6.用惠斯通电桥测电阻的温度系数
- 格式:ppt
- 大小:90.50 KB
- 文档页数:12
西京学院实验教学教案首页实验课程大学物理课序实验日期教师杨铜锁一、实验名称:直流电桥测量电阻温度系数二、实验目的、要求:1 了解惠斯通电桥测量电阻的原理及线路组成。
2 会正确使用电桥测量电阻。
3 用箱式电桥测量电阻三、实验的重点、难点:重点:学会正确使用电桥测量电阻的方法。
难点:测量误差的计算和测量结果的正确表示。
四、器材、设备:1、QJ—23型箱式电桥。
2、加热器(包括0—100℃水银温度计或者数字式温度计,康铜丝等)。
3、100℃左右自来水。
五、实验原理:如图1所示‘四个电阻R1、R2、R0、R x连成四边形,称为电桥的四个臂。
在四边形的对角线b、d之间接有检流计G,称为电桥的“桥”。
四边形的另一条对角线上接有电源E,称为电源对角线(a,c)。
图1 电桥原理接通电源k后,线路各支路均有电流。
调节电阻R0使b,d两点电位相等,则通过检流计的电流I g=0。
这时我们称电桥处于平衡状态。
电桥处于平衡状态时:∵I g=0 ∴U ab= U ad U bc= U dc 即I1 R1 = I2 R2 (1)I1 R x = I2 R0 (2)有(1),(2)式得:R1/ R x=R2/R0R x=R0 R1/R2(3)(3)式中若已知R 1/R 2,R 0 就可以求得R x 。
R 1/R 2称为电桥的比率臂,在QJ —23型箱式电桥中共分为7个档,由10-3到103 。
QJ —23型箱式电桥R 0叫做电桥的比较臂,通常有电阻箱组成。
R x 称做电桥的待测臂。
在电桥上读出了比率臂R 1/R 2,比较臂R 0,就知道了R x 。
由于电阻箱制作精密,所以电桥测电阻精确度很高。
(大大高于伏安法测电阻)。
六、金属丝电阻温度系数介绍大多数金属的电阻都有随温度变化的性质,多数金属的电阻随温度的升高而增大。
有如下关系式:t R R t R R R R t αα000)1(+=+= (2)R t ,R 0分别是金属丝在t ℃和0℃时的电阻值,R α是电阻的温度系数,单位是℃-1。
图1 惠斯登电桥原理惠斯登电桥测量金属热电阻的温度系数实验目的:1.掌握用惠斯登电桥测电阻的原理与方法。
2.了解惠斯登电桥在工业测量中的应用。
实验仪器:J23型直流电阻电桥,温度计等。
实验原理:如图所示,社待测电阻为Rx ,标准电阻用Rs 表示,当流过检流计G 的电流Ig=0时,B ,D两点电位相同。
d b U U =,x I I =1,s I I =2于是 2211R I U R I U ab ad ===S cb x cd R I U R I U 21===将两式相除,得4个桥臂电阻的关系为sx R R R R 21= 因此待测电阻R x ,可表示为s s x MR R R R R ==21 实验内容:首先熟悉仪器,并摆好仪器,然后进行实验,按步骤进行,测量各种所需数据,并填在表格,最终计算结果从而达到试验要求。
实验步骤:1.连接仪器。
2.将烧开的水倒入杯中。
3.本实验中随着水自然降温,Pt100铂电阻的阻值在140-110之间逐渐降低,所以比例臂系数Kr选0.1,比例臂Rs 开始放在1300左右。
4.先按下B按钮,后点动G按钮。
即按下G后马上释放。
观察指针偏转,若指针往“-”偏转,减小Rs,若指针往“+”偏转,增加Rs。
5.每次减小或增加都要按下G,直到检流计指向0,读出Rs的值,并与比例臂系数相乘得到铂电阻当前阻值Rt,并读出温度计示数,将数据填在表格。
6.每隔2-3度测一次记录数据。
重复4,5步骤,从80度测到45度为止。
7.以Rt为纵坐标,T为横坐标,作图求出电阻温度系数。
