从错位相减法到裂项相消法
- 格式:pdf
- 大小:609.38 KB
- 文档页数:1
错位相减法[典例](2017·山东高考)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1n 项和T n .[解](1)设{a n }的公比为q ,由题意知:a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2,所以a n =2n .(2)由题意知,S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b n a n ,则c n =2n +12n ,因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n ,又12T n =322+523+724+…+2n -12n +2n +12n +1,两式相减得12T n =32++122+…-2n +12n +1=32+1-1-2n +12n +1=52-2n +52n +1,所以T n =5-2n +52n .[变透练清]1.(变结论)若本例中a n ,b n 不变,求数列{a n b n }的前n 项和T n .解:由本例解析知a n =2n ,b n =2n +1,故T n =3×21+5×22+7×23+…+(2n +1)×2n ,2T n =3×22+5×23+7×24+…+(2n +1)×2n +1,上述两式相减,得,-T n =3×2+2×22+2×23+…+2×2n -(2n +1)2n +1=6+8(1-2n-1)1-2-(2n+1)2n+1=(1-2n)2n+1-2得T n=(2n-1)×2n+1+2.1.用裂项法求和的裂项原则及消项规律2.常见的拆项公式(1)1n(n+1)=1n-1n+1;(2)1(2n-1)(2n+1)=(3)1n+n+1=n+1-n;1.在等差数列{a n}中,a3+a5+a7=6,a11=8n项和为()A.n+1n+2B.nn+2C.n n+1D.2n n+1解析:选C因为a3+a5+a7=6,所以3a5=6,a5=2,又a11=8,所以等差数列{a n}的公差d=a11-a511-5=1,所以a n=a5+(n-5)d=n-3,所以1a n+3·a n+4=1n(n+1)=1n-1n+1,n项和为1-12+12-13+…+1n-1n+1=1-1n+1=nn+1,故选C.2.各项均为正数的等比数列{a n}中,a1=8,且2a1,a3,3a2成等差数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=1n log2a n,求{b n}的前n项和S n.解:(1)设等比数列{a n}的公比为q(q>0).∵2a1,a3,3a2成等差数列,∴2a3=2a1+3a2,即2a1q2=2a1+3a1q,∴2q 2-3q -2=0,解得q =2或q =-12(舍去),∴a n =8×2n -1=2n +2.(2)由(1)可得b n =1n log 22n +2=1n (n +2)=∴S n =b 1+b 2+b 3+…+b n-13+12-14+13-15+…+1n -+12-1n +1-=34-=34-2n +32(n +1)(n +2).。
(1)裂项相消求和把数列的通项拆成两项之差再求和,正负相消剩下首尾若干项. 常见的拆项公式:1n×(n+1) =1n -1n+11n+k+n =1k(n+k -n )2n(2n-1)(2n+1-1) =12n-1-12n+1-1特别提醒:(1)裂项相消法就是把数列的每一项分裂成一正一负的两项,使得相加后,前后的项与项之间能够相互抵消,但在抵消的过程中,有的是依次相消,有的是间隔相消.在正负项抵消后,是否只剩下第一项和最后一项,或有时前面剩下两项,后面也剩下两项,未消去的项有前后对称的特点.(2)一般地,若{a n}为等差数列,则求数列{1a n a n+1}的前n项和可尝试此方法,事实上,1a n a n+1=dda n a n+1=a n+1-a nda n a n+1=1d·(1a n-1a n+1).如求12×4 +13×5 +14×6 +…+1(n+1)×(n+3) =?解:∵1(n+1)×(n+3) =12(1n+1 -1n+3 )∴12×4 +13×5 +14×6 +…+1(n+1)×(n+3)=12[(12 -14 )+(13 -15 )+(14 -16 )+…+(1n -1n+2 )+(1n+1 -1n+3 )]=12(12 +13 -1n+2 -1n+3 )=512-2 n+52(n+2)×(n+3)12[例1](2011课标Ⅰ)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6.(1)求数列{a n }的通项公式; (2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n 的前n 项和.解:(1)设数列{a n }的公比为q .由a 23=9a 2a 6得a 23=9a 24,所以q 2=19. 由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13. 