磷扩散工艺
- 格式:pptx
- 大小:1.89 MB
- 文档页数:31
扩散工艺及控制要点1.由于硅太阳能电池实际生产中均采用P型硅片,因此需要形成N型层才能得到PN结,这通常是通过在高温条件下利用磷源扩散来实现的。
这种扩散工艺包括两个过程:首先是硅片表面含磷薄膜层的沉积,然后是在含磷薄膜中的磷在高温条件下往P型硅里的扩散。
2.在高温扩散炉里,汽相的POCL3(phosphorus oxychloride)或PB r3(phosphorus tribromide)首先在表面形成P2O5(phosphorus pentoxide);然后,其中的磷在高温作用下往硅片里扩散。
3.扩散过程结束后,通常利用“四探针法”对其方块电阻进行测量以确定扩散到硅片里的磷的总量,对于丝网印刷太阳电池来说,方块电阻一般控制在40-50欧姆。
4.发射结扩散通常被认为是太阳电池制作的关键的工艺步骤。
扩散太浓,会导致短路电流降低(特别是短波长光谱效应很差,当扩散过深时,该效应还会加剧);扩散不足,会导致横向传输电阻过大,同样还会引起金属化时硅材料与丝网印刷电结之间的欧姆接触效果。
5.导致少数载流子寿命低的原因还包括扩散源的纯度、扩散炉的清洁程度、进炉之前硅片的清洁程度甚至是在热扩散过程中硅片的应力等。
6.扩散结的质量同样依赖于扩散工艺参数,如扩散的最高温度、处于最高温度的时间、升降温的快慢(直接影响硅片上的温度梯度所导致的应力和缺陷)。
当然,大量的研究表明,对于具有600mv左右开路电压的丝网印刷太阳电池,这种应力不会造成负面影响,实际上有利于多晶情况时的吸杂过程。
7.发射结扩散的质量对太阳能电池电学性能的影响反映在串联电阻从而在填充因子上:(1)光生载流子在扩散形成的N-型发射区是多数载流子,在这些电子被金属电极收集之前需要经过横向传输,传输过程中的损失依赖于N-型发射区的横向电阻;(2)正面丝网印刷金属电极与N-型发射区的电接触,为了避免形成SCHOTTKY势垒或其它接触电阻效应而得到良好的欧姆接触,要求N-型发射区的搀杂浓度要高。
一、硼扩散工艺原理(液态源)目前,液态源硼扩散常用:硼酸三甲酯B(CH3O)3,硼酸三丙酯,三溴化硼B(B2)3,无水硼酸三甲酯B(CH3O)3,为无色透明液体,在室温下挥发形成,具有较高真气压,硼酸三甲酯遇水易分解,升成硼酸和甲醇。
B(CH3O)+ 3H2O=H3BO3 + 3(CH3OH)B(CH3O)500℃以上B2O3 + CO2 + H2O + C2B2O3 + 3Si = 3SiO2 + 4B硼酸三甲酯在高温(500℃以上)能够分解出三氧化二硼(B2O3),而三氧化二硼在900℃左右又能与硅片起反应,生成硼原子,并沉积在硅片表面,这就是预沉积过程;沉积后在基区窗口表面上生成具有色彩的硼硅玻璃。
二、硼扩散装置:硼再分布:当炉温升到预定温度(1180℃以后)通干O2 20分钟,排除管道内空气,同时加热水浴瓶,是水浴温度达到设定温度值950℃,一切就绪后,即可将正片和陪片一起装入石英舟推入炉子恒温区,先通5分钟干氧,在改通30分钟湿氧,最后通5分钟干氧,时间到即可把硅片拉出石英管,倒在铜块上淬火,防止慢降温时,金从硅体中析出。
一、磷扩散工艺原理5POCl3 >600℃3PCl5 + P2O52P2O5 + 5Si = 5SiO2 + 4P4PCl5+5O2 过量O2 2P2O5+6Cl24PCl3+3O2 过量O2 2P2O5+6Cl2磷预沉积时,一般通N2为20~80ml/分,O2为20~40ml/分,O2可通过,也可不通过源。
