量子遗传算法
- 格式:pptx
- 大小:3.97 MB
- 文档页数:13
量子遗传算法在多目标分配中的应用探讨作者:叶茂章洁来源:《消费电子》2012年第12期摘要:多目标分配目前是最优化领域中的一个重要研究方向。
遗传算法是一种借鉴生物界自然选择和遗传机制的高度并行、随机、自适应的全局优化搜索算法,近年来,基于遗传算法的多目标分配应用研究在过程工程领域越来越受重视。
本论文提出了用量子遗传算法处理和解决多目标分配问题,有一定的工程价值。
关键词:量子遗传算法;多目标分配;最优化中图分类号:TP18 文献标识码:A 文章编号:1674-7712 (2012) 12-0176-01一、引言遗传算法不同于传统寻优算法的特点在于:遗传算法在寻优过程中,仅需要得到适应度函数的值作为寻优的依据;同时使用概率性的变换规则,而不是确定性的变换规则;遗传算法适应度函数的计算相对于寻优过程是独立的;算法面对的是参数的编码集合,而并非参数集合本身,通用性强。
它尤其适用于处理传统优化算法难于解决的复杂和非线性问题。
[1]目前,GA已经在很多领域得到成功应用,但随着问题规模的不断扩大和搜索空间的更加复杂,GA在求解很多具体问题时往往并不能表现出其优越性。
于是,近年来便出现了遗传算法与其它理论相结合的实践,其中遗传算法与量子理论的结合是一个崭新的、极富前景和创意的尝试。
量子遗传算法QGA是量子计算特性与遗传算法相结合的产物。
基于量子比特的叠加性和相干性,在遗传算法中借鉴量子比特的概念,引入了量子比特染色体。
由于量子比特染色体能够表征叠加态,比传统GA具有更好的种群多样性,同时QGA也会具有更好的收敛性,因此在求解优化问题时,QGA在收敛速度、寻优能力方面比GA都将有较大的提高。
QGA的出现结合了量子计算和遗传算法各自的优势,具有很高的理论价值和发展潜力。
本论文提出用量子遗传算法处理和解决多目标分配问题,为多目标问题的解决提供一种新的思路。
二、量子遗传算法在传统计算机中,信息存储是以二进制来表示,不是“0”就是“1”态,但是在量子计算机中,充当信息存储单元的物质是一个双态量子系统,称为量子比特(qubit),量子比特与比特不同之就在于它可以同时处在两个量子态的叠加态,量子进化算法建立在量子的态矢量表述基础上,将量子比几率幅表示应用于染色体的编码,使得一条染色体可以表示个态的叠加,并利用量子旋转门更新染色体,从而使个体进达到优化目标的目的。
量子遗传算法
量子遗传算法是一种新型的模仿生物进化的优化算法。
它是一种基于量子力学的遗传算法,它结合了量子力学和遗传算法的优势,从而实现了更快速、更有效的优化。
量子遗传算法的基本思想是将遗传算法中的“基因”变量替换为量子力学中的“波函数”变量,即用量子力学的概念来模拟遗传算法。
在这种算法中,波函数可以被用来表示变量的取值,因此可以实现多维变量的优化。
量子遗传算法的优势是它可以更快地收敛,优化更有效。
它的优点是它可以解决非凸优化问题,即存在多个最优解的问题,而传统的遗传算法只能解决凸优化问题。
此外,量子遗传算法还可以利用量子力学的概念,如量子干涉、量子相干等,使算法更加有效。
量子遗传算法一般用于优化非线性、非结构化、非凸优化问题,如多目标优化、非线性约束优化、最优控制、模糊优化等。
它对于解决复杂的优化问题具有重要的意义,因此被广泛应用于工程、物理、经济学等领域。
总之,量子遗传算法是一种新型的模仿生物进化的优化算法,它结合了量子力学和遗传算法的优势,实现了更快速、更有效的优化,可以解决复杂的优化问题,广泛应用于工程、物理、经济学等领域。
量子遗传算法
量子遗传算法(Quantum Genetic Algorithm,QGA)是基于量子计算原理的一种优化搜索方法,由物理学家David Deutsch提出。
它将遗传算法中的遗传变异运算与量子力学中的量子干涉运算相结合,将最优化问题转化为多重态的量子干涉实验,以此来寻找最优解。
在QGA中,通常使用一个二进制的比特序列作为代表染色体的编码,即使用0/1来表示个体的基因。
利用量子力学中的量子运算,可以把这些比特序列干涉起来,形成多重态。
每一个基因上的比特都可以在多重态中取不同的值,这样就能够把最优化问题转化为搜索多重态的问题。
在QGA中,运算过程包括三个步骤:1.量子遗传运算;2.量子测量;3.量子变异。
首先,量子遗传运算会生成一组多重态的比特序列,然后通过量子测量,可以得到一组有效的比特序列,接着,量子变异运算会对这些比特序列进行变异,最后,重复这些步骤,直到找到最优解。
综上所述,量子遗传算法是一种基于量子力学原理的优化搜索方法,可以有效解决复杂的优化问题。