故数列{a n }的通项公式为a n =13n . (2)b n =log 3a 1+log 3a 2+…+log 3a n=-(1+2+…+n ) =-n (n +1)2.故1b n =-2n (n +1)=-2(1n -1n +1),1b 1+1b 2+…+1b n=-2[(1-12)+(12-13)+…+(1n -1n +1)]=-2nn +1. 所以数列{1b n }的前n 项和为-2nn +1.[练1](2013课标全国Ⅰ,17,0.466).已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(Ⅰ)求{a n }的通项公式; (Ⅱ)求数列{1 a 2n -1● a 2n +1}的前n 项和.解:(1)设等差数列{a n }的公差为d ,∵前n 项和S n 满足S 3=0,S 5=-5,∴⎩⎨⎧3a 1+3d =85a 1+5×42 d =-5,4[练2]已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,11n n n n a b S S ++=,求数列{b n }的前n 项和n T .解:(1)∵数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.∴a 2a 3=a 1a 4=8.解得a 1=1,a 4=8或a 1=8,a 4=1(舍), 解得q =2,即数列{a n }的通项公式a n =2n -1; (2)Sn =a 1(1-q n )1-q=2n -1∴b n =a n+1 S n S n+1 =S n+1-S n S n S n+1 = 1S n-1S n +1 ,∴数列{b n }的前n 项和T n =(1S 1 -1S 2 )+(1S 2 -1S 3 )+…+(1S n -1S n +1 )=1S 1-1S n +1=1-12n +1-1.[思维发散] 利用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.通过纽带:a n =S n -S n -1 (n ≥2),根据题目求解特点,消掉一个a n 或S n .然后再进行构造成等差或者等比数列进行求解.如需消掉S n ,利用已知递推式,把n 换成n -1得到递推式,两式相减即可. 若消掉a n ,只需把a n =S n -S n -1带入递推式即可.不论哪种形式,需要注意公式a n =S n -S n -1 成立的条件n ≥2[练1]若数列{a n }的前n 项和为S n =23 a n +13 ,则{a n }的通项公式是a n =______. 答案: (-2)n -15[练2]设n S 为数列{n a }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =答案:-1n例2.(2015课标Ⅰ, 0.624)S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3. (Ⅰ)求{a n }的通项公式:(Ⅱ)设b n =1a n a n +1 ,求数列{b n }的前n 项和. 解:(Ⅰ)由a n 2+2a n =4S n +3可知当n =1时,a 12+2a 1=4S 1 +3=4a 1 +3,因为a n >0,所以a 1=3, 当n ≥2时,a n -12+2a n -1=4S n -1+3两式相减得 a n 2-a n -12+2(a n -a n -1)=4a n即(a n +a n -1)(a n -a n -1)=2(a n +a n -1),因为a n >0,所以a n -a n -1=2, 所以数列{a n }是首项为3,公差为2的等差数列, 通项公式为a n =2n +1;(Ⅱ)由(Ⅰ)知,b n =1 a n a n +1=1(2n +1)(2n +3) =12 (1 2n +1 -12n +3 ) 所以数列{n b }前n 项和12n b b b +++=12(13 -1 2n +3 )=16 -1 4n +6练1[2020唐山高三二模]已知S n是数列{a n}的前n项和,S n+1=3S n+1,a1=1.(Ⅰ)求数列{a n}的通项公式:(Ⅱ)若b n=log3a2n ,c n=1b n b n+1 ,求数列{c n}的前n项和T n.6练2[2017唐山一模]已知数列{a n}为单调递增数列,S n为其的前n项和,2 S n=a n2+n (Ⅰ)求数列{a n}的通项公式:(Ⅱ)若b n=a n+22n+1•a n•a n+1, T n为数列{b n}的前n项和,证明: T n<127(2)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的.特别提醒:用乘公比错位相减法求等比数列的和时,应注意:(1) 在写出“S n”与“q·S n”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-q·S n”的表达式;(2) “S n-q·S n”化简的关键是化为等比数列求和,一定要明确求和的是n项还是n-1项,一般是n-1项.