再利用最小二乘法处理实验数据,并依据Rt=a+bT作图,比较两者结果。
实验数据记录:—T =62.5,—T^2=4037.5,—Rt=124.575,—Rt^2=15533.12——TRt=7829.63,b=0.3329,a=103.7690. Rt=a+bT=103.7690+0.3329T所以热电阻温度系数为0.3329。
注意事项:要遵循实事求是的原则(材料采用铜丝)电阻公式 R t =R 0(1+at)R 0为待测电阻原阻值,Rt 为T 温度时电阻阻值注意作图1.单臂电桥测电阻示意图2.电阻随温度升高而升高的示意图注意解释原理:1.单臂电桥测量电阻原理2.R t =R 0(1+at)公式 金属电阻随温度升高而升高注意有效数字运算法则(详见大学物理实验P18)注意装订方式:1.实验报告 2.坐标纸 3.实验记录值R1 R2 RRx试验6-a 用惠斯通电桥测定电阻温度系数实验目的:1.学习用惠斯通电桥测量电阻的阻值2.测定金属材料(铜丝)的电阻温度系数3. 3.了解平衡指示在测量方法中的影响实验仪器电磁炉(加热器)、惠斯通电桥(QJ24型)、均温装置(食用油容器)、带侧样品(铜丝)、水银温度计,水杯(大于食用油容器)实验原理1.金属材料的电阻值Rt随温度的升高而升高,他们满足下列方程Rt=Ro(1+at)2.单臂电桥测量电阻阻值的原理如上图()3.通过测量数个(间隔约为10‘C)温度下的电阻阻值,绘制电阻温度曲线,通过计算与观察得出结论。
实验过程1.连接器材1.1将电阻置于充满食用油的容器中,两端外露,插入并固定水印温度计,防止食用油外泄并保持温度计稳定可见1.2 注水至水杯当中直至水面达到水杯的2/3,将食用油容器固定至水杯当中,并保证水面覆盖至食用油容器1.3 将电阻外露的两端连接至单臂电桥的带侧电阻输入端的两极1.4 将单臂电桥电源端设置为内接(干电池)1.5 对电阻进行测量以得出电阻的大致阻值(改正---测量室温下电阻)2. 进行测量2.1 将水杯置于加热器上,对其进行加热。
2.2 每当温度升高至一个温度,暂停加热,连通单臂电桥电源,通过调节单臂电桥阻值大小来测量当前的电阻阻值;测量完毕之后应当继续加热2.3直至温度升至80‘c左右,停止加热。
3. 绘制图表并计算3.1 利用坐标纸绘制以温度为X轴,阻值为Y轴的平面直角坐标系的折线图,并平滑过渡相邻点之间连线3.2 计算不同温度点之间阻值偏差,3.3 观察图形,得出关于电阻温度与阻值关系实验结论由上述实验过程观察发现,该带测电阻(铜丝)的阻值随温度升高而升高,其关系曲线接近一条直线,排除误差之后得出结论为电阻阻值与其温度升高为正比例关系。
清 华 大 学 实 验 报 告系别:机械工程系 班号:72班 姓名:车德梦 (同组姓名: ) 作实验日期 2008年 11月 5日 教师评定:实验3.3 直流电桥测电阻一、实验目的(1)了解单电桥测电阻的原理,初步掌握直流单电桥的使用方法;(2)单电桥测量铜丝的电阻温度系数,学习用作图法和直线拟合法处理数据; (3)了解双电桥测量低电阻的原理,初步掌握双电桥的使用方法。
(4)数字温度计的组装方法及其原理。
二、实验原理1. 惠斯通电桥测电阻 惠斯通电桥(单电桥)是最常用的直流电桥,如图是它的电路原理图。
图中1R 、2R 和R 是已知阻值的标准电阻,它们和被测电阻x R 连成一个四边形,每一条边称作电桥的一个臂。
对角A 和C 之间接电源E ;对角B 和D 之间接有检流计G ,它像桥一样。
若调节R 使检流计中电流为零,桥两端的B 点和D 点点位相等,电桥达到平衡,这时可得x R I R I 21=,1122I R I R =两式相除可得R R R R x 12=只要检流计足够灵敏,等式就能相当好地成立,被测电阻值x R 可以仅从三个标准电阻的值来求得,而与电源电压无关。