二、磷扩散装置磷扩散源POCl3是无色透明有窒息性气味的毒性液体,要求扩散系统密封性好,源瓶进出口两端最好用聚四氟乙烯或聚氯乙烯管道连接。
若用其他塑料管或乳胶管连接易被腐蚀,就需要经常更换。
接口处最好用封口胶,由系统流出气体应通过排风管排到室外,不要泄漏在室内。
源瓶要严加密封,切勿让湿气进入源瓶。
因为三氯氧磷吸水汽而变质,做扩散温度上不去。
2POCl3+3H2O=P2O5+5HCl发现三氟氧磷出现淡黄色就不能使用。
磷扩散注意事项磷扩散是一种常见的表面处理方法,用于改善金属材料的耐蚀性和耐磨性。
然而,磷扩散过程中存在一些注意事项,需要操作人员严格遵守,以确保工艺的稳定和产品质量的可靠性。
首先,操作人员在进行磷扩散前,必须清洁金属表面。
因为金属表面的油污、氧化物和其他杂质都会影响磷扩散的效果和均匀性。
常用的清洁方法包括酸洗、熔盐浸渍等。
清洁过程要注意控制时间和温度,避免过渡清洁导致表面粗糙度增加或者金属损失过大。
其次,在磷扩散过程中,操作人员需要严格控制扩散温度和时间。
温度过高或时间过长会导致磷层过厚,造成材料变脆、变形甚至损坏。
而温度过低或时间过短则无法形成均匀的磷化层。
因此,根据具体金属材料的性质和要求,选择适当的磷化温度和时间是至关重要的。
第三,磷扩散过程中必须注意通风排气。
扩散过程中产生的磷化气体可能对人体和环境产生危害。
因此,必须确保操作场所有良好的通风设备和排气系统,及时排出有害气体,减少对操作人员的影响。
此外,磷扩散过程中还需要控制扩散介质的成分和浓度。
一般使用含磷化合物作为磷化介质,如红磷、磷酸盐等。
操作人员要仔细选择扩散介质,确保其纯度和稳定性,以避免磷化层的质量问题。
另外,磷扩散过程中还需要严格控制磷化介质的浓度。
过高的浓度会导致磷化层不均匀或者过厚,而过低的浓度则会影响磷的扩散效果。
因此,在扩散过程中要定期监测磷化介质的浓度,并及时进行调整。
最后,磷扩散后的材料需要进行后处理。
一般来说,扩散后的材料表面会出现一些残余磷化物和其他沉淀物。
这些残余物质需要通过清洗和除去的方法进行处理。
清洗时要选择适当的溶剂和清洗剂,以确保彻底去除残余物质,避免对产品质量的影响。
综上所述,磷扩散是一项技术要求较高的表面处理方法,操作人员在进行磷扩散过程中必须严格遵守以上注意事项。
只有确保操作规范和过程稳定,才能获得高质量的磷化层,并保证产品的性能和可靠性。
光伏电池磷扩散炉工艺温度光伏电池磷扩散炉是光伏电池制造过程中的一个重要设备,用于向硅片表面扩散磷元素,形成P-N结。
工艺温度是磷扩散炉中最为关键的参数之一,对于光伏电池的性能和效率有着重要影响。
在磷扩散炉工艺中,温度是一个至关重要的因素。
适当的温度可以保证磷元素与硅片表面有效地相互作用,形成均匀、致密的P-N结。
而过高或过低的温度都会对电池性能产生不利影响。
一般来说,磷扩散炉的工艺温度通常在800°C到950°C之间。
具体的温度选择取决于硅片的类型、厚度和制造工艺等因素。
在常规的硅片制造中,常用的工艺温度为850°C左右。
较低的温度会导致磷元素的扩散速率较慢,无法达到预期的效果,P-N结的形成不完整,影响光伏电池的性能。
而较高的温度则可能导致硅片表面的磷元素过度扩散,形成厚度不均匀的磷扩散层,从而影响电池的光电转换效率。