用错位相减法解决数列求和的步骤:第一步:(判断结构)若数列{a n·b n}是由等差数列{a n}与等比数列{b n}(公比q)的对应项之积构成的,则可用此法求和.第二步:(乘公比)设{a n·b n}的前n项和为T n,然后两边同乘以q.第三步:(错位相减)乘以公比q后,向后错开一位,使含有q k(k∈N *)的项对齐,然后两边同时作差.第四步:(求和)将作差后的结果求和化简,从而表示出T n89[例1]已知a n =(2n -1)•3n ,求数列{a n }的前n 项和S n .解法1:错位相减法解:S n =1•31+3•32+5•33+…+(2n -3)•3n -1+(2n -1)•3n ,①3S n = 1•32+3•33+5•34+ … +(2n -3)•3n +(2n -1)•3n +1,② ①-②-2S n =1•31+2•32+2•33+…+2•3n -(2n -1)•3n +1=1•3+2•32 (1-3n -1)1-3 -(2n -1)•3n +1=1•3+32 (3n -1-1) -(2n -1)•3n +1=-6+(2-2n)•3n +1∴S n =3+(n -1)•3n +1 解法2: 利用公式求解a n =(2n -1)•3n =(6n -3)•3n -1=(a n +b)•q n -1 a =6,b =-3, q =3 A =a q -1 =63-1 =3, B =b -A q -1 =-3-3 3-1=-3 ,C =-B =3 ∴S n =(An +B) q n +C =(3n -3) •3n +3 =(n -1)•3n +1+3 [总结]第一步:把通项统一化成:c n =(a n +b)•q n -1. 第二步:把前n 项和化成:S n =(An +B) q n +C第三步:套公式即可:A =aq -1 ,B =b -A q -1,C =-B 第三步公式记不住的,可这样求A,B⎩⎨⎧ S 1=(A +B) •3-B =3 S 2=(2A +B) •32-B =3+3•32整理为⎩⎨⎧ 3A +2B =3 18A +8B =30解得⎩⎨⎧A =3B =-310解法3:裂项相消解错位相减令a n =(2n -1)•3n =[k(n +1) +b ]•3n +1-(kn +b )•3n右式=[2kn +(3k +2b )]•3n 整理后与左式比较 ∴⎩⎨⎧ 2k =2 3k +2b =-1解得⎩⎨⎧k =1 b =-2 ∴a n =(2n -1)•3n =(n -1)•3n +1-(n -2)•3n∴S n =[0•32-(-1)•31] +(1•33-0•32) +(2•34-1•33) +(3•35-2•34)+…+[(n -1)•3n +1-(n -2)•3n ] =(n -1)•3n +1+311[例3]已知a n=n3n,求数列{a n}的前n项和S n.解:S n=13+232+333+…+n-13n-1+n3n,13S n=132+233+…+n-13n+n3n+1,两式相减得23S n=13+132+133+…+13n-n3n+1=13(1-13n)1-13-n3n+1=12-12×3n-n3n+1,∴S n=34-14×3n-1-n2×3n=34-2n+34×3n.解法2:利用公式求解a n=n3n=(13n+0)•13n-1=(a n+b)•q n-1a=13, b=0, q=13A=aq-1 =1313-1=-12, B=b-Aq-1 =0-(-12)13-1=-34,C=-B=34∴S n=(An+B) q n+C=(-12n-34)•(13)n+34=34-2n+34×3n.1213解法3:裂项相消解错位相减令a n =n3n =k(n +1)+b 3n +1-k n +b3n化简比较左右 3n 3n +1=-2k n +(k -2b)3n +1 ∴⎩⎨⎧-2k =3 k -2b =0解得⎩⎪⎨⎪⎧k =-32 b =-34∴a n =n3n =-32(n +1) -343n +1--32n -343n∴S n =(-32×2 -3432--32×1-3431)+(-32×3 -3433--32×2-3432) +…+(-32(n +1) -343n +1--32n -343n )=-32(n +1) -343n +1--32×1-3431=34-2n +34×3n.[2020唐山高三期末]解:(1)在S n=2n+1-2中,令n=1,得a1=S1=21+1-2=2,当n≥2时,S n-1=2n-2,则a n=S n-S n-1=2n+1-2n=2n.又因为a1=2符合上式,所以,a n=2n.…4分(2)由(1)得b n=n+1a n=n+12n,则T n= 22+34+…+n2n-1+n+12n①,则12T n= 24+38+…+n2n+n+12n+1②,①-②,得12T n=1+ 14+18+…+12n-n+12n+1=32-n+32n+1,则T n=3-n+32n.