山东省日照市新营中学2018-2019学年度第一学期人教版九年级数学上册试题及答案解析
- 格式:doc
- 大小:1009.30 KB
- 文档页数:6
2018-2019学年九年级(上)期末数学试卷一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠02.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线x=0B.直线x=1C.直线x=﹣2D.直线x=﹣17.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为x,则可以列出方程为()A.60(1+x)2=80B.(60+x%)2=80C.60(1+x)(1+2x)2=80D.60(1+x%)2=808.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是(填“随机“或“必然”)事件.12.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为.13.点A(﹣2,3)关于原点对称的点的坐标是.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=.15.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为度.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.七.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y 轴交于点C.(1)写出抛物线顶点D的坐标;(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.八.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.2017-2018学年贵州省黔西南州兴义市九年级(上)期末数学试卷参考答案与试题解析一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠0【分析】根据一元二次方程的定义列出关于m,n的方程,求出m,n的值即可.【解答】解:∵(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,∴m﹣2≠0,n=2,解得m≠2,n=2.故选:B.【点评】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°【分析】由==,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求∠AEO的度数.【解答】解:如图,∵==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣78°)=51°.故选:A.【点评】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.【分析】先求出非负数的个数,再根据概率公式计算可得.【解答】解:∵0,﹣3,﹣4,2,5这5个数中,非负数有0,2,5这3个,∴从中随机抽取一张,抽到写有非负数的卡片的概率是,故选:C.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,本题找到非负数的个数是关键.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程【分析】根据旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转进行分析即可.【解答】解:A、足球在草地上滚动,不是旋转,故此选项错误;B、火箭升空的运动,是平移,故此选项错误;C、汽车在急刹车时向前滑行,是平移,故此选项错误;D、钟表的钟摆动的过程,是旋转,故此选项正确;故选:D.【点评】此题主要考查了生活中的旋转,关键是掌握旋转定义.6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线x=0B.直线x=1C.直线x=﹣2D.直线x=﹣1【分析】由二次函数的对称性可求得抛物线的对称轴【解答】解:∵抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,∴抛物线的对称轴为x==﹣2,故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数图象上关于对称轴对称的点所对应的函数值相等是解题的关键.7.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为x,则可以列出方程为()A.60(1+x)2=80B.(60+x%)2=80C.60(1+x)(1+2x)2=80D.60(1+x%)2=80【分析】2016年财政总收入=2014年财政总收入×(1+增长率)2,把相关数值代入即可.【解答】解:2015年财政总收入为60×(1+x),2016年财政总收入为60×(1+x)×(1+x)=60×(1+x)2,可列方程为60(1+x)2=80,故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°【分析】先根据圆内接四边形的对角互补得出∠D+∠B=180°,即可解答.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠D+∠B=180°,∴∠D=180°﹣70°=110°,故选:A.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s【分析】因为﹣5<0,抛物线开口向下,有最大值,根据顶点坐标公式表示函数的最大值,根据题目对最大值的要求,求待定系数v0.【解答】解:h=﹣5t2+v0•t,其对称轴为t=,5×()2+v0•=20,当t=时,h最大=﹣解得:v0=20,v0=﹣20(不合题意舍去),故选:C.【点评】本题考查的是二次函数的应用,关键是利用当对称轴为t=﹣时h将取到最大值.10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2【分析】从图中可以看出新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,弓形CED的面积又=扇形BCD面积﹣三角形BCD的面积,然后依面积公式计算即可.【解答】解:新月形ACED的面积==R2.故选:B.【点评】本题的关键是看出:新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,然后逐一求面积即可.二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是随机(填“随机“或“必然”)事件.【分析】直接利用随机事件的定义分析得出答案.【解答】解:任意打开一本154页的九年级数学书,正好翻到第127页”这是随机事件.故答案为:随机.【点评】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.12.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为y=x2+1.【分析】直接利用二次函数的平移规律得出答案.【解答】解:将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为:y=x2+1.故答案为:y=x2+1.【点评】此题主要考查了二次函数的平移变换,正确掌握平移规律是解题关键.13.点A(﹣2,3)关于原点对称的点的坐标是(2,﹣3).【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(﹣2,3)关于原点O的对称点是P′(2,﹣3)【解答】解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).【点评】本题考查了关于原点对称的点的坐标,运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=30°.【分析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理求出∠PAB即可.【解答】解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°.故答案为:30°.【点评】本题主要考查了正多边形和圆、圆周角定理、弦切角定理;作出适当的辅助线,利用弦切角定理是解答此题的关键.15.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1>y2(填“>”、“<”或“=”).【分析】先根据二次函数的解析式得出函数图象的对称轴,再判断出两点的位置及函数的增减性,进而可得出结论.【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随x的增大而增大,∵x1>x2>1,∴y1>y2.故答案为:>.【点评】本题考查的是二次函数图象上点的坐标特点,根据题意判断出A、B两点的位置是解答此题的关键.16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是【分析】画出树状图,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为2π(结果保留π).【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键..18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为15度.【分析】此题只需根据旋转的性质发现等腰直角三角形CEF,进行求解.【解答】解:∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.故答案为:15°【点评】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度.难度不大,但易错.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是20.【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n 的值.【解答】解:根据题意得=30%,解得n=20,所以这个不透明的盒子里大约有20个除颜色外其他完全相同的小球.故答案为20.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.【分析】首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.【解答】解:∵AB=5,AD=12,∴BD==13,∴==,==6π,∴点B在两次旋转过程中经过的路径的长是: +6π=,故答案为.【点评】此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公式l=,是基础题目,解答时要注意旋转中心以及半径的变化.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.【分析】(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;②根据网格结构找出A、B、C关于原点O的中心对称点A2、B2、C2的位置,然后顺次连接即可;(2)连接B1B2,C1C2,交点就是对称中心M.【解答】解:(1)①△A1B1C1如图所示;②△A2B2C2如图所示;(2)连接B1B2,C1C2,得到对称中心M的坐标为(2,1).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.【分析】(1)先依据三角形的外角的性质求得∠C的度数,然后再根据圆周定理求解即可;(2)利用三角形中位线的性质得出EO=AD,即可得出答案.【解答】解:(1)∵∠APD=∠C+∠CAB,∴∠C=65°﹣40°=25°,∴∠B=∠C=25°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴OE=AD,∴圆心O到BD的距离为3.【点评】此题主要考查了圆周角定理以及三角形中位线定理,根据已知得出EO=AD是解题关键.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?