在磷扩散炉工艺中,除了温度外,还需要考虑磷源的浓度和扩散时间等因素。
这些参数之间存在相互影响,需要在实际制造过程中进行综合考虑。
一般来说,较高的磷源浓度和较长的扩散时间可以弥补较低的温度对扩散速率的影响,但同时也会增加产品的制造成本。
磷扩散炉工艺温度的控制也需要考虑设备本身的性能和稳定性。
炉温的均匀性和稳定性对于扩散过程的控制至关重要,需要通过先进的温度控制技术和设备来实现。
总的来说,光伏电池磷扩散炉工艺温度是影响光伏电池性能和效率的重要因素之一。
合适的工艺温度可以保证磷元素与硅片的有效扩散,形成均匀、致密的P-N结。
在实际制造中,需要综合考虑硅片的类型、厚度和制造工艺等因素,选择适当的温度参数。
同时,还需要考虑磷源浓度、扩散时间和设备的性能稳定性等因素。
通过合理控制工艺温度,可以提高光伏电池的性能和效率,推动光伏产业的发展。
一、硼扩散工艺原理(液态源)目前,液态源硼扩散常用:硼酸三甲酯B(CH3O)3,硼酸三丙酯,三溴化硼B(B2)3,无水硼酸三甲酯B(CH3O)3,为无色透明液体,在室温下挥发形成,具有较高真气压,硼酸三甲酯遇水易分解,升成硼酸和甲醇。
B(CH3O)+ 3H2O=H3BO3 + 3(CH3OH)B(CH3O)500℃以上B2O3 + CO2 + H2O + C2B2O3 + 3Si = 3SiO2 + 4B硼酸三甲酯在高温(500℃以上)能够分解出三氧化二硼(B2O3),而三氧化二硼在900℃左右又能与硅片起反应,生成硼原子,并沉积在硅片表面,这就是预沉积过程;沉积后在基区窗口表面上生成具有色彩的硼硅玻璃。
二、硼扩散装置:硼再分布:当炉温升到预定温度(1180℃以后)通干O2 20分钟,排除管道内空气,同时加热水浴瓶,是水浴温度达到设定温度值950℃,一切就绪后,即可将正片和陪片一起装入石英舟推入炉子恒温区,先通5分钟干氧,在改通30分钟湿氧,最后通5分钟干氧,时间到即可把硅片拉出石英管,倒在铜块上淬火,防止慢降温时,金从硅体中析出。
一、磷扩散工艺原理5POCl3 >600℃3PCl5 + P2O52P2O5 + 5Si = 5SiO2 + 4P4PCl5+5O2 过量O2 2P2O5+6Cl24PCl3+3O2 过量O2 2P2O5+6Cl2磷预沉积时,一般通N2为20~80ml/分,O2为20~40ml/分,O2可通过,也可不通过源。
二、磷扩散装置磷扩散源POCl3是无色透明有窒息性气味的毒性液体,要求扩散系统密封性好,源瓶进出口两端最好用聚四氟乙烯或聚氯乙烯管道连接。
若用其他塑料管或乳胶管连接易被腐蚀,就需要经常更换。
接口处最好用封口胶,由系统流出气体应通过排风管排到室外,不要泄漏在室内。
源瓶要严加密封,切勿让湿气进入源瓶。
因为三氯氧磷吸水汽而变质,做扩散温度上不去。
2POCl3+3H2O=P2O5+5HCl发现三氟氧磷出现淡黄色就不能使用。
一、LPCVD工艺原理1.L P的工艺原理与目的:2.原理:用加热的方式,在低压条件下使气态化合物在硅片表面反应并沉积成固体薄膜3.目的:在硅片背面沉积一层超薄氧化层提供良好的界面钝化,同时提供不同载流子隧穿势垒,氧化层上沉积一层非晶硅增加电子的迁移速率同时抑制空穴的迁移速率(形成能带弯曲和异质结接触),另外非晶硅与金属接触,起到电子传输桥梁的作用。