…12分解法2:利用公式求解解法3:裂项相消解错位相减1415(2020·石家庄模拟)设数列{a n }的前n 项和为S n ,且2S n =3a n -1 (I)求数列{a n }的通项公式;(II)设b n =na n,求数列{b n }的前n 项和T n解:(Ⅰ)由2S n =3a n -1 ①2S n -1=3a n -1-1 ②(n ≥2)①-②得2a n =3a n -3a n -1,∴ a na n -1=3,…………………3分又当n =1时,2S 1=3a 1-1,即a 1=1,∴{a n }是首项为1,公比为3的等比数列,∴ a n =3n -1.…………6分(Ⅱ) 由(Ⅰ)得:b n = n3n -1∴T n = 1 30+ 2 31+ 3 32+…+ n3n -1,…………………③ 1 3T n = 1 31+ 232+…+ n -1 3n -1+ n 3n ,…………④…………………8分③-④得: 2 3T n = 1 30+ 1 31+ 1 32+…+ 1 3n -1- n3n ………………10分=1- 1 3n1- 1 3- n 3n = 3 2-2n +3 2×3n∴T n = 9 4- 6n +9 4×3n . ……………………………………………12分解法2: 利用公式求解解法3:裂项相消解错位相减[练2]已知{a n}是递增..的等差数列,a2,a4是方程x2-5x+6=0的根.(I)求{a n}的通项公式;(II)求数列2n na⎧⎫⎨⎬⎩⎭的前n项和.解法2:利用公式求解解法3:裂项相消解错位相减16。
数列求和常见五法一、公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求.①等差数列求和公式:()()11122n n n a a n n S na d +-==+ ②等比数列求和公式:()()()11111111n n n na q S a q a a q q qq ⎧=⎪=-⎨-=≠⎪--⎩ 二、倒序相加法:如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。
这一种求和的方法称为倒序相加法. 例1:设等差数列,公差为,求证:的前项和= 证明:...........① 倒序得:............②①+②得:又===...=针对训练:求值:222222222222123101102938101S =++++++++ 三、错位相减法:类似于等比数列的前n 项和的公式的推导方法。
若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差·比”数列,则采用错位相减法. 若n n n a b c =∙,其中{}n b 是等差数列,{}n c 是公比为q 等比数列,令112211n n n n n S b c b c b c bc --=++++ 则n qS =122311n n n n b c b c b c b c -+++++两式相减并整理即得例2、已知 12n n a n -=∙,求数列{a n }的前n 项和S n .解:01211222(1)22n n n S n n --=+++-+ ①12121222(1)22n n n S n n -=+++-+ ②②—①得01121222221n n n n n S n n -=---=-+小结:错位相减法的求解步骤:①在等式两边同时乘以等比数列{}n c 的公比q ;②将两个等式相减;③利用等比数列的前n 项和的公式求和.针对训练:、求和:()23230,1n n S x x x nx x x =++++≠≠四、裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。
学会数列求和的几种常用方法数列求和是高中数学的一个重要知识点,是高考的热点。
数列求和方法有很多,但在高考中离不开以下三种常用方法。
1、分解为等差数列与等比数列的前n 项和【例1】求222222)2()12(4321n n S n --++-+-=【解】)12(22)21(]2)12(4321[]2)12)][(2()12[()43)(43()21)(21(+-=+-=+-+++++-=+---+++-++-=n n nn n n n n n n S n【例2】设数列}{n a 满足:当5≤n 时,12-=n n a ,当6≥n 时,12-=n a n ,求它的前n项和n S .【解】当5≤n 时,122121222112-=--=++++=-n n n n S ;当6≥n 时,由于前5项成等比数列,从第6项起成等差数列,故)12()172()162()12(5-++-⨯+-⨯+-=n S n62)5)(12162()12(25+=--+-⨯+-=n n n S n ,所以⎪⎩⎪⎨⎧≥+≤-=)6(6)5(122n n n S n n 【例3】求)1()1()1(1122-+++++++++++=n n a a a a a a S【解】当1≠a 时,aa a a a n a a a a a a a a S nn n -+++--=--++--+--+--=1111111111232 即21)1(1]1)1([111a a a a n a a a a a n S n n n ----=-----=+ 当1=a 时,2)1(321+=++++=n n n S n ,故⎪⎪⎩⎪⎪⎨⎧=+≠----=+)1(2)1()1()1(121a n n a a a a a n S n n2、裂项相消法【例4】求∑=-=nk n kS 12141【解】由于)121121(211412+--=-k k k ,所以 12)1211(21)]121121()5131()311[(2114112+=+-=+--++-+-=-=∑=n n n n n k S nk n 【例5】求∑=-+=nk n k k S 122391【解】由于)231131(3123912+--=-+k k k k ,所以 23)23121(31)]231131()7151()5121[(31239112+=+-=+--++-+-=-+=∑=n nn n n k k S nk n 一般地,数列}{n a 是公差d 不为零且各项不为零的等差数列,则∑=+=nk k k n a a S 111与∑=+=nk k k n a a S 121的求和问题都是用裂项求和法。
高三数学数列不等式证明——裂项相消与放缩法总结一、裂项相消法通项特征:通项一般是分式,分母为偶数个因式相乘,且满足a是常数,a-=原分子分母大的因式分母小的因式2.解题思路类型①⎪⎭⎫⎝⎛+-=+knnkknn111)(1类型②()nknknkn-+=++11类型③⎪⎭⎫⎝⎛+--=-121121211412nnn类型④()()⎪⎭⎫⎝⎛++--=--121121114412nnnn nn类型⑤kkkk nnnnn+-+=++++112121)2)(2(2类型⑥kakakakaaannnnn+-+=++⎪⎭⎫⎝⎛-++1111))((11二、错位相减法错位相消法三种思维求法:以下三种思维,但还是建议练熟第一种。
如果第一种都掌握不了的学生,基本上也记不住第二和第三种方法。
1.思维结构结构图示如下2.公式型记忆:1(),n S=n+)q,,11n nn nC a n b q A B ca b AB C Bq q-=⋅++-==---则其前项和(其中A=3.可可裂项为如下11(),q1),[(1))](),((())k=pq-pp tb=pqnnn n nn n n na knb qa p n t q pn t q C C C pn t qtq t++=+≠=++-+=-=+⎧⎨+-⎩(则其中可通过方程组计算出、值:11=a()n=a[( )( )( )...( )]n=1 n=2 n=3 n=n-++++=⇑⇑⇑⇑原式分母小的因式分母大的因式前项和化简放缩模型——平方型与指数型证明下列不等式:1、、2、)(21......31211222*∈<++++Nnn3、)(471......31211222*∈<++++Nnn4、)(351......31211222*∈<++++Nnn)(21)12()12(1......751531311*∈<+⨯-++⨯+⨯+⨯NnnnnnS + + +...+n=1 n=2 n=3 n=nqS + + +...+q-=⇑⇑⇑⇑=①②①的基础上左右同时乘,即在①式中指数加1①②代入通项公式,等差数列当等比数列的系数在n-+k( )=+k( )=-S=--n得(1q)S①中的第一项指数函数相加②的最后一项①中的第一项等比求和公式②的最后一项化简两边同时除以(1q)即得平方型:分母是两项积可放缩到裂项相消模型指数型:可放缩为等比模型5、)(45)12(1......51311222*∈<-++++N n n6、),2(32121......121121121432*∈≥<-++-+-+-N n n n7、)(23231......231231231332211*∈<-++-+-+-N n nn8、)(342 (3232221211)432*+∈<-++-+-+-N n n n n一、单选题1.已知数列{}n a 的首项是11a =,前n 项和为n S ,且()1231n n S S n n N *+=++∈,设()2log 3n n c a =+,若存在常数k ,使不等式()()116n nc k n N n c *-≥∈+恒成立,则k 的取值范围为( ) A .1,9⎡⎫+∞⎪⎢⎣⎭B .1,16⎡⎫+∞⎪⎢⎣⎭C .1,25⎡⎫+∞⎪⎢⎣⎭D .1,36⎡⎫+∞⎪⎢⎣⎭2.已知数列{}n a 的首项是11a =,前n 项和为n S ,且1231n n S S n +=++(*N n ∈),设()2log 3n n c a =+,若存在常数k ,使不等式()116n n c k n c -≥+(*N n ∈)恒成立,则k 的最小值为( )A .19B .116C .125D .136二、填空题3.已知数列{}n a 中,112a =,()1n n n n a a a +-=,*n ∈N ,数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n S .若对于任意的*n ∈N ,不等式n S t <恒成立,则实数t 的取值范围是________.4.已知首项为1的数列{}n a 的前n 项和为n S ,且()12n n nS n S +=+,数列2112n n n n a a a +++⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若()110n n T λ++-⋅>,且λ∈Z ,则λ=___________.