【分析】(1)销售量y件为200件加增加的件数(80﹣x)×20;(2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,而76≤x≤80,根据二次函数的性质得到当76≤x≤80时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【解答】解:(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+3000x﹣108000;(3)根据题意得76≤x≤80,w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤80时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【点评】本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质,特别是二次函数的最值问题解决实际中的最大或最小值问题.六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.【分析】(1)连接OD,由平行可得∠DAO=∠COB,∠ADO=∠DOC;再由OA=OD,可得出,∠DAO=∠ADO,则∠COB=∠COD,从而证出=;(2)由(1)得,△COD≌△COB,则∠CDO=∠B.又BC⊥AB,则∠CDO=∠B=90°,从而得出CD是⊙O的切线.【解答】证明:(1)连接OD.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠DOC,又∵OA=OD,∴∠DAO=∠ADO,∴∠COB=∠COD,∴=;(2)由(1)知∠DOE=∠BOE,在△COD和△COB中,CO=CO,∠DOC=∠BOC,OD=OB,∴△COD≌△COB,∴∠CDO=∠B.又∵BC⊥AB,∴∠CDO=∠B=90°,即OD⊥CD.即CD是⊙O的切线.【点评】本题考查了切线的判定和圆周角定理以及圆心角、弧、弦之间的关系,注:在同圆或等圆中,圆心角、圆周角、弧、弦中有一组量相等,其余各组量也相等.七.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y 轴交于点C.(1)写出抛物线顶点D的坐标(﹣1,4);(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.【分析】(1)根据抛物线的顶点解析式y=﹣(x+1)2+4,即可求出抛物线顶点D的坐标是(﹣1,4);(2)先根据抛物线的解析式y=﹣(x+1)2+4,求出A、C两点的坐标,再利用待定系数法求出直线AC的解析式,根据关于y轴对称的点的坐标特征得出D1(1,4),然后代入直线AC的解析式即可判断点D1在直线AC上;(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),求出EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x,利用配方法化成顶点式,根据二次函数的性质即可求出最大值.【解答】解:(1)∵y=﹣(x+1)2+4,∴抛物线顶点D的坐标是(﹣1,4).故答案为(﹣1,4);(2)点D1在直线AC上,理由如下:∵抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y轴交于点C,∴当y=0时,﹣(x+1)2+4=0,解得x=1或﹣3,A(﹣3,0),B(1,0),当x=0时,y=﹣1+4=3,C(0,3).设直线AC的解析式为y=kx+b,由题意得,解得,∴直线AC的解析式为y=x+3.∵点D1是点D关于y轴的对称点,D(﹣1,4).∴D1(1,4),∵x=1时,y=1+3=4,∴点D1在直线AC上;(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),∵EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+1.5)2+2.25,∴线段EF的最大值是2.25.【点评】本题是二次函数的综合题,其中涉及到二次函数的性质,利用待定系数法求直线的解析式,函数图象上点的坐标特征等知识,难度适中.八.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有30种等可能的结果数,再找出小丽和小颖作为本班代表参赛的结果数,然后根据概率公式求解.【解答】解:(1)小明被选中的概率=;(2)画树状图为:共有30种等可能的结果数,其中小丽和小颖作为本班代表参赛的结果数为2,所以小丽和小颖作为本班代表参赛的概率==.。
2018-2019学年度第一学期人教版九年级数学上册期中综合检测试卷(21-23章)考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.下列方程中是关于一元二次方程的为()A. B.C. D.2.抛物线的对称轴是()A. B. C. D.3.一元二次方程的二次项系数、一次项系数、常数项分别是()A.;;B.;;C.;;D.;;4.如图所示是二次函数图象的一部分,图象过点,二次函数图象对称轴为直线,给出五个结论:① ;② ;③;④方程的根为,;⑤当时,随着的增大而增大.其中正确结论是()A.①②③B.①③④C.②③④D.①④⑤5.若、是方程的两个根,则:的值为()A. B. C. D.6.若点关于原点对称点的坐标为,则点的坐标是()A. B.C. D.7.已知是二次函数且有最大值,则A. B. C. D.8.用配方法解方程,可变形为()A. B.C. D.9.已知二次函数的图象如图所示,则这个二次函数的表达式为()A. B.C. D.10.已知关于的函数关系式为,(为正常数,为时间),则函数图象为()A. B.C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.把二次函数配方成顶点式为________.12.当________时,方程的两个根互为相反数.13.已知二次函数的部分图象如图所示,则关于的一元二次方程的解为________.14.某单位在两个月内将开支从元降到元,如果每月降低开支的百分率相同,设为,则由题意可以列出关于的方程是________.15.关于的一元二次方程(是常数)有两个整数解,则的值可以是________(写出一个即可).16.已知关于的方程有两个相等的实数根,则的值是________.17.设,是方程的两个实数根,则的值为________.18.两个数的和为,这两个数的积最大可以达到________.19.若方程的一个根是,则另一个根是________,________.20.某种商品的价格为元,准备进行两次降价,如果每次降价的百分率都是,经过两次降价后的价格(单位:元)随每次降价的百分率的变化而变化,则与之间的关系式为________.三、解答题(共 7 小题,共 60 分)21.(12分) 用适当的方法解下列方程:;(2);(3).22.(8分) 在正方形网格中,建立如图所示的平面直角坐标系,的三个顶点都在格点上,点的坐标,请解答下列问题:画出关于轴对称的,并写出点,,的坐标;将绕点逆时针旋转,画出旋转后的,并写出点,的坐标.23.(8分) 某农场去年种植了亩地的南瓜,亩产量为,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,设南瓜种植面积的增长率为.则今年南瓜的种植面积为________亩;(用含的代数式表示)如果今年南瓜亩产量的增长率是种植面积的增长率的,今年南瓜的总产量为,求南瓜亩产量的增长率.24.(8分) 某中学课外兴趣活动小组准备围建一个矩形花草园,其中一边靠墙,另外三边周长为米的篱笆围成.已知墙长为米(如图所示),设这个花草园垂直于墙的一边长为米.若花草园的面积为平方米,求;若平行于墙的一边长不小于米,这个花草园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;当这个花草园的面积不小于平方米时,直接写出的取值范围.25.(8分) 如图,已知,.求证:;若,问经过怎样的变换能与重合?26.(8分) 如图,已知抛物线与坐标轴分别交于点、和点,动点从原点开始沿方向以每秒个单位长度移动,动点从点开始沿方向以每秒个单位长度移动,动点、同时出发,当动点到达原点时,点、停止运动.直接写出抛物线的解析式:________;求的面积与点运动时间的函数解析式;当为何值时,的面积最大?最大面积是多少?当的面积最大时,在抛物线上是否存在点(点除外),使的面积等于的最大面积?若存在,求出点的坐标;若不存在,请说明理由.27.(8分) 如图,在中,,,.将绕点顺时针旋转得.①求点旋转经过的路径长;②求线段的长;如图,过点作的垂线与的延长线交于点,将绕点顺时针旋转得.在图中画出线段绕点旋转所形成的图形(用阴影表示),并求出该图形的面积.答案1.C2.C3.B4.D5.D6.B7.A8.B9.B10.A11.12.13.,14.15.,,,写出一个16.或17.18.19.20.21.解:(1),所以,;,或,所以,;(3),,或,所以,.22.解:如图所示,,,;(2)如图所示,,.23..今年南瓜亩产量为,根据题意得:,整理得:,解得:或(舍去).答:南瓜亩产量的增长率为.24.解:根据题意知平行于墙的一边的长为米,则有:,解得:或,∵ ,∴ ,故;设苗圃园的面积为,∴ ,∵ ,∴苗圃园的面积有最大值,∵ ,解得:,∴ ,∴当时,即平行于墙的一边长米,最大 . 平方米;当时,最小;由题意得,解得:或,又∵ ,∴ .25.证明:在与中,,,;∴ ,∴ .解:先将绕点逆时针旋转,再将沿直线对折,即可得与重合.或先将绕点顺时针旋转,再将沿直线对折,即可得与重合.26.; ∵点、,∴ ,,令,得:,解得:,,∵点在轴的负半轴上,∴点,∴ ,根据题意得:当点运动秒时,,,∴ ,∴ ,∴,即,∴当时,最大;由知:当时,最大,∴当时,,,∴ ,,由勾股定理得:,设直线的解析式为:,将,,代入上式得:,,∴直线的解析式为:,过点作,交抛物线与点,如图,设直线的解析式为:,将代入得:,∴直线的解析式为:,将,与联立成方程组得:,解得:,,∴;过点作,垂足为,∵当时,,∴,过点作,垂足为,且使,过点作轴,垂足为,如图,可得,∴,即:,解得:,∴,由勾股定理得:,∴,过点作,与抛物线交与点,如图,设直线的解析式为:,将,代入上式得:,∴直线的解析式为:,将,与联立成方程组得:,解得:,,∴ 或,综上所述:当的面积最大时,在抛物线上存在点(点除外),使的面积等于的最大面积,点的坐标为:或或.27.解: ①∵ ,,,∴ .∴点旋转的路径;…②如下图所示:在中,,,∴.∴.∴;… 如图所示:…∵ ,∴.在中,,,∴.…。
2019学年度九年级上册数学试卷(满分120分, 120分钟完卷)一、选择题(本题有10小题,每小题3分,共30分) 1. 下列函数解析式中,一定为二次函数的是( ) A . y =3x ﹣1 B .y =ax 2+bx +c C . s =2t 2﹣2t +1 D . y =x 2+2.用配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)6x -= B .2(2)2x +=C .2(2)2x -=-D .2(2)2x -=3.下列平面图形中,既是轴对称图形,又是中心对称图形的是 ( )4.如图,将Rt △ABC (其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于 ( )第4题图A.55°B.70°C.125°D.145°5.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC 是( ) A. 4 B. 5 C. 36 D. 66.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD 的度数为( )A .35°B .45°C .55°D .75°7.将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )A .B .C .D .8.某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中正确的是( )A . 173(1+x%)2=127 B .173(1-2x%)=127C . 127(1+x%)2=173D .173(1-x%)2=127第5题图第7题图第6题图9. .有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同。