这一过程相当于把x R 和标准电阻相比较,因而测量的准确度较高。
单电桥的实际线路如图所示:将2R 和1R 做成比值为C 的比率臂,则被测电阻为CR R x =其中12R R C =,共分7个档,0.001~1000,R 为测量臂,由4个十进位的电阻盘组成。
图中电阻单位为Ω。
2. 铜丝电阻温度系数任何物体的电阻都与温度有关,多数金属的电阻随文的升高而增大,有如下关系式:)1(0t R R R t α+=式中t R 、0R 分别是t 、0℃时金属丝的电阻值;R α是电阻温度系数,单位是(℃-1)。
严格地说,R α一般与温度有关,但对本实验所用的纯铜丝材料来说,在-50℃~100℃的范围内R α的变化很小,可当作常数,即t R 与t 呈线性关系。
惠斯通电桥测电阻实验报告肇庆学院肇庆学院电⼦信息与机电⼯程学院普通物理实验课实验报告级班组实验合作者实验⽇期姓名: 学号⽼师评定实验题⽬:惠斯通电桥测电阻实验⽬的:1.了解电桥测电阻的原理和特点。
2.学会⽤⾃组电桥和箱式电桥测电阻的⽅法。
3.测出若⼲个未知电阻的阻值。
1.桥式电路的基本结构。
电桥的构成包括四个桥臂(⽐例臂R 2和R 3,⽐较臂R 4,待测臂R x ),“桥”——平衡指⽰器(检流计)G 和⼯作电源E 。
在⾃组电桥线路中还联接有电桥灵敏度调节器R G (滑线变阻器)。
2.电桥平衡的条件。
惠斯通电桥(如图1所⽰)由四个“桥臂”电阻(R 2、R 3、R 4、和R x )、⼀个“桥”(b 、d 间所接的灵敏电流计)和⼀个电源E 组成。
b 、d 间接有灵敏电流计G 。
当b 、d 两点电位相等时,灵敏电流计G 中⽆电流流过,指针不偏转,此时电桥平衡。
所以,电桥平衡的条件是:b 、d 两点电位相等。
此时有U ab =U ad ,U bc =U dc ,由于平衡时0=g I ,所以b 、d 间相当于断路,故有I 4=I 3 I x =I 2所以 44R I R I x x = 2233R I R I = 可得 x RR R R 324= 或 432R R R R x =⼀般把K R R =32称为“倍率”或“⽐率”,于是R x =KR 4要使电桥平衡,⼀般固定⽐率K ,调节R 4使电桥达到平衡。
3.⾃组电桥不等臂误差的消除。
实验中⾃组电桥的⽐例臂(R 2和R 3)电阻并⾮标准电阻,存在较⼤误差。
当取K=1时,实际上R 2与R 3不完全相等,存在较⼤的不等臂误差,为消除该系统误差,实验可采⽤交换测量法进⾏。
先按原线路进⾏测量得到⼀个R 4值,然后将R 2与R 3的位置互相交换(也可将R x 与R 4的位置交换),按同样⽅法再测⼀次得到⼀个R ’4值,两次测量,电桥平衡后分别有: 432R R R R x ?= '423R R R R x ?=联⽴两式得: '44R R R x ?=由上式可知:交换测量后得到的测量值与⽐例臂阻值⽆关。
为节省大家时间,特从网上搜相关答案供大家参考!〔按咱做实验顺序〕2.用模拟法测绘静电场【预习思考题】1.用电流场模拟静电场的理论依据是什么?模拟的条件是什么?用电流场模拟静电场的理论依据是:对稳恒场而言,微分方程及边界条件唯一地决定了场的构造或分布,假设两种场满足一样的微分方程及边界条件,那么它们的构造也必然一样,静电场与模拟区域内的稳恒电流场具有形式一样的微分方程,只要使他们满足形式一样的边界条件,那么两者必定有一样的场构造。
模拟的条件是:稳恒电流场中的电极形状应与被模拟的静电场中的带电体几何形状一样;稳恒电流场中的导电介质是不良导体且电导率分布均匀,并满足σ极>>σ介以保证电流场中的电极〔良导体〕的外表也近似是一个等势面;模拟所用电极系统与被模拟电极系统的边界条件一样。