三、解答题5.已知数列{}n a 中11a =,)2n a n =≥.(1)求{}n a 的通项公式;(2)若21n n c a -=,数列1n c ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:21211n n n a T a +--<≤.6.已知数列{}n a 满足1222n n a a a a =-,*n N ∈.(1)证明:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)记12n n T a a a =,*n N ∈,22212n n S T T T =++.证明:当*n N ∈时,11243n n S a +>-.7.已知函数()()3log 1(0)1x f x x x +=>+的图像上有一点列()()*,n n n P x y n N ∈,点n P 在x 轴上的射影是(),0n n Q x ,且(1322n n x x n -=+≥,且)*1,2n N x ∈=.(1)求证:{}1n x +是等比数列,并求数列{}n x 的通项公式;(2)对任意的正整数n ,当[]1,1m ∈-吋,不等式239181n y t mt <-+恒成立,求实数t 的取值范围;(3)设四边形11n n n n P Q Q P ++的面积是n T ,求证:1211132nT T nT +++<.8.已知正项数列{}n a 的首项11a =,前n 项和nS 满足)2n a n ≥. (1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若对任意的*N n ∈,不等式24n T a a <-恒成立,求实数a 的取值范围.9.已知数列{}n a 满足11a =,且11n n a a n +-=+,n S 是1n a ⎧⎫⎨⎬⎩⎭的前n 项和.(1)求n S ;(2)若n T 为数列2n S n ⎧⎫⎪⎪⎛⎫⎨⎬ ⎪⎝⎭⎪⎪⎩⎭的前n 项和,求证:232n nT n >>+.10.已知数列{}n a 的前n 项和为n S ,11a =,22a =,且214n n n S S a ++=+. (1)求n a ;(2)求证:121112111n a a a +++<+++.11.已知数列{}n a 的前n 项和为n S ,13a =,24a =,()112322n n n S S S n +-+=-≥. (1)证明:数列{}2n a -是等比数列,并求数列{}n a 的通项公式;(2)记112n n n n b a a -+=,数列{}n b 的前n 项和为n T ,证明:11123n T≤<.12.证明:135212462n n -⨯⨯⨯⋯⨯13.已知数列{}n a 是等差数列,23a =,数列{}n b 是等比数列,18b =,公比3q >,且3q a =,2213b a a =.(1)求{}n a ,{}n b 的通项公式; (2)设24log n n n b c a =,n *∈N ,求证:1212nc c c ++⋅⋅⋅+<.14.已知各项为正的数列{}n a 满足:113a =,()*134N n n n a a n a +=∈+. (1)设0a >,若数列1log 1a n a ⎧⎫⎛⎫⎪⎪+⎨⎬ ⎪⎪⎪⎝⎭⎩⎭是公差为2的等差数列,求a 的值;(2)设数列1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明4543n S n ≤<+.参考答案:1、 通项公式为: ()()⎪⎭⎫⎝⎛+--=+-=1211212112121n n n n a n2、通项公式为: ()⎪⎭⎫ ⎝⎛--=-<=≥n n n n n a n n 111111,22 3、通项公式为: ⎪⎭⎫ ⎝⎛+--=-<=≥111121111,222n n n n a n n 4、通项公式为: ⎪⎭⎫ ⎝⎛+--=-<==≥1211212144441,2222n n n n n a n n 5、通项公式为: ()⎪⎭⎫⎝⎛--=-<+-=-=≥n n n n n n n a n n 111414411441121,2222 6、通项公式为:()11111123121211221221121,2---++⋅=≤≤=-=-<-=≥n n n n n n n a a a n 7、通项公式为:11313231231--=⋅-<-=n n n n n n a 8、通项公式为:nn n n n nn n n n a n 2222,21<-+=-=≥+ 1.C 【详解】由1231n n S S n +=++,则当2n ≥时,得123(1)1n n S S n -=+-+, 两式相减得123n n a a +=+,变形可得:132(3)n n a a ++=+,又134a +=,122123116a a S S +==+⨯+=,所以25a =,2132(3)a a +=+, ∴数列{}3n a +是以4为首项、2为公比的等比数列,故113422n n n a -++=⨯=,所以2log (3)1n n c a n =+=+,所以2111116(16)(16)(1)17168172517n n c n n n c n n n n n n -===≤=++++++++, 当且仅当4n =时等号成立,故125k ≥.