山东省日照市实验初中2018-2019学年度第一学期新人教版九年级数学上册_第21章_一元二次方程_单元过关测试题(有答案)山东省日照市实验初中2018-2019学年度第一学期新人教版九年级数学上册第21章一元二次方程单元过关测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.下列方程中是一元二次方程的是()A. B.C. D.2.某农场的粮食产量为吨,要在两年内增加吨,设平均每年增产的百分率为,则根据题意,可列方程为()A. B.C. D.3.一元二次方程的二次项系数、一次项系数、常数项分别是()A.,,B.,,C.,,D.,,4.把方程化成的形式,则、的值是()A.,B.,C.,D.,5.若为方程的解,则的值为()A. B. C. D.6.用公式法解时,先求出、、的值,则、、依次为()A.,,B.,,C.,,D.,,7.解方程:① ;② ;③ ;④.较简便的解法是()A.依次用直接开平方法、配方法、公式法和因式分解法B.①用直接开平方法,②用公式法,③④用因式分解法C.依次用因式分解法、公式法、配方法和因式分解法D.①用直接开平方法,②③用公式法,④用因式分解法8.小红按某种规律写出个方程:① ;② ;③;④ .按此规律,第五个方程的两个根为()A.、B.、C.、D.、9.一元二次方程变形正确的是()A. B.1 / 6C. D.10.方程有两个相等的实数根,且满足,则的值是()A.或B.C.D.或二、填空题(共 10 小题,每小题 3 分,共 30 分)11.用公式法解方程:,得到________.12.若,是方程的两个不相等的实数根,则________.13.定义,则方程的解为________.14.已知关于的方程的一个解是,则的值为________,方程的另一个解为________.15.已知,则代数式的值是________.16.对任意实数,,若,则________.17.若一元二次方程有一个根为,常数项为,二次项系数为,写出这个一元二次方程________;它的根的判别式________.18.分别以方程的两根和与两根积为根的一元二次方程是________.19.已知是关于的方程的一个根,则________,另一根为________.20.若关于的一元二次方程有两个实数根,则的取值范围是________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.解下列方程山东省日照市实验初中2018-2019学年度第一学期新人教版九年级数学上册_第21章_一元二次方程_单元过关测试题(有答案)22.解方程:;.23.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园(围墙最长可利用)现在已备足可以砌的墙的材料,使矩形花园的面积为,试求的长.24.如图,利用一面长的墙,用长的篱笆,围成一个长方形的养鸡场.怎样围成一个面积为的长方形养鸡场?25.已知关于的方程求证:无论取何值,方程恒有两个不相等的实数根;若此方程的一个根为,请求出方程的另一个根.3 / 626.已知关于的方程的两个不相等实根中有一个是.请求出的值;是否存在实数,使关于的方程的两个实根,之差的绝对值为?若存在,求出的值;若不存在,请说明理由.答案1.D2.B3.D4.C5.B6.A7.D8.C9.A10.C11.12.13.山东省日照市实验初中2018-2019学年度第一学期新人教版九年级数学上册_第21章_一元二次方程_单元过关测试题(有答案)14.15.16.17.18.19.或或20.,且21.解:开方得:,解得:,;移项得:,,,,,22.解:,,或,所以,;,所以,.23.的长为.24.围成的养鸡场的长为米.宽为米.25.证明:∵,∵无论取何值,,∴无论取何值,方程恒有两个不相等的实数根;当时,得:,解得,所以方程变为,解得方程的另一根为.26.解: ∵方程的两个不相等实根,∴ ,∴ ,把代入方程得,∵ ,∴ ,,而,∴ 的值为;存在.把代入方程得,5 / 6∴ ,,∵ ︳,∴ ,即,整理得,,,当和时方程都有两个实数,∴存在实数,��关于的方程的两个实根,之差的绝对值为.。
2018-2019学年九年级(上)期末数学试卷一、选择题(本大题共16个小题,1-10题每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是()A.B.C.D.2.图中的两个三角形相似,且AB=2,A′B′=1,则△A′B′C′与△ABC的相似比是()A.1:2B.2:1C.3:1D.1:33.抛物线y=﹣2(x+3)2+1对称轴是()A.直线x=3B.直线x=1C.直线x=﹣1D.直线x=﹣34.在下图中,反比例函数的图象大致是()A.B.C.D.5.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件B.不可能事件C.随机事件D.概率为1的事件6.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A.点A B.点B C.点C D.点D7.已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+3上的两点,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y8.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分9.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=10.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A.108°B.60°C.54°D.27°11.(2分)将方程x2﹣6x+3=0左边配成完全平方式,得到的方程是()A.(x﹣3)2=﹣3B.(x﹣3)2=6C.(x﹣3)2=3D.(x﹣3)2=1212.(2分)如图,⊙O中,弦AB⊥AC,OE⊥AB,垂足为E,OF⊥AC,垂足为F,若AB+AC=10,则四边形OEAF的周长为()A.10.B.9C.8D.713.(2分)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚14.(2分)如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B 为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0)B.(0,1)C.(1,﹣1)D.(1,0)15.(2分)在正六边形ABCDEF的中,若BE=10,则这个正六边形外接圆半径是()A.B.5C.D.516.(2分)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b二、填空题(本大题共3个小题,19小题4分,17、18每小题3分,共计10分.)17.若3是一元二次方程x2+bx+3=0的一个根,则常数b的值为.18.抛物线y=ax2经过点(3,5),则a=.19.(4分)参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,设有x 个队参赛,根据题意列出的方程是.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(9分)若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.21.(9分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.22.(9分)在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.23.(9分)已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.24.(10分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.25.(10分)如图,P是⊙O的切线FA上的点,点A为切点,连接OP,OP的垂直平分线FE交OA于点E,连接EP,过点P作PC⊥EP(1)已知OA=8,AP=4,求OE的长(2)求证:PC与⊙O相切.26.(12分)某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:(1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共16个小题,1-10题每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.图中的两个三角形相似,且AB=2,A′B′=1,则△A′B′C′与△ABC的相似比是()A.1:2B.2:1C.3:1D.1:3【分析】根据相似三角形相似比等于对应边的比解答.【解答】解:∵AB=2,A′B′=1,∴△A′B′C′与△ABC的相似比=A′B′:AB=1:2.故选:A.【点评】本题考查了相似三角形的性质,求两三角形的相似比时要注意两个相似三角形的先后顺序.3.抛物线y=﹣2(x+3)2+1对称轴是()A.直线x=3B.直线x=1C.直线x=﹣1D.直线x=﹣3【分析】根据抛物线的顶点式方程y=﹣2(x +3)2+1可以直接写出它的对称轴直线方程.【解答】解:∵抛物线y=﹣2(x +3)2+1的对称轴直线是该图象的顶点坐标的横坐标, ∴抛物线的对称轴是直线x=﹣3;故选:D .【点评】本题考查了二次函数的性质.抛物线的顶点式方程为y=a (x ﹣h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .4.在下图中,反比例函数的图象大致是( )A .B .C .D .【分析】由于y=,比例系数4>0,根据反比例函数的性质,可得图象在第一和第三象限.【解答】解:∵k=4,可根据k >0,反比例函数图象在第一、三象限;∴在每个象限内,y 随x 的增大而减小.故选:D .【点评】本题考查了反比例函数图象的性质:①k <0,反比例函数图象在第二、四象限,在每个象限内,y 随x 的增大而增大;②k >0,反比例函数图象在第一、三象限,在每个象限内,y 随x 的增大而减小. 5.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是( ) A .必然事件B .不可能事件C .随机事件D .概率为1的事件【分析】根据随机事件的定义即可判断.【解答】解:“第五次抛掷正面朝上”是随机事件.故选:C .【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A.点A B.点B C.点C D.点D【分析】直接利用旋转的性质结合等边三角形的性质进而分析得出答案【解答】解:如图所示:菱形M绕点D经过顺时针旋转60°变换能得到菱形N,故选:D.【点评】此题主要考查了旋转的性质以及等边三角形的性质,正确把握旋转的性质是解题关键.7.已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+3上的两点,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y【分析】抛物线的对称轴为直线x=﹣2,根据二次函数的性质,抛物线开口向下,在对称轴的右侧y随x的增大而减小,即可判定.【解答】解:∵y=﹣(x+2)2+3,∴抛物线的对称轴为直线x=﹣2,抛物线开口向下,∴当x>﹣2,y随x的增大而减小,∵﹣2<﹣1<2,所以y1>y2.故选:A.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.8.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分【分析】根据等腰三角形三线合一的性质即可得出结论.【解答】解:∵圆O是△ABC的外接圆,∴点O在三边的垂直平分线上.∵AC=BC,∴当l平分∠C时,l也是AB边的垂直平分线.故选:C.【点评】本题考查的是三角形的外接圆与外心,熟知三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心是解答此题的关键.9.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=【分析】利用反比例函数的性质可解.【解答】解:当k=﹣2时,y=﹣的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y 随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第一、第三象限,在每一象限内y 随x的增大而减小;故选:D.【点评】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是本题的关键.10.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A.108°B.60°C.54°D.27°【分析】本题实质上还是一道利用弧长公式计算的题.【解答】解:,解得n=54度.故选:C.【点评】本题是一道弧长公式的实际应用题,学生平时学习要紧密联系实际,学以致用,不可死学.11.(2分)将方程x2﹣6x+3=0左边配成完全平方式,得到的方程是()A.(x﹣3)2=﹣3B.(x﹣3)2=6C.(x﹣3)2=3D.(x﹣3)2=12【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:移项,得x2﹣6x=﹣3,等式两边同时加上一次项系数一半的平方(﹣3)2,得x2﹣6x+(﹣3)2=﹣3+(﹣3)2,即(x﹣3)2=6.