量子遗传算法基本过程-概述说明以及解释1.引言1.1 概述量子遗传算法是一种结合了量子计算与遗传算法的新型优化算法。
遗传算法是一种模仿生物进化原理的搜索算法,而量子计算则是基于量子比特的计算方式。
量子遗传算法的基本原理是利用量子比特的叠加和纠缠特性来增强搜索的能力,从而提高优化问题的求解效率。
本文将对量子遗传算法的基本过程进行详细介绍,包括量子计算的简介、遗传算法的概述以及量子遗传算法的基本过程。
通过对这些内容的讲解,读者可以深入了解量子遗传算法的工作原理,并且了解其在优化问题中的应用前景和未来发展方向。
1.2 文章结构文章结构部分:本文将首先介绍量子计算的基本概念和原理,然后对遗传算法进行概述,介绍其基本运行过程。
最后,着重详细探讨量子遗传算法的基本过程,包括其具体的实现步骤和核心原理。
通过对这些内容的深入阐述,读者将能够全面了解量子遗传算法的基本运行机制和实际应用价值。
内容1.3 目的目的部分的内容:本文旨在深入探讨量子遗传算法的基本过程,通过介绍量子计算和遗传算法的基本概念,以及它们在量子遗传算法中的应用,帮助读者理解量子遗传算法的原理和运行机制。
同时,我们将分析量子遗传算法在实际问题中的应用前景,展望其在优化、搜索和机器学习等领域的发展方向,以期为相关研究和应用提供理论支持和启发。
2.正文2.1 量子计算简介量子计算是利用量子力学原理来进行计算的一种新型计算方式。
与传统计算不同的是,量子计算利用量子比特(Qubit)来存储信息,而不是传统计算中的比特(Bit)。
在量子计算中,量子比特可以同时处于多种状态,这种特性被称为叠加态。
另外,量子计算还利用了纠缠和量子隐形传态等量子效应来进行计算,使得量子计算机具有远超经典计算机的计算速度和效率。
量子计算的基本原理是量子叠加态和量子纠缠,利用这些特性可以在同一时刻处理多种可能性,从而大大加快计算速度。
量子计算机在处理一些传统计算机难以解决的问题时显示出了强大的优势,比如在大数据处理、密码学、化学模拟等方面均有潜在的运用前景。
量子纠缠遗传算法在微带耦合器中的应用贺娟;罗光毅;黄成强【摘要】Combining the theories of quantum entanglement, the quantum entanglement genetic algorithm is proposed. The quantum entanglement W state of multiparticle is used to study the entanglement encoding of quantum chromosome. The concrete forms of the quantum update operator, quantum mutation operator, and quantum crossover operator are given. The procedure of quantum entanglement genetic algorithm is also given. Finally, the quantum entanglement genetic algorithm is applied to the designs of microstrip couplers. The results show that the quantum entanglement genetic algo-rithm has a good optimized speed and the optimization results are very good, too.%结合量子纠缠理论,提出了量子纠缠遗传算法.利用多粒子的量子纠缠W态,探讨了量子染色体的纠缠编码方式;给出了量子更新算符、量子变异算符和量子交叉算符的具体形式;给出了量子纠缠遗传算法的具体步骤.最后,将量子纠缠遗传算法应用到微带耦合器设计中,其结果表明量子纠缠遗传算法优化速度很快,能够得到很好的优化结果.【期刊名称】《计算机工程与应用》【年(卷),期】2017(053)007【总页数】4页(P64-67)【关键词】量子纠缠;遗传算法;微带耦合器【作者】贺娟;罗光毅;黄成强【作者单位】遵义师范学院物理与机电工程学院,贵州遵义 563002;遵义师范学院物理与机电工程学院,贵州遵义 563002;遵义师范学院物理与机电工程学院,贵州遵义 563002【正文语种】中文【中图分类】TP301.6量子遗传算法(quantum genetic algorithm)是将量子计算引入到遗传算法(genetic algorithm)中来的一种新型随机优化算法[1-3]。