分析纯:配制成1mol/L。
3.7 甲醇:优级纯。
3.8 邻苯二甲酸二甲酯、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯,优级纯。
3.9 邻苯二甲酸二甲酯、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯,优级纯。
3.10 纯水:二次蒸馏水。
3.11 标准贮备液:1000mg/L,分别称取每种标准物100mg,准确至0.1mg,溶于优级纯甲醇
中,在容量瓶中定容至100mL。
也可以购买商品标准贮备液。
3.12 中间标准溶液:100mg/L,分别准确移取三种标样的贮备液各10.00mL于同一100mL容
量瓶中,用优级纯甲醇定容到100mL。
3.13 玻璃棉或脱脂棉(过滤用):在索氏提取器上用石油醚提取4h,晾干后备用。
4 仪器
4.1 高效液相色谱仪,具紫外检测器。
4.2 样品瓶:100mL具玻璃磨口塞的细口瓶
4.3 分液漏斗:250mL。
4.4 K-D浓缩器:具1mL刻度的浓缩瓶。
4.5 色谱柱:腈基柱或胺基柱均可(如用腈基柱常温即可,胺基柱需要30℃温度)。
6 操作步骤
6.1 样品预处理
将100mL水样全部置于250mL分液漏斗中,取10mL正己烷,冲洗采样瓶后,倒入分液漏斗中,手动振5min(注意放气!),静置30min。
先将水相放入一干净的烧杯中,再将有机相通过上面装有无水硫酸钠的漏斗,接至浓缩瓶中。
将水相倒回分液漏斗中,以同样步骤再萃取一次。
弃去水相,有机相通过原装有无水硫酸钠的漏斗仍接到装有第一次萃取的浓缩瓶中,再用少量正己烷洗涤分液漏斗和无水硫酸钠,接至原浓缩瓶内,在70~80℃水浴下浓缩至1mL 以下,定容至1mL,备色谱分析用。
6.2 流动相:99%正己烷+1%异丙醇;流速:1.5mL/min。
色谱柱:腈基柱30cm×4mm。
检测器:紫外检测器,测定波长224mm;进样体积10µL。
6.3校准曲线
准确移取中间标准溶液1.00mL于100mL容量瓶中,用优级纯甲醇定容至100mL,此溶液即为混合标准使用液,分取七个250mL的分液漏斗分别放入100mL二次蒸馏水,依次加入混合标准使用液0mL、0.5mL、1.5mL、2.0mL、2.5mL、3.0mL按照样品预处理方法进行处理,按照上述色谱条件进行分析。
6.4 测定
预处理后的样品,通过外标法时行定量分析。
6.5 标准色谱图
标准色谱图见图1
图1 邻苯二甲酸酯类标准色谱图
7 结果计算
1 22
1
V h V
h
A
C
i i
i
⋅⋅
⋅=
式中: C —样品中邻苯二甲酸酯的浓度(mg/L);
Aί—标样中组分i的浓度(mg/L);
H1ί—样品中组分i的峰高(mm);
V1 —提取液体积(mL);
H2ί—标样中组分i的峰高(mm);
V2 —被提取的样品体积(mL);
8 精密度和准确度
重复测定0.2~0.3mg/L的统一样品,最大相对标准偏差:邻苯二甲酸二甲酯为1.5%,邻苯二甲酸二丁酯为3.1%,邻苯二甲酸二辛酯为3.5%。
四个实验室分别对几种类型的水样进行加标实验,加标回收率测定结果见表1至表3。
9 参考文献
《水和废水监测分析方法》编委会编,水和废水监测分析方法(第四版),pp. 556-559,中国环境科学出版社,北京,2002。
附录:注意事项
①在采样及测试过程中一定要避免使用塑料制品。
②样品在浓缩过程中,注意不能将样品蒸干,要仔细雨冲洗浓缩管壁到预定体积,因为管壁吸附会给测定带来误差。
③在分析完样品后,要用流动相多冲洗一段时间,直到基线走平为止,以免样品沾污柱子,可延长柱子寿命。
表1 邻苯二甲酸二甲酯加标回收率结果
实验室水样类型样品含量
(µg)
加标量
(µg)
回收量
(µg)
加标回收率
(%)
自来水—9.99 10.95 110
河水—9.99 9.61 96.2 1
化工废水 1.17 19.98 21.5 108
地下水—7.82 7.73 98.9
煤层气采出水—7.82 6.70 85.7
排污渠废水—7.82 7.56 96.7
印染废水—12.4 11.2 90.3 2
焦化厂废水130 12.4 9.0 72.6
地下水—8.16 7.82 95.8 3
化工厂废水8.0 12.43 9.49 76.4
自来水8.0 12.43 9.49 76.4 4
公园湖水 5.8 5.0 3.6 72.0
表2 邻苯二甲酸二丁酯加标回收率结果
实验室水样类型样品含量
(µg)
加标量
(µg)
回收量
(µg)
加标回收率
(%)
自来水0.65 10.04 9.08 90.4
河水 1.77 10.04 10.32 103 1
化工废水 2.69 20.08 19.61 97.6
地下水9.30 8.03 90.
29 90.8
煤层气采出水8.51 8.03 6.76 84.1
排污渠废水10.01 8.03 6.94 86.4
印染废水—12.7 11.3 89.0 2
焦化厂废水32.4 12.7 11.0 86.6
地下水0.53 14.3 11.95 83.5 3
化工厂废水7.6 8.97 8.65 96.2
自来水0.44 7.16 6.58 91.9 4
公园湖水52.2 25.0 20.6 83.8 表3 邻苯二甲酸二辛酯加标回收率结果
实验室水样类型样品含量
(µg)
加标量
(µg)
回收量
(µg)
加标回收率
(%)
自来水 1.85 9.77 10.94 112
河水 3.63 9.77 11.46 117 1
化工废水 2.01 19.54 24.14 124
地下水11.51 7.99 7.47 93.5
煤层气采出水10.34 7.99 6.87 85.9
排污渠废水11.55 7.99 7.59 94.9
印染废水18.2 12.4 10.4 86.3 2
焦化厂废水18.3 12.4 10.3 83.1
地下水0.42 6.76 6.85 101 3
化工厂废水38.0 9.63 8.08 83.9
自来水0.56 6.76 5.29 78.3 4
公园湖水90.3 50.0 52.7 105。