故选:B.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12.(2分)如图,⊙O中,弦AB⊥AC,OE⊥AB,垂足为E,OF⊥AC,垂足为F,若AB+AC=10,则四边形OEAF的周长为()A.10.B.9C.8D.7【分析】先判断出四边形OEAF的形状,再根据垂径定理得出AF+AE的长,进而可得出结论.【解答】解:∵AB⊥AC,OE⊥AB,OF⊥AC,∴四边形OEAF是矩形,∴四边形OEAF的周长=2(AF+AE)=2×(AB+AC)=10.故选:A.【点评】本题考查的是垂径定理,熟知垂直于弦的直径平分线是解答此题的关键.13.(2分)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚【分析】利用已知提供的数据求出黑棋子的比例,进而假设出白棋子个数,列出方程,解方程即可得出白棋子个数.【解答】解:根据试验提供的数据得出:黑棋子的比例为:(1+3+0+2+3+4+2+1+1+3)÷100=20%,所以白棋子比例为:1﹣20%=80%,设白棋子有x枚,由题意,得=80%,x=0.8(x+10),x=0.8x+8,0.2x=8,所以x=40,经检验,x=40是原方程的解,即袋中的白棋子数量约40颗.故选:C.【点评】此题主要考查了利用频率估计概率,根据试验次数得出黑棋子的比例,从而得出白棋子个数是解决问题的关键.14.(2分)如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B 为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0)B.(0,1)C.(1,﹣1)D.(1,0)【分析】利用位似图形的性质结合位似比得出△BA′C′,进而得出C′点坐标.【解答】解:如图所示:△A′BC′与△ABC位似,相似比为2:1,点C′的坐标为:(1,0).故选:D.【点评】此题主要考查了位似变换以及坐标与图形的性质,正确得出对应点位置是解题关键.15.(2分)在正六边形ABCDEF的中,若BE=10,则这个正六边形外接圆半径是()A.B.5C.D.5【分析】根据正六边形的性质解答即可.【解答】解:因为正六边形ABCDEF的中,BE=10,所以这个正六边形外接圆半径是,故选:B.【点评】此题考查了正六边形的性质.此题难度适中,注意掌握数形结合思想的应用.16.(2分)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b【分析】根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解.【解答】解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.【点评】本题考查了相似多边形对应边成比例的性质,准确表示出小长方形的长和宽是解题的关键.二、填空题(本大题共3个小题,19小题4分,17、18每小题3分,共计10分.)17.若3是一元二次方程x2+bx+3=0的一个根,则常数b的值为﹣4.【分析】已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出b的值.【解答】解:∵3是一元二次方程x2+bx+3=0的一个根,∴32+3b+3=0,∴b=﹣4.故答案为﹣4.【点评】此题主要考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.将方程的根代入方程即可得到关于b的一元一次方程,解此一元一次方程即可.18.抛物线y=ax2经过点(3,5),则a=.【分析】此题考查了待定系数法,把点代入即可求得.【解答】解:把点(3,5)代入y=ax2中,得:9a=5,解得a=.【点评】本题考查了点与函数的关系,考查了用待定系数法,难度不大.19.(4分)参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,设有x个队参赛,根据题意列出的方程是x(x﹣1)=28.【分析】设有x个队参赛,根据参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,可列出方程.【解答】解:设有x个队参赛,x(x﹣1)=28.故答案为:x(x﹣1)=28.【点评】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(9分)若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.【分析】根据关于原点对称的点的坐标特点进行解答即可.【解答】解:∵点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,∴a﹣2=﹣(﹣1),3=﹣(2b+2),解得a=3,b=﹣.【点评】本题考查的是关于原点对称的点的坐标特点,即关于原点对称的点的坐标,横、纵坐标均互为相反数.21.(9分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.【分析】(1)根据图表可以得到眼镜片的度数与焦距的积是一个常数,因而眼镜片度数与镜片焦距成反比例函数关系,即可求解;(2)在解析式中,令y=500,求出x的值即可.【解答】解:(1)根据题意得:与x之积恒为10000,则函数的解析式是y=;(2)令y=500,则500=,解得:x=20.即该镜片的焦距是20cm.【点评】考查了反比例函数的应用,正确理解反比例函数的特点,两个变量的乘积是常数,是解决本题的关键.22.(9分)在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.【分析】(1)由在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出白颜色球的情况,再利用概率公式即可求得答案.【解答】解:(1)∵在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出黄球的概率是:;(2)画树状图得:由树形图可知所有可能的情况有9种,其中两次取出的都是白色球有1种,所以两次取出的都是白色球的概率=.【点评】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于放回实验.23.(9分)已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.【分析】(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k 的不等式,求出不等式的解集即可得到k的范围;(2)找出k范围中的整数解确定出k的值,再将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.【解答】解:(1)△=(﹣6)2﹣4(k+3)=36﹣4k﹣12=﹣4k+24,∵原方程有两个不相等的实数根,∴﹣4k+24>0.解得k<6;(2)∵k<6且k为大于3的整数,∴k=4或5.①当k=4时,方程x2﹣6x+7=0的根不是整数.∴k=4不符合题意;②当k=5时,方程x2﹣6x+8=0根为x1=2,x2=4均为整数.∴k=5符合题意.综上所述,k的值是5.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解法.24.(10分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.【分析】(1)根据题意可得∠B+∠A=90°,∠A+∠F=90°,则∠B=∠F,从而得出△ADF∽△EDB;(2)由(1)得∠B=∠F,再CD是Rt△ABC斜边AB上的中线,得出CD=DB,根据等边对等角得∠DCE=∠F,则可证明△CDE∽△FDC,从而得出=,化为乘积式即可CD2=DF•DE.【解答】证明:(1)在Rt△ABC中,∠B+∠A=90°∵DF⊥AB∴∠BDE=∠ADF=90°∴∠B=∠F,∴△ADF∽△EDB;(2)由(1)可知△ADF∽△EDB ∴∠B=∠F,∵CD是Rt△ABC斜边AB上的中线∴CD=AD=DB,∴∠DCE=∠B,∴∠DCE=∠F,∴△CDE∽△FDC,∴=,∴CD2=DF•DE.【点评】本题考查了相似三角形的判定和性质,以及直角三角形斜边上的中线等于斜边的一半.25.(10分)如图,P是⊙O的切线FA上的点,点A为切点,连接OP,OP的垂直平分线FE交OA于点E,连接EP,过点P作PC⊥EP(1)已知OA=8,AP=4,求OE的长(2)求证:PC与⊙O相切.【分析】(1)由AP是⊙O的切线,得到∠OAP=90°,根据勾股定理列方程即可得到结论;(2)过O作OG⊥PC于G,根据余角的性质得到∠OPE+∠OPC=90°=∠AOP+∠OPA,等量代换得到∠OPC=∠OPA,推出△AOP≌△GOP,根据全等三角形的性质得到OG=OA,即可得到结论.【解答】(1)解:∵AP是⊙O的切线,∴PE2﹣AE2=AP2,∵OA=8,AP=4,∵OP的垂直平分线FE交OA于点E,∴OE=PE,∴OE2﹣(8﹣OE)2=42,∴OE=5;(2)证明:过O作OG⊥PC于G,∵CE垂直平分OP,∴∠AOP=∠OPE,∴∠OPE+∠OPC=90°=∠AOP+∠OPA,∴∠OPC=∠OPA,在△AOP与△POG中,,∴△AOP≌△GOP(AAS),∴OG=OA,∴PC与⊙O相切.【点评】本题考查了切线的判定和性质.全等三角形的判定和性质,线段垂直平分线的性质,正确的作出辅助线构造全等三角形的是解题的关键.26.(12分)某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:(1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?【分析】(1)根据:总利润=每吨净利润﹣每月设备管理、维护费,分别列出函数解析式即可;(2)设该月生产乙种生活用纸m吨,则生产甲种生活用纸(300﹣m)吨,总利润为W 元,由(1)中函数关系式将甲、乙两种生活用纸的利润y1+y2列出W关于m的函数关系式,配方可得函数的最值情况.【解答】解:(1)依题意得:y1=(4800﹣2200﹣200)x﹣20000=2400x﹣20000y2=(7000﹣10x﹣1600﹣400)x=﹣10x2+5000x;(2)设该月生产乙种生活用纸m吨,则生产甲种生活用纸(300﹣m)吨,总利润为W 元,依题意得:W=2400(300﹣m)﹣20000﹣10m2+5000m=720000﹣2400 m﹣20000﹣10 m2+5000m=﹣10 m2+2600 m+700000∵W=﹣10(m﹣130)2+869000.∵﹣10<0∴当m=130时,W最大=869000即生产甲、乙生活用纸分别为170吨和130吨时总利润最大,最大利润为869000元.【点评】本题主要考查二次函数的实际应用能力,弄清题意抓住相等关系列出函数关系式是解题的关键.。
