第四章 系统可靠性模型和可靠度计算
- 格式:ppt
- 大小:849.50 KB
- 文档页数:34
第四章系统可靠性模型和可靠度计算系统可靠性是指系统在一定时间内正常运行和完成规定任务的能力。
在系统设计和评估过程中,需要使用可靠性模型和可靠度计算方法来预测和衡量系统的可靠性。
一、可靠性模型可靠性模型是描述系统故障和修复过程的数学模型,常用的可靠性模型包括故障时间模型、故障率模型和可用性模型。
1.故障时间模型故障时间模型用于描述系统的故障发生和修复过程。
常用的故障时间模型有三个:指数分布模型、韦伯分布模型和正态分布模型。
-指数分布模型假设系统故障发生的概率在任何时间段内都是恒定的,并且没有记忆效应,即过去的故障不会影响未来的故障。
-韦伯分布模型假设系统故障发生的概率在不同时间段内是不同的,并且具有记忆效应。
-正态分布模型假设系统故障发生的概率服从正态分布。
2.故障率模型故障率模型是描述系统故障发生率的数学模型,常用的故障率模型有两个:负指数模型和韦伯模型。
-负指数模型假设系统故障率在任意时间点上是恒定的,即没有记忆效应。
-韦伯模型假设系统故障率随时间的变化呈现出一个指数增长或下降的趋势,并且具有记忆效应。
3.可用性模型可用性模型是描述系统在给定时间内是可用的概率的数学模型,通常用来衡量系统的可靠性。
常用的可用性模型有两个:可靠性模型和可靠度模型。
-可靠性模型衡量系统在指定时间段内正常工作的概率。
-可靠度模型衡量系统在指定时间段内正常工作的恢复时间。
二、可靠度计算方法可靠度计算是通过收集系统的故障数据来计算系统的可靠性指标。
常用的可靠度计算方法包括故障树分析、事件树分析、Markov模型和Monte Carlo模拟方法。
1.故障树分析故障树分析是一种从系统级别上分析故障并评估系统可靠性的方法。
故障树是由事件和门组成的逻辑结构图,可以用于识别导致系统故障的所有可能性。
2.事件树分析事件树分析是一种从系统的逻辑角度来分析和评估系统故障和事故的概率和后果的方法。
事件树是由事件和门组成的逻辑结构图,可以用于分析系统在不同情况下的行为和状态。
所谓失效率是指单位时间内失效的元件数与元件总数的比例,以λ表示,当λ为常数时,可靠性与失效率的关系为:R(λ)=e-λu(λu为次方)两次故障之间系统能够正常工作的时间的平均值称为平均为故障时间(MTBF)如:同一型号的1000台计算机,在规定的条件下工作1000小时,其中有10台出现故障,计算机失效率:λ=10/(1000*1000)=1*10-5(5为次方)千小时的可靠性:R(t)=e-λt=e(-10-5*10^3(3次方)=平均故障间隔时间M TBF=1/λ=1/10-5=10-5小时.1)表决系统可靠性表决系统可靠性:表决系统是组成系统的n个单元中,不失效的单元不少于k(k介于1和n之间),系统就不会失效的系统,又称为k/n系统。
图为表决系统的可靠性框图。
通常n个单元的可靠度相同,均为R,则可靠性数学模形为:这是一个更一般的可靠性模型,如果k=1,即为n个相同单元的并联系统,如果k=n,即为n个相同单元的串联系统。
2)冷储备系统可靠性冷储备系统可靠性(相同部件情况):n个完全相同部件的冷贮备系统,(待机贮备系统),转换开关s 为理想开关Rs=1,只要一个部件正常,则系统正常。
所以系统的可靠度:图12.8.2 待机贮备系统3)串联系统可靠性串联系统可靠性:串联系统是组成系统的所有单元中任一单元失效就会导致整流器个系统失效的系统。
下图为串联系统的可靠性框图。
假定各单元是统计独立的,则其可靠性数学模型为式中,Ra——系统可靠度;Ri——第i单元可靠度多数机械系统都是串联系统。
串联系统的可靠度随着单元可靠度的减小及单元数的增多而迅速下降。
图12.8.4表示各单元可靠度相同时Ri和nRs的关系。
显然,Rs≤min(Ri),因此为提高串联系统的可靠性,单元数宜少,而且应重视串联系统的可靠性,单元数宜少,而且应重视改善最薄弱的单元的可靠性。
4)并联系统可靠性并联系统可靠性:并联系统是组成系统的所有单元都失效时才失效的失效的系统。