2.等势线和电场线之间有何关系?等势线和电场线处处相互垂直。
3.在测绘电场时,导电微晶边界处的电流是如何流动的?此处的电场线和等势线与边界有什么关系?它们对被测绘的电场有什么影响?在测绘电场时,导电微晶边界处的电流为0。
此处的电场线垂直于边界,而等势线平行于边界。
这导致被测绘的电场在近边界处受边界形状影响产生变形,不能表现出电场在无限空间中的分布特性。
【分析讨论题】1.如果电源电压增大一倍,等势线和电场线的形状是否发生变化?电场强度和电势分布是否发生变化?为什么?如果电源电压增大一倍,等势线和电场线的形状没有发生变化,但电场强度增强,电势的分布更为密集。
因为边界条件和导电介质都没有变化,所以电场的空间分布形状就不会变化,等势线和电场线的形状也就不会发生变化,但两电极间的电势差增大,等势线的分布就更为密集,相应的电场强度就会增加。
2.在测绘长直同轴圆柱面的电场时,什么因素会使等势线偏离圆形?测绘长直同轴圆柱面的电场时测到的等势线偏离圆形,可能的原因有:电极形状偏离圆形,导电介质分布不均匀,测量时的偶然误差等等。
3.从对长直同轴圆柱面的等势线的定量分析看,测得的等势线半径和理论值相比是偏大还是偏小?有哪些可能的原因导致这样的结果?⑴偏大,可能原因有电极直径测量偏大,外环电极外表有氧化层产生附加电阻,电压标示器件显示偏大等;⑵偏小,可能原因有电极直径测量偏小,中心电极外表有氧化层产生附加电阻,电压标示器件显示偏小等。
直流电桥测电阻实验报告一. 实验目的1. 了解单电桥测电阻的原理,初步掌握直流单电桥的使用方法;2. 单电桥测量铜丝的电阻温度系数,学习用作图法和直线拟合法处理数据;3. 了解数字电表的原理和线性化设计的方法二. 实验原理2.1 惠斯通电桥测电阻惠斯通电桥是最常用的直流电桥。
其中R 1,R 2和R 是已知阻值的标准电阻,他们和被测电阻R x 构成四个“臂”,对角B 和D 之间接有检流计G ,它像桥一样。
若调节R 使测流计中电流为0,则桥两端B 和D 点的电位相等,电桥达到平衡,这时可得:I 1R =I 2R x ,I 1R 1=I 2R 2两式相除可得:R x =R 2R 1R只要检流计足够灵敏,上式就能相当好地成立,R x 就能用三个标准电阻的值来求得,而与电源电压无关。
从而测量的准确度较高。
单电桥的实际电路如右图所示。
将R 2和R 1做成比值为C 的比率臂,则被测电阻为R x =CR其中C =R 2/R 1,共分7个档:0.001~1000,R 为测量臂,由4个十进位的电阻盘组成。
图中电阻单位为Ω。
2.2 铜丝的电阻温度系数任何物体的电阻都与温度有关。
多数金属的电阻随温度升高而增大,有如下关系式R t =R 0(1+αR t )式中R t ,R 0分别是t 、0℃时金属的电阻值;αR 是电阻温度系数,单位是(℃−1)。
严格地说,αR 一般与温度有关,但对本实验所用的纯铜材料来说,在−50℃~100℃的范围内αR 的图1电桥原理简图图1电桥原理简图 图2 单电桥电路图变化很小,可当作常数,即R t与t呈线性关系。
于是αR=R t−R0 R0t利用金属电阻随温度变化的性质,可制成电阻温度计来测温。
例如铂电阻温度计不仅准确度高、稳定性好,而且从−263℃~1100℃都能使用。
铜电阻温度计在−50℃~100℃范围内因其线性性好,应用也较广泛。
2.3 组装数字温度计2.3.1 非平衡桥非平衡桥是指把单电桥中的检流计G去掉,通过测量其两端电压U t来测量电阻,与平衡桥相比,非平衡桥的优点是,可以在直接观测量与间接观测量之间建立函数关系,(而不是惠斯通电桥法里面,检流计仅仅作为“检验工具”),于是可以很方便快速地测得连续变化的电阻值。