2018-2019学年人教版九年级(上)期末数学试卷含解析一、选择题(本大题共12个小题,每小题3分,满分36分)1.如图所示的几何体,上下部分均为圆柱体,其左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】从侧面看圆柱的视图为矩形,据此求解即可.【解答】解:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选:C.2.下列说法:(1)直径是弦;(2)弦是直径;(3)半圆是弧,但弧不一定是半圆;(4)半径相等的两个圆是等圆;(5)长度相等的两条弧是等弧.其中错误的个数是()A.1个B.2个C.3个D.4个【考点】M1:圆的认识.【专题】67:推理能力.【分析】(1)直径的两个端点在圆上,符合弦的概念.(2)弦是连接圆上两点间的线段,只有过圆心的弦才是直径.(3)半圆是弧,但弧不一定是半圆.比半圆大的弧是优弧,比半圆小的弧是劣弧.(4)(5)等弧是能完全重合的两条弧,长度相等的两条弧不一定能重合.【解答】解:(1)根据弦的概念,直径是一条线段,且两个端点在圆上,满足弦是连接圆上两点的线段这一概念,所以(1)正确;(2)弦是连接圆上两点的线段,只有过圆心的弦才是直径,其它的弦不是直径,所以(2)错误;(3)圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆.所以(3)正确;(4)由等圆的定义可知,半径相等的两个圆面积相等、周长相等,所以为等圆,所以(4)正确;(5)等弧是能完全重合的弧,只有长度相等的两条弧不一定能重合.所以(5)错误.故选:B.3.暑假快到了,父母打算带兄妹俩去某个景点旅游一,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是()A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹妹赢【考点】X7:游戏公平性.【分析】判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平,由此逐项分析即可.【解答】解:A、掷一枚硬币,正面向上的概率为,反面向上的概率为,概率相等可选,故此选项不符合题意;B、画出树形图可知:两枚都正面向上的概率为,一正一反向上的概率为,概率不相等可选,故此选项符合题意;C、掷一枚骰子,向上的一面是奇数和偶数的概率都为,概率相等,故此选项不符合题意;D、在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球的概率为,是红球的概率为,概率相等,故此选项不符合题意,故选:B.4.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115°D.120°【考点】M5:圆周角定理.【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD的度数.【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故选:B.5.“奔跑吧,兄弟!”节目组,预设计一个新的游戏:“奔跑”路线需经A、B、C、D四地.如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向、在C地北偏西45°方向.C地在A地北偏东75°方向.且BD=BC=30m.从A地到D地的距离是()A.30m B.20m C.30m D.15m【考点】TB:解直角三角形的应用﹣方向角问题.【分析】过点D作DH垂直于AC,垂足为H,求出∠DAC的度数,判断出△BCD是等边三角形,再利用三角函数求出AB的长,从而得到AB+BC+CD的长.【解答】解:过点D作DH垂直于AC,垂足为H,由题意可知∠DAC=75°﹣30°=45°,∵△BCD是等边三角形,∴∠DBC=60°,BD=BC=CD=30m,∴DH=×30=15,∴AD=DH=15m.答:从A地到D地的距离是15m.故选:D.6.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.7.如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合.若BC=4,则图中阴影部分的面积是()A.2+πB.2+2πC.4+πD.2+4π【考点】KW:等腰直角三角形;MO:扇形面积的计算.【分析】如图,连接CD,OD,根据已知条件得到OB=2,∠B=45°,根据三角形和扇形的面积公式即可得到结论.【解答】解:如图,连接CD,OD,∵BC=4,∴OB=2,∵∠B=45°,∴∠COD=90°,∴图中阴影部分的面积=S△BOD+S扇形COD=2×2+=2+π,故选:A.8.下列关于二次函数的说法错误的是()A.抛物线y=﹣2x2+3x+1的对称轴是直线B.函数y=2x2+4x﹣3的图象的最低点在(﹣1,﹣5)C.二次函数y=(x+2)2+2的顶点坐标是(﹣2,2)D.点A(3,0)不在抛物线y=x2﹣2x﹣3上【考点】H3:二次函数的性质.【分析】利用二次函数的性质对四个选项逐一判断即可得到答案.【解答】解:A、抛物线y=﹣2x2+3x+1的对称轴是直线x=﹣=,正确,选项不符合要求;B、函数y=2x2+4x﹣3=(x+1)2﹣5的最低点是(﹣1,﹣5),正确,选项不符合要求;C、二次函数y=(x+2)2+2的顶点坐标是(﹣2,2),正确,选项不符合要求;D、当x=3时y=x2﹣2x﹣3≠0,错误,选项符合要求.故选:D.9.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.B.2C.D.【考点】M5:圆周角定理;T1:锐角三角函数的定义.【分析】作直径CD,根据勾股定理求出OD,根据正切的定义求出tan∠CDO,根据圆周角定理得到∠OBC =∠CDO,等量代换即可.【解答】解:作直径CD,在Rt△OCD中,CD=6,OC=2,则OD==4,tan∠CDO==,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故选:C.10.几个相同的小正方体所搭成的几何体的俯视图和左视图如图所示,则小正方体的个数最多是()A.5个B.7个C.8个D.9个【考点】U3:由三视图判断几何体.【专题】1:常规题型;55F:投影与视图.【分析】根据俯视图知几何体的底层有4个小正方形组成,而左视图是由3个小正方形组成,故这个几何体的后排最有1个小正方体,前排最多有2×3=6个小正方体,即可解答.【解答】解:由俯视图及左视图知,构成该几何体的小正方形体个数最多的情况如下:故选:B.11.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影的长度()A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米【考点】SA:相似三角形的应用.【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=5,,∴y=1.5,∴x﹣y=3.5,减少了3.5米.故选:D.12.如图,⊙O的半径为2,点A的坐标为(2,2),直线AB为⊙O的切线,B为切点.则B点的坐标为()A.(﹣,)B.(﹣,1)C.(﹣,)D.(﹣1,)【考点】D5:坐标与图形性质;MC:切线的性质.【专题】16:压轴题.【分析】先利用切线AC求出OC=2=OA,从而∠BOD=∠AOC=60°,则B点的坐标即可求出.【解答】解:过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O的半径为2,点A的坐标为(2,2),即OC=2,∴AC是圆的切线.∵点A的坐标为(2,2),∴OA==4,∵BO=2,AO=4,∠ABO=90°,∴∠AOB=60°,∵OA=4,OC=2,∴sin∠OAC=,∴∠OAC=30°,∴∠AOC=60°,∠AOB=∠AOC=60°,∴∠BOD=180°﹣∠AOB﹣∠AOC=60°,∴OD=1,BD=,即B点的坐标为(﹣1,).故选D.二、填空题(本大题共6个小题,每小题4分,满分24分)13.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为0.【考点】HA:抛物线与x轴的交点.【专题】31:数形结合.【分析】依据抛物线的对称性求得与x轴的另一个交点,代入解析式即可.【解答】解:设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0),∴与x轴的另一个交点Q(﹣2,0),把(﹣2,0)代入解析式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.14.如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D.若∠BAC=40°,则的度数是140度.【考点】KH:等腰三角形的性质;M5:圆周角定理.【分析】首先连接AD,由等腰△ABC中,AB=AC,以AB为直径的半圆交BC于点D,可得∠BAD=∠CAD=20°,即可得∠ABD=70°,继而求得∠AOD的度数,则可求得的度数.【解答】解:连接AD、OD,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴∠BAD=∠CAD=∠BAC=20°,BD=DC,∴∠ABD=70°,∴∠AOD=140°∴的度数为140°;故答案为140.15.如图,在△ABC中,AC=4,将△ABC绕点C按逆时针旋转30°得到△FGC,则图中阴影部分的面积为.【考点】MO:扇形面积的计算;R2:旋转的性质.【专题】11:计算题;558:平移、旋转与对称.【分析】根据旋转的性质得到△CAB的面积=△CFG的面积,得到阴影部分的面积=扇形CAF的面积,根据扇形面积公式计算即可.【解答】解:由题意得,△CAB的面积=△CFG的面积,由图形可知,阴影部分的面积=△CFG的面积+扇形CAF的面积﹣△CBA的面积,∴阴影部分的面积=扇形CAF的面积==π,故答案为:.16.在⊙O中,圆心角∠AOB=100°,则弦AB所对的圆周角=50°或130°.【考点】M5:圆周角定理.【分析】此题要分情况考虑:弦对了两条弧,则两条弧所对的圆周角有两类.再根据一条弧所对的圆周角等于它所对的圆心角的一半,进行计算.【解答】解:根据圆周角定理,得弦AB所对的圆周角=100°÷2=50°或180°﹣50°=130°.17.如图,在平面直角坐标系中,矩形OABC顶点A、C分别在x轴、y轴的正半轴上,顶点B在反比例函数y=(x>0)的图象上,点P是矩形OABC内的一点,连接PO、P A、PB、PC,若图中阴影部分的面积10,则k为20.【考点】G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征;LB:矩形的性质.【专题】534:反比例函数及其应用;66:运算能力;67:推理能力.【分析】作PE⊥OC于E,EP的延长线交AB于F,由题意得到S阴=•OC•PE+•AB•PF=•CO•EF ==S矩形ABCO=10,进一步得到S矩形ABCO=20,根据反比例函数系数k的几何意义即可求得k =20.【解答】解:作PE⊥OC于E,EP的延长线交AB于F.∵S阴=•OC•PE+•AB•PF=•CO•EF==S矩形ABCO=10,∴S矩形ABCO=20,∴k=20.故答案为20.18.如图,直角三角形ABC中,∠ACB=90°,AC=6,BC=4,在△ABC内部以AC为斜边任意作Rt△ACD,连接BD,则线段BD长的最小值是2.【考点】KQ:勾股定理;M5:圆周角定理;M8:点与圆的位置关系.【专题】11:计算题.【分析】取AC的中点O,根据圆周角定理得到点D在以AC为直径的圆上,根据勾股定理可计算出OB =5,当D点在OB上时,BD的值最小,最小值为5﹣3=2.【解答】解:取AC的中点O,∵在△ABC内部以AC为斜边任意作Rt△ACD,∴点D在以AC为直径的圆上,∴当D点在OB上时,BD的值最小,在Rt△BOC中,OC=AC=3,BC=4,∴OB==5,∴BD的值最小为5﹣3=2.故答案为2.三、解答题(第19题4分,第20、21题各7分,第22题8分,第23、24题各9分,第25题11分)19.计算:tan45°﹣sin260°﹣+2cos30°.【考点】T5:特殊角的三角函数值.【专题】511:实数;62:符号意识.【分析】直接利用特殊角的三角函数值进而计算得出答案.【解答】解:原式=1﹣()2﹣(﹣1)+2×=1﹣﹣+1+=.20.如图,一个工件是由大长方体上面中间部位挖去一个小长方体后形成,主视图是凹字形的轴对称图形.(1)请在答题卷指定的位置补画该工件的俯视图;(2)若该工件的前侧面(即主视图部位)需涂油漆,根据图中尺寸(单位:cm),计算需涂油漆部位的面积.【考点】U4:作图﹣三视图.【分析】(1)俯视图为左右相邻的3个长方形,并且两边的长方形的宽度相同,小于中间的长方形的宽度;(2)主视图的面积为两边长为11,7的长方形的面积减去两边长为5,4的长方形的面积.【解答】解:(1)俯视图(看形状、大小基本正确)(2)需涂油漆(主视图)面积:11×7﹣5×4=57(cm2)21.一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.【考点】X7:游戏公平性.【专题】16:压轴题.【分析】(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和和小于4的情况,则可求得小颖参加比赛的概率;(2)根据小颖获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平;使游戏公平,只要概率相等即可.【解答】解:(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)==,∴小颖参加比赛的概率为:;(2)不公平,∵P(小颖)=,P(小亮)=.∴P(和小于4)≠P(和大于等于4),∴游戏不公平;可改为:若两个数字之和小于5,则小颖去参赛;否则,小亮去参赛.22.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的利润之和最大,最大利润是多少?【考点】FH:一次函数的应用;HE:二次函数的应用.【分析】(1)把(5,3)代入正比例函数即可求得k的值也就求得了y1的关系式;把原点及(1,2),(5,6)代入即可求得y2的关系式;(2)销售利润之和W=甲种蔬菜的利润+乙种蔬菜的利润,利用配方法求得二次函数的最值即可.【解答】解:(1)由题意得:5k=3,解得k=0.6,∴y1=0.6x;由,解得:.∴y2=﹣0.2x2+2.2x;(2)W=0.6(10﹣t)+(﹣0.2t2+2.2t)=﹣0.2t2+1.6t+6=﹣0.2(t﹣4)2+9.2.所以甲种蔬菜进货量为6吨,乙种蔬菜进货量为4吨时,获得的销售利润之和最大,最大利润是9200元.23.