4.氧化层沉积原理:高温通氧气,氧气和硅反应生产氧化硅,反应方程式:O2+Si=SiOx非晶硅沉积原理:高温通硅烷,硅烷热分解成硅和氢气,反应方程式:SiH4(气)=Si(固)+H22.1、氧化层的形成机理:在反应过程中,硅表面未饱和硅原子与氧原子结合生成二氧化硅薄膜,之后由于已生成的SiO2薄膜会阻止氧原子和硅表面,氧原子会以扩散的方式继续通过氧化层,到达SiO2/Si界面,继续与内部原子发生反应。
通过控制反应时间和剂量,可以实现膜层厚度控制。
所以SiO2膜层在一定程度上能有效降低硅表面的悬挂键密度,从而很好的通过控制界面缺陷和固定电荷,实现表面态密度的降低,同时SiO2/Si界面的复合速率也能有效降低,从而起到钝化作用。
2.2、氧化层的影响因素:由于实际的硅片表面外面无其他原子存在,表面的硅原子有未饱和的悬挂键,会形成很多表面形态,引入表面能级,即表面复合。
SiO2钝化方法即硅片表面的氧化的氧化钝化法,通过通入氧气在高温条件下硅片表面形成一层SiO2膜层。
SiOx生长的影响因素时间温度流量压力3.1、Poly层形成过程:多晶Si薄膜淀积本质:一种复相物理-化学过程生产过程:参加反应的气体被输送到淀积区;反应物分子由主气流扩散到达衬底表面;反应物分子吸附在衬底表面上;吸附物分子间或吸附分子与气体分子间发生化学反应,生产si原子和化学反应副产物,si原子沿衬底表面迁移并结合进入晶体点阵内;反应副产物分子从衬底表面解吸;副产物分子由衬底表面外扩散到主气流中然后排除沉积区。
扩散工艺扩散技术目的在于控制半导体中特定区域内杂质的类型、浓度、深度和PN结。
在集成电路发展初期是半导体器件生产的主要技术之一。
但随着离子注入的出现,扩散工艺在制备浅结、低浓度掺杂和控制精度等方面的巨大劣势日益突出,在制造技术中的使用已大大降低。
3.1 扩散机构3.1.1 替位式扩散机构这种杂质原子或离子大小与Si原子大小差别不大,它沿着硅晶体内晶格空位跳跃前进扩散,杂质原子扩散时占据晶格格点的正常位置,不改变原来硅材料的晶体结构。
硼、磷、砷等是此种方式。
3.1.2 填隙式扩散机构这种杂质原子大小与Si原子大小差别较大,杂质原子进入硅晶体后,不占据晶格格点的正常位置,而是从一个硅原子间隙到另一个硅原子间隙逐次跳跃前进。
镍、铁等重金属元素等是此种方式。
3.2 扩散方程∂N / ∂t = D*2N / ∂x2N=N(x,t)杂质的浓度分布函数,单位是cm-3D:扩散系数,单位是cm2/s加入边界条件和初始条件,对上述方程进行求解,结果如下面两小节所诉。
3.2.1 恒定表面浓度扩散整个扩散过程中,硅片表面浓度NS 保持不变N(x,t)=NSerfc(x/(2*(Dt)1/2))式中erfc称作余误差函数,因此恒定表面浓度扩散分布符合余误差分布。
3.2.2.限定源扩散杂质源限定在硅片表面薄的一层,杂质总量Q是常数。
N(x,t)=(Q/( Dt)1/2)*exp(-X2/4Dt)exp(-X2/4Dt)是高斯函数,因此限定源扩散时的杂质分布是高斯函数分布。
由以上的求解公式,可以看出扩散系数D以及表面浓度对恒定表面扩散的影响相当大3.2.3 扩散系数扩散系数是描述杂质在硅中扩散快慢的一个参数,用字母D表示。
D大,扩散速率快。
D与扩散温度T、杂质浓度N、衬底浓度N、扩散气氛、衬底晶向、缺陷等因素有关。
Bexp(-E/kT)D=DT:绝对温度;K:波尔兹曼常数;E:扩散激活能D:频率因子3.2.4 杂质在硅中的固溶度杂质扩散进入硅中后,与硅形成固溶体。