图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为25cm,设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=.(1)求点M离地面AC的高度BM;(2)设人站立点C与点A的水平距离AC=55cm,求铁环钩MF的长度.【考点】T8:解直角三角形的应用.【分析】(1)过M作与AC平行的直线,与OA、FC分别相交于H、N.那么求BM的长就转化为求HA 的长,而要求出HA,必须先求出OH,在直角三角形OHM中,sinα的值,且铁环的半径为5个单位即OM=5,可求得HM的值,从而求得HA的值;(2)因为∠MOH+∠OMH=∠OMH+∠FMN=90°,∠FMN=∠MOH,又因为sin∠MOA=,所以可得出FN和FM之间的数量关系,即FN=FM,再根据MN=11﹣3=8,利用勾股定理即可求出FM=10个单位.【解答】解:(1)过点M作MD⊥OA交OA于点D,在RT△ODM中,sinα=,∴DM=15cm∴OD=20 cm,∴AD=BM=5cm;(2)延长DM交CF于点E,易得:∠FME=∠AOM=α,∵ME=AC﹣DM=55﹣15=40cm,∴cosα=∴MF=50cm.24.已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):∠BAE=90°或者∠EAC=∠ABC.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.【考点】MD:切线的判定.【专题】16:压轴题.【分析】(1)求出∠BAE=90°,再根据切线的判定定理推出即可;(2)作直径AM,连接CM,根据圆周角定理求出∠M=∠B,∠ACM=90°,求出∠MAC+∠CAE=90°,再根据切线的判定推出即可.【解答】解:(1)①∠BAE=90°,②∠EAC=∠ABC,理由是:①∵∠BAE=90°,∴AE⊥AB,∵AB是直径,∴EF是⊙O的切线;②∵AB是直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠EAC=∠ABC,∴∠BAE=∠BAC+∠EAC=∠BAC+∠ABC=90°,即AE⊥AB,∵AB是直径,∴EF是⊙O的切线;(2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线.25.如图,已知抛物线过点A(3,0),B(﹣1,0),C(0,3),连接AC,点M是抛物线AC段上的一点,且CM∥x轴.(1)求抛物线的解析式;(2)求∠CAM的正切值;(3)点Q在抛物线上,且∠BAQ=∠CAM,求点Q的坐标.【考点】HF:二次函数综合题.【专题】15:综合题.【分析】(1)设抛物线的解析式为y=a(x﹣3)(x+1),将点C的坐标代入求得a的值即可;(2)过点M作MD⊥AC,垂足为D,先求得点M的坐标,然后利用勾股定理求得DM和CD的长,再依据勾股定理求得AC的长,进而求得AD的长,最后,依据锐角三角函数的定义求解即可;(3)设点Q(x,﹣x2+2x+3),然后∠BAQ=∠CAM且tan∠BAQ=,列方程求解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣3)(x+1),将点C的坐标代入得:﹣3a=3,解得:a=﹣1,∴抛物线的解析式为y=﹣x2+2x+3.(2)作MD⊥AC于D,∵CM∥AB,由抛物线y=﹣x2+2x+3可知M点的坐标为(2,3),∵C(0,3),A(3,0)∴AO=OC=3,∵∠MDC=90°∴∠OAC=∠ACO=45°,∴∠ACM=45°,∴CD=DM,∵CM=2,∴DM=CM=,∴CD=,∵AC2=OA2+OC2∴AC=3.∴AD=AC﹣CD=2,∴tan∠CAM===;③设点Q(x,﹣x2+2x+3).∵∠BAQ=∠CAM且tan∠CAM=,∴=±,整理得:x+1=±,解得:x=﹣或x=﹣.当x=﹣时,y=,∴Q(﹣,).当x=﹣时,y=﹣.∴Q(﹣,﹣).综上所述,点Q的坐标为(﹣,)或(﹣,﹣).。
山东省日照市实验初中2018-2019学年度第一学期人教版九年级数学上册_第21章_一元二次方程_单元评估检测试题(有答案01 / 3山东省日照市实验初中2018-2019学年度第一学期人教版九年级数学上册第21章 一元二次方程 单元评估检测试题学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.关于 的一元二次方程 有一个根为 ,则 的值应为( ) A. B. C. 或 D.2.下列方程中,两实数根的和等于 的方程是( ) A. B. C. D.3.把一元二次方程 化成一般形式 其中 、 、 分别为( ) A. 、 、 B. 、 、 C. 、 、 D. 、 、4.若 ,则 的值等于( ) A. B. C. 或 D. 或5.下列方程中两根互为倒数有( )① ;② ;③ . A. 个 B. 个 C. 个 D. 个6.关于 的方程 必有一个根为( ) A. B. C. D.7.用配方法解方程 ,下列变形正确的是( ) A. B. C. D.8.用因式分解法解方程,下列方法中正确的是( ) A. ,∴ 或 B. ,∴ 或 C. ,∴ 或 D. ,∴9.将方程 左边配成完全平方式,得到的方程是( ) A. B. C. D.10.九年级 班的全体同学,在新年来临之际,在贺卡上写上自己的心愿和祝福赠送给其他同学各一张,全班共互赠�� 张,设全班有 名同学,那么根据题意列出的方程是( ) A. B. C. D. 二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.小明设计了一个魔术盒,当任意实数对 进入其中,会得到一个新的实数 ,若将实数对 放入其中,得到一个新数为 ,则 ________.12.若关于 的一元二次方程 有两个不相等的实数根,则 的整数值可能是________(写出一个即可).13.我县举行中小学生运动会,其中的乒乓球比赛采取单循环赛,若乒乓球比赛共进行了 场,则参加乒乓球比赛的人数是________.14.一元二次方程 可转化为两个一次方程,其中一个一次方程是 ,则另一个一次方程是________.15.设一元二次方程 的两实数根分为 和 ,则________.16.已知方程,则的值为________.17.若关于的方的一个根是,则________.18.设、是一元二次方程的两个根,则的值是________.19.关于的方程有两个不相等的实数根,则的取值范围是________.20.若,是方程的两个不相等的实数根,则代数式的值是________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.(用配方法).22.关于的一元二次方程的两个实数根分别是、,且.求的值.23.已知关于的方程若该方程的一个根为,求的值及该方程的另一根;求证:不论取何实数,该方程都有两个不相等的实数根.24.如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为米的正方形后,剩下的部分刚好能围成一个容积为的无盖长方体箱子,且此长方体箱子的底面长比宽多米,求该长方体的底面宽,若该长方体的底面宽为米:用含的代数式分别表示出该长方体的底面长和容积.请列出关于的方程.25.如图,为美化乡村环境,某村计划在一块长为米,宽为米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道.如果通道所占面积是整个长方形空地面积的,试求出此时通道的宽.26.先阅读,再填空解题:方程:的根是:,,则,;方程的根是:________,,则________,;方程的根是:________,________.则________,________;根据以上你能否猜出:如果关于的一元二次方程(且、、为常数)的两根为、,那么、、与系数、、有什么关系?请写出来你的山东省日照市实验初中2018-2019学年度第一学期人教版九年级数学上册_第21章_一元二次方程_单元评估检测试题(有答案03 / 3猜想并说明理由. 答案 1.A 2.D 3.B 4.D 5.C 6.A 7.A 8.A 9.B 10.D 11. 12. 13.14.15. 16. 17. 18.19. 且 20.21.解: 移项,得 . 系数化为 ,得. 配方,得, 即, 解得,, ; 移项,得.因式分解,得 或 . 解得 , . 22. 的值为 .23.解: 将 代入方程 得, ,解得,;方程为,即 ,设另一根为 ,则,. ∵ ,∴不论 取何实数,该方程都有两个不相等的实数根.24.解: 长方体运输箱底面的宽为 ,则长为 . 容积为 ; . 25.通道的宽为 米. 26.解:。
安岳县2018—2019学年度第一学期期末教学质量检测义务教育九年级数学试题参考答案及评分意见一、选择题(共10小题,每小题4分,共40分)二、填空题(共6小题,每小题4分,共24分)11.312.6113.75° 14.(3,6) 15.416.201821三、解答题(共86分)17.解:(1)原式=2+4×12 -1+3 ································································ 3分 =6 ··············································································· 4分 (2)x 1=332-,x 2= 3 ········································································· 9分 18. 解:∵a =12+3=2-3<1 ····································································· 2分∴原式=····························································· 5分= ················································································ 7分 当a =12+3=2-3时 ·············································································· 8分 原式=2-3+3+2+3=7 ····································································· 10分 19.解:如图1(1)延长ED 交射线BC 于点H .由题意得DH ⊥BC ··················································································· 1分 在Rt △CDH 中,∠DHC =90°,tan ∠DCH =i =)2(23)3)(3-----+a a a a a a (aa 13++∴ ∠DCH =30°.∴ CD =2DH . ·································································· 2分 ∵ CD =23,∴ DH =3,CH =3 ······························································· 3分 答:点D 的铅垂高度是3米 ····································································· 4分 (2)过点E 作EF ⊥AB 于F .由题意得,∠AEF 即为点E 观察点A 时的仰角,∴ ∠AEF =30°.∵ EF ⊥AB ,AB ⊥BC ,ED ⊥BC ,∴ ∠BFE =∠B =∠BHE =90°. ∴ 四边形FBHE 为矩形.∴EF =BH =BC +CH =9. ………………………………………6分 FB =EH =ED +DH =1.5+3. …………………………………7分 在Rt △AEF 中,∠AFE =90°,339tan ⨯=∠⋅=AEF EF AF =3 3................. 8分 ∴ AB =AF +FB =1.5+4 3 ············································································ 9分 答:旗杆AB 的高度约为(1.5+43)米 ··················································· 10分 20.解:(1)300,10,补全条形统计图略 ··················································· 3分 (2)解:2000×40%=800(人)……………………………………………...5分(3)解:如图所示:开始A B C D BA CDA DA B C………………..8分共有12种等可能结果,同时为跑步和跳绳占2种(列表正确同样给分)P (恰好是跑步和跳绳) ……………………………………………………10分21.解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0), ······················ 1分 将(24,32)、(26,28)代入y =kx +b ,得⎩⎨⎧=+=+28263224b k b k ,解得:⎩⎨⎧=-=802b k (选表中的其它数代入一样给分) ················· 3分 图161122==∴y 与x 之间的函数关系式为y =﹣2x +80. ··················································· 4分 当x =23.5时,y =﹣2x +80=33. ·································································· 5分 答:当天该水果的销售量为33千克. ························································· 6分 (2)根据题意得:(x ﹣20)(﹣2x +80)=150, ·········································· 8分 解得:x 1=35,x 2=25. ············································································· 9分 ∵20≤x ≤32,∴x =25. ············································································· 10分 答:如果某天销售这种水果获利150元,那么该天水果的售价为25元/千克······· 11分 22.解:(1)根据题意,得△=b 2-4ac>0 ··················································· 1分 ∴[]0)22(14)12(22>+-⨯⨯---k k k ····················································· 2分 解得k >74,即实数k 的取值范围是k >74. ························································ 4分 (2)存在.由根与系数的关系,得01221>-=+k x x .(47>k ) ······················································ 6分∴x 1,x 2同为正 ······················································································ 7分 ∵521=-x x ,∴521=-x x ···························································· 8分∴5)(221=-x x ,即54)(21221=-+x x x x ················································· 9分∴5)22(4)12(22=+---k k k 解得k =3···················································· 10分∵k >74,∴存在这样的k =3 ········································································ 11分 23.证明:(1)如图2,∵∠ACB =90°,AC =BC ,CD 是中线∴∠BCD =∠ACD =45°,∠BCE =∠ACF =90°,∴∠DCE =∠DCF =135° ··········· 1分 在△DCE 和△DCF 中:⎪⎩⎪⎨⎧=∠=∠=CF CE DCF DCE CD CD ,∴△DCE ≌△DCF …………………………………………...3分 ∴DE =DF ····························································································· 4分01)1(222221>+-=+-=⋅k k k x x(2)解:①如图3,∵∠DCE =∠DCF =135°,∴∠CDF +∠F =45°∵∠CDF +∠CDE =45°∴∠F =∠CDE ,∴△CDF ∽△CDE ······························ 6分 ∴CDCF CE CD =,即CF CE CD ⋅=2……………………………………………………….7分 ∵∠ACB =90°,AC =BC ,CD 是中线∴AB =2CD ············································· 8分 ∴CF CE AB ⋅=42………………………………………………………………………..9分 ②如图4,∠DGN =∠ECN =90°,CG =DG ,∵CE =4,CF =2,CF CE CD ⋅=2∴22=CD ,……………………………………10分 在Rt △DCG 中,CG =DG =CD sin ∠DCG =245sin 220=⋅ ∵∠ECN =∠DGN ,∠ENC =∠DNG , ∴△CEN ∽△GDN ,∴224===DG CE GN CN ,∴3231==CG GN …………………….11分 ∴31022)32(DN 2222=+=+=DG GN …………………………………………12分24.解:(1)如图5,∵直线333+-=x y 分别与x 轴,y 轴交于B ,C 两点 ∴B (3,0),C ),(30………………………………………………………………………1分∵∠ACO +∠BCO =90°,∠ACO +∠CAO =90°∠CAO =∠BCO ,∵∠AOC =∠C OB =90°,∴△AOC ∽△COB , ∴BO CO CO AO =,即333=AO ………………………………3分 ∴AO =1(用三角函数计算得到同样正确)∴A (-1, 0)…………………………………………….4分(2)抛物线32++=bx ax y 经过A ,B 两点.EABC EFM ND 图1ABD C FEMN图2图3图2∴⎪⎩⎪⎨⎧=++=+-033903b a b a ,解得⎪⎪⎩⎪⎪⎨⎧=-=33233b a .………………..7分 所以抛物线的解析式为:3332332++-=x x y …………………………………….8分 (3)∵B (3,0),C ),(30,∴OB =3,OC =3,∴∠BCO =60°又∵MD ∥y 轴,MH ⊥BC ,∴∠MDH =60°,∴∠DMH =30°,∴DH =21DM ,MH =23DM∴△DMH 的周长=DM +DH +MH =233+DM ∴当MD 取最大值时,△DMH 的周长最大. ……………………………………………….10分 设)333233,(2++-x x x M ,)333,(+-x x D .则MD =)333233(2++-x x -)333(+-xx x 3332+-=433)23(332+--=x (0<x <3) ···························· 11分 ∴当x =32时,MD 有最大值为334 ······································································ 12分 ∴△DMH 的周长最大为3+32×334=93+98 ························································ 13分。
2018-2019学年度第一学期人教版九年级数学上册期中综合检测试卷(21-23章)考试总分: 120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.下列方程中是关于一元二次方程的为( )x A.2x 2‒1x +1=0 B.ax 2+bx +c =0C.x 2=x +1D.x 2+x =y 2.抛物线的对称轴是( )y =12(x +2)(x ‒6)A.x =‒2 B.x =6C.x =2D.x =4 3.一元二次方程的二次项系数、一次项系数、常数项分别是(2x 2‒5x ‒7=0)A.;;527B.;;2‒5‒7C.;;25‒7D.;;‒2574.如图所示是二次函数图象的一部分,图象过点,二次y =ax 2+bx +c A (3, 0)函数图象对称轴为直线,给出五个结论:①;②;③x =1bc >0a +b +c <0;④方程的根为,;⑤当时,4a ‒2b +c >0ax 2+bx +c =0x 1=‒1x 2=3x <1随着的增大而增大.其中正确结论是( )y xA.①②③B.①③④C.②③④D.①④⑤5.若、是方程的两个根,则:的值为( )αβx 2+2x ‒2009=0α2+3α+βA.2010 B.2009 C.‒2009 D.20076.若点关于原点对称点的坐标为,则点的坐标是( )A (a, b)AA.(a, b)B.(‒a, ‒b)C.(‒a, b)D.(a, ‒b) 7.已知是二次函数且有最大值,则 y =‒mxm 2‒2m =()A.2 B.4C.±2D.0 8.用配方法解方程,可变形为( )‒x 2+6x +7=0A.(x +3)2=16B.(x ‒3)2=16C.(x +3)2=2D.(x ‒3)2=29.已知二次函数的图象如图所示,则这个二次函数的表达式为( )A.y =x 2‒2x +3B.y =x 2‒2x ‒3C.y =x 2+2x ‒3D.y =x 2+2x +310.已知关于的函数关系式为,(为正常数,为时间),则函数图象ℎt ℎ=12gt 2g t 为( )A. B.C. D.二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.把二次函数配方成顶点式为________.y =x 2‒2x ‒1m=x2+(m‒2)x‒9=012.当________时,方程的两个根互为相反数.y=‒x2‒2x+m x13.已知二次函数的部分图象如图所示,则关于的一元二次方x2+2x=m程的解为________.250001600014.某单位在两个月内将开支从元降到元,如果每月降低开支的百x x分率相同,设为,则由题意可以列出关于的方程是________.x x2+mx+8=0m m15.关于的一元二次方程(是常数)有两个整数解,则的值可以是________(写出一个即可).x(k‒1)x2+(k‒1)x+k‒2=016.已知关于的方程有两个相等的实数根,则k的值是________.a b x2+x‒2009=0a2+2a+b17.设,是方程的两个实数根,则的值为________.818.两个数的和为,这两个数的积最大可以达到________.x2+px+2=02p=19.若方程的一个根是,则另一个根是________,________.5x 20.某种商品的价格为元,准备进行两次降价,如果每次降价的百分率都是,y x经过两次降价后的价格(单位:元)随每次降价的百分率的变化而变化,则y x与之间的关系式为________.三、解答题(共 7 小题,共 60 分)21.(12分) 用适当的方法解下列方程:(1)(x‒1)2=9x2‒7x+6=0;(2);2x(x‒1)=3(x‒1)(3).22.(8分) 在正方形网格中,建立如图所示的平面直角坐标系,的三xoy △ABC 个顶点都在格点上,点的坐标,请解答下列问题:A (4, 4)画出关于轴对称的,并写出点,,的坐标;(1)△ABC y △A 1B 1C 1A 1B 1C 1将绕点逆时针旋转,画出旋转后的,并写出点,(2)△ABC C 90∘△A 2B 2C A 2的坐标.B 223.(8分) 某农场去年种植了亩地的南瓜,亩产量为,根据市场需要,102000kg 今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,设南瓜种植面积的增长率为.x 则今年南瓜的种植面积为________亩;(用含的代数式表示)(1)x 如果今年南瓜亩产量的增长率是种植面积的增长率的,今年南瓜的总产量(2)12为,求南瓜亩产量的增长率.60000kg24.(8分) 某中学课外兴趣活动小组准备围建一个矩形花草园,其中一边靠墙,另外三边周长为米的篱笆围成.已知墙长为米(如图所示),设这个花草3016园垂直于墙的一边长为米.x若花草园的面积为平方米,求;(1)100x 若平行于墙的一边长不小于米,这个花草园的面积有最大值和最小值吗?(2)10如果有,求出最大值和最小值;如果没有,请说明理由;当这个花草园的面积不小于平方米时,直接写出的取值范围.(3)88x25.(8分) 如图,已知,.AD =AE AB =AC求证:;(1)∠B =∠C 若,问经过怎样的变换能与重合?(2)∠A =50∘△ADC △AEB26.(8分) 如图,已知抛物线与坐标轴分别交于点、y =‒12x 2+bx +c A(0, 8)和点,动点从原点开始沿方向以每秒个单位长度移动,动点从B(8, 0)E C O OA 1DB BO1CD D点开始沿方向以每秒个单位长度移动,动点、同时出发,当动点到达O C D原点时,点、停止运动.(1)直接写出抛物线的解析式:________;(2)△CED S D t t△CED求的面积与点运动时间的函数解析式;当为何值时,的面积最大?最大面积是多少?(3)△CED P E△PCD当的面积最大时,在抛物线上是否存在点(点除外),使的△CED P面积等于的最大面积?若存在,求出点的坐标;若不存在,请说明理由.1△ABC∠B=90∘∠A=30∘AC=227.(8分) 如图,在中,,,.(1)△ABC C120∘△A'B'C将绕点顺时针旋转得.B①求点旋转经过的路径长;BB'②求线段的长;(2)2C AC AB D△ACD C如图,过点作的垂线与的延长线交于点,将绕点顺时针旋90∘△A'CD'2AD C转得.在图中画出线段绕点旋转所形成的图形(用阴影表示),并求出该图形的面积.答案1.C2.C3.B4.D5.D6.B7.A8.B9.B10.A11.y =(x ‒1)2‒212.213.,x 1=‒3x 2=114.25000(1‒x )2=1600015.,,,写出一个69‒6‒916.或17317.200818.1619.1‒320.y =5(1‒x )221.解:(1),x ‒1=±3所以,;,x 1=4x 2=‒2(2)(x ‒1)(x ‒6)=0或,x ‒1=0x ‒6=0所以,;(3),x 1=1x 2=62x(x ‒1)‒3(x ‒1)=0,(x ‒1)(2x ‒3)=0或,x ‒1=02x ‒3=0所以,.x 1=1x 2=3222.解:如图所示,,,;(2)(1)△A 1B 1C 1A 1(‒4, 4)B 1(‒1, 1)C 1(‒3, 1)如图所示,,.△A 2B 2C A 2(0, 2)B 2(3, ‒1)23..今年南瓜亩产量为,10(1+x)(2)2000(1+x 2)根据题意得:,10(1+x)×2000(1+x 2)=60000整理得:,x 2+3x ‒4=0解得:或(舍去).x =1=100%x =‒4=‒400%答:南瓜亩产量的增长率为.100%24.解:根据题意知平行于墙的一边的长为米,(1)(30‒2x)则有:,x(30‒2x)=100解得:或,x =5x =10∵,0<30‒2x ≤16∴,7≤x <15故;设苗圃园的面积为,x =10(2)y ∴,y =x(30‒2x)=‒2x 2+30x ∵,a =‒2<0∴苗圃园的面积有最大值,y ∵,30‒2x ≥10解得:,x ≤10∴,7≤x ≤10∴当时,即平行于墙的一边长米,平方米;x =15215>10y 最大=112.5当时,;由题意得,x =10y 最小=100(3)‒2x 2+30x ≥88解得:或,x ≤4x ≥11又∵,7≤x <15∴.11≤x <1525.证明:在与中,,,;(1)△AEB △ADC AB =AC ∠A =∠A AE =AD ∴,△AEB≅△ADC ∴.解:先将绕点逆时针旋转,∠B =∠C (2)△ADC A 50∘再将沿直线对折,即可得与重合.△ADC AE △ADC △AEB 或先将绕点顺时针旋转,△ADC A 50∘再将沿直线对折,即可得与重合.△ADC AB △ADC △AEB 26.;∵点、,y =‒12x 2+3x +8(2)A(0, 8)B(8, 0)∴,,OA =8OB =8令,得:,y =0‒12x 2+3x +8=0解得:,,x 18x 2=2∵点在轴的负半轴上,E x ∴点,E(‒2, 0)∴,OE =2根据题意得:当点运动秒时,,,D t BD =t OC =t ∴,OD =8‒t ∴,DE =OE +OD =10‒t ∴,S =12⋅DE ⋅OC =12⋅(10‒t)⋅t =‒12t 2+5t即,S =‒12t 2+5t =‒12(t ‒5)2+252∴当时,;由知:当时,,t =5S 最大=252(3)(2)t =5S 最大=252∴当时,,,t =5OC =5OD =3∴,,C(0, 5)D(3, 0)由勾股定理得:,CD =34设直线的解析式为:,CD y =kx +b 将,,代入上式得:C(0, 5)D(3, 0),,k =‒53b =5∴直线的解析式为:,CD y =‒53x +5过点作,交抛物线与点,如图,E EF // CD P1设直线的解析式为:,EF y =‒53x +b 将代入得:,E(‒2, 0)b =‒103∴直线的解析式为:,EF y =‒53x ‒103将,与联立成方程组得:y =‒53x ‒103y =‒12x 2+3x +8,{y =‒53x ‒103y =‒12x 2+3x +8解得:,,{x 1=‒2y 1=0{x 2=343y 2=‒2009∴;P(343, ‒2009)过点作,垂足为,E EG ⊥CD G ∵当时,,t =5S △ECD =12⋅CD ⋅EG =252∴,EG =253434过点作,垂足为,且使,过点作轴,垂足为,D DN ⊥CD N DN =253434N NM ⊥x M 如图,2可得,△EGD ∽△DMN ∴,EG DM =ED DN即:,2534DM =5253434解得:,DM =12534∴,OM =22734由勾股定理得:,MN =DN 2‒DM 2=7534∴,N(22734, 7534)过点作,与抛物线交与点,如图,N NH // CD P 2设直线的解析式为:,NH y =‒53x +b 将,代入上式得:,N(22734, 7534)b =403∴直线的解析式为:,NH y =‒53x +403将,与联立成方程组得:y =‒53x +403y =‒12x 2+3x +8,{y =‒53x +403y =‒12x 2+3x +8解得:,,{x 1=8y 1=0{x 2=43y 2=1009∴或,P(8, 0)P(43, 1009)综上所述:当的面积最大时,在抛物线上存在点(点除外),使△CED P E 的面积等于的最大面积,点的坐标为:或或△PCD △CED P P(343, ‒2009)P(8, 0).P(43, 1009)27.解:①∵,,,(1)AC =2∠B =90∘∠A =30∘∴.BC =1∴点旋转的路径;…B =13×2π×12=23π②如下图所示:在中,,,△BCB'CB =CB'∠BCB'=120∘AC ⊥BB'∴.sin∠CBE =BE BC =32∴BE =32∴;…如图所示:BB'=3(2)…∵,S 1=S 2∴.S 2+S 4=S 1+S 4=14π(AC 2‒BC 2)=14π(22‒12)=34π在中,,Rt △ABD DC =AC ⋅tan 30∘=233,S 3=16×π×(233)2‒12×233×1=29π‒33∴.… S 2+S 3+S 4=34π+29π‒33=3536π‒33。
山东省日照市新营中学2018-2019学年度第一学期人教版九年级数学上册
第一次月考试卷(10月第一二章)
考试总分:120 分考试时间:120 分钟
学校:__________ 班级:__________ 姓名:__________ 考号:__________
一、选择题(共10 小题,每小题 3 分,共30 分)
1.下列方程是一元二次方程的是()
A. B.
C. D.
2.抛物线与轴的公共点是,,则这条抛物线的对称轴是直线()
A.直线
B.直线
C.直线
D.直线
3.方程的解是()
A. B.
C.,
D.,
4.方程化成一般形式,并写出,,的值是()
A.,,
B.,,
C.,,
D.,,
5.已知二次函数的图象如图所示,有下列四个结论:
①;②;③;④,其中正确的个数有()
A.个
B.个
C.个
D.个
6.已知,关于的一元二次方程有实数根,则的取值范围是()
A. B.
C.且
D.且
7.已知二次函数图象上三点,
,则、、的大小关系为()
A. B.
C. D.
8.用配方法解方程时,配方后所得的方程是()
A. B.
C. D.
9.如果抛物线的顶点到轴的距离是,那么的值等于()
A. B. C.或 D.或
10.某种商品经过连续两次涨价后的价格比原来上涨了,则这种商品的价格的平均增长率是()
A. B. C. D.
二、填空题(共10 小题,每小题 3 分,共30 分)
11.把方程化成一元二次方程的一般形式,得
________.
12.已知二次函数的部分图象如图所示,则关于的一元二次方程的解为________.
13.方程的解是________.
14.二次函数的部分对应值如下表:
……
……
①抛物线的顶点坐标为;②与轴的交点坐标为;
③与轴的交点坐标为和;④当时,对应的函数值为
.以上结论正确的是________.
15.已知,是方程的两个实数根,且.则
的值为________.
16.关于的一元二次方程有实数根,则整数的最大值是________.
17.已知二次函数的图象如图所示,下列结论:
①;②;③;④;⑤;⑥当时,随的增大而增大.
其中正确的说法有________(写出正确说法的序号)
18.已知点,,都在二次函数的图象
上,则,,的大小关系是________.
19.永嘉县九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高,当球出手后水平距离为时到达最大高度,设篮球运行的轨迹为
抛物线,建立如图的平面直角坐标系,设篮球出手后离地的水平距离为,高度为,则关于的函数解析式是________.
20.某市“安居工程”新建成的经济房都是层高,房子的价格(元)随楼层数(楼)的变化而变化;已知点都在一个二次函数的图象(如图)上,对称轴方程为:,则楼房子的价格为________元.
三、解答题(共6 小题,每小题10 分,共60 分)
21.用适当的方法解方程:
;;
.
22.已知抛物线.
直接写出它与轴、轴的交点的坐标;
用配方法将化成的形式.
23.已知函数.
当为何值时,是的二次函数?
当为何值时,是的一次函数?
24.如图,在平面直角坐标系中,抛物线与轴交于、两点,与轴交于点,四边形是矩形,点的坐标为,点的坐标为,已知点是线段上的动点,过点作轴交抛物线于点,交于点,交于点.
求该抛物线的解析式;
当点在直线上方时,请用含的代数式表示的长度;
在的条件下,是否存在这样的点,使得以、、为顶点的三角形与
相似?若存在,求出此时的值;若不存在,请说明理由.
25.为了实现“畅通市区”的目标,市地铁一号线准备动工,市政府现对地铁一号线第标段工程进行招标,施工距离全长为米.经招标协定,该工程由甲、乙两公司承建,甲、乙两公司施工方案及报价分别为:
甲公司施工单价(万元/米)与施工长度(米)之间的函数关系为
,
乙公司施工单价(万元/米)与施工长度(米)之间的函数关系为
.
(注:工程款施工单价施工长度)
如果不考虑其他因素,单独由甲公司施工,那么完成此项工程需工程款多少万元?
考虑到设备和技术等因素,甲公司必须邀请乙公司联合施工,共同完成该工程.因设备共享,两公司联合施工时市政府可节省工程款万元(从工程款中扣除).
①如果设甲公司施工米,那么乙公司施工________米,其施工单价________万元/米,试求市政府共支付工程款(万元)与(米)之间的函数关系式;
②如果市政府支付的工程款为万元,那么应将多长的施工距离安排给乙公司施工?
26.一玩具厂去年生产某种玩具,成本为元/件,出厂价为元/件,年销售量为万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加倍,今年这种玩具每件的出厂价比去年出厂价相应提高倍,则预计今年年销售量将比去年年销售量增加倍(本题中).
用含的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为________元.
求今年这种玩具的每件利润元与之间的函数关系式.
设今年这种玩具的年销售利润为万元,求当为何值时,今年的年销售利润最大?最大年销售利润是多少万元?
注:年销售利润(每件玩具的出厂价-每件玩具的成本)年销售量.
答案
1.B
2.C
3.D
4.C
5.C
6.D
7.D
8.C
9.C
10.C
11.
12.,
13.
14.①②④
15.
16.
17.②④⑤
18.
19.
20.
21.解:,
,
∴,
∴或;,
,
∴或,
解得:或;整理成一般式可得:,
,
∴或,
解得:或.
22.解:抛物线与轴的交点的坐标为和;
抛物线与轴的交点的坐标为;,
,
.
23.解:∵是的二次函数,
∴.
解得:;∵是的一次函数,
∴,且.
解得:.
24.解:∵四边形是正方形,点坐标为,
∴点的坐标是,
∵点和点在抛物线上
∴,
∴,
∴该抛物线的解析式为:;∵,解得或,
∴抛物线与直线的交点为,
∴点在直线上方时,的取值范围是:,
∵,,
∵轴交抛物线于点,交于点,
∴,,
∴,∵抛物线的解析式为:
;
设点,
∴,,
∵,
∴,
∵,
∴,,
∵以、、为顶点的三角形与相似且,
∴,
∴,
∴,
∴,
∴或(舍)
即:
25.,.
26.。