故选:C. 2.C 【详解】当2n ≥ 时,由1231n n S S n +=++可得-123-2n n S S n =+,两式相减得:123n n a a +=+ ,即132(3)n n a a ++=+,而134a +=,2121224,5a a S S a +==+=, 故2132(3)a a +=+ ,所以{3}n a + 是以134a +=为首项,2q为公比的等比数列,则11342,23n n n n a a -++=⨯=- ,故()122log 3log 21n n n c a n +=+==+,所以()111616(16)(1)17n n c n n c n n n n -==+++++,而16N ,8n n n*∈+≥ ,当且仅当4n = 时取等号, 故()11116162517n n c n c n n-=≤+++,当且仅当4n = 时取等号, 所以若存在常数k ,使不等式()116n n c k n c -≥+(*N n ∈)恒成立,则k 的最小值为125,故选:C 3.[)4,+∞【详解】由()1n n n n a a a +-=得11n n a n a n++=,则有 312412321234112321n n n n a a a a a n n a a a a a n n ----⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯--,化简得1n a n a =,即2n n a =, 所以1114114()1(1)122n n n n a a n n n n +===-+⋅++⨯, 所以111114(1)4(11)4223341111111n S n n n n n ---=-+-+-+++=-++<, 所以不等式n S t <恒成立,则有4t ≥.故答案为:[)4,+∞ 4.0【详解】由()12n n nS n S +=+,得()1()2n n n n S a n S ++=+, 即12n n na S +=,当1n =时,2122a S ==,21021a a -=;可知当2n ≥时,12n n na S +=,()112n n n a S --=, 两式相减整理,得101n na a n n,所以n a n ⎧⎫⎨⎬⎩⎭是以1为首项,0为公差的等差数列,所以1na n=,n a n =,所以()()21111211221221n n n n n n n a n a a n n n n ++++++==-⋅⋅+⋅⋅+,所以()12231111111()()()21222223221n n n T n n +=-+-+⋅⋅⋅+-⨯⨯⨯⨯⋅⋅+()111221n n +=-⋅+, ()110n n T λ++-⋅>等价于()()11111212n n n λ++-⋅>-⋅+;当n 是正奇数时,()111212n n λ+>-⋅+,因为()12111132122228n n +-≤-⨯=-⋅+,所以38λ>-; 当n 是正偶数时,()111221n n λ+<-⋅+,因为()1311111122122324n n +-≥-=⋅+⨯,所以1124λ<; 综上所述,λ的取值范围为311824λ-<<,则整数λ的值为0.故答案为:0. 5.(1)n a =证明见解析【解析】(1)将)2n a n =≥两边同时平方,整理得()22112n n a a n --=≥, 所以数列{}2n a 是首项为211a =,公差为1的等差数列,所以()2111n a n n =+-⨯=.由题知0n a >,所以n a(2)因为n a =21n n c a -==1n c =. 先证21n n T a -≤:当1n =时,11a =,11T =,满足21n n T a -≤; 当2n ≥时,1n c ==所以)(21112n n T n a -<++++-==.故21n n T a -≤得证.再证211n n T a+>-:因为1nc ==>=所以)(211211n n T n a +>++++==-.故不等式21211nn n a Ta +--<≤成立.【点睛】关键的点睛:本题考查等差数列的证明,以及放缩法证明不等式,本题的第二问的难点是对通项公式的放缩,放缩后,再进行裂项相消法求和,1n c==<=1n c ==>= 6.(1)证明见解析;()*12n n a n N n +=∈+(2)证明见解析 【解析】(1)当1n =时,1122a a =-,123a =,当2n ≥时,1222n n a a a a =-;121122n n a a a a --=- 相除得11(2)1n n n a a n a --=≥-,整理为:1111(2)111n n n n a n a a a -==-≥---,即1111(2)11n n n a a --=≥--, 11n a ⎧⎫∴⎨⎬-⎩⎭为等差数列,公差1d =,首项为1131a =-;所以()13121n n n a =+-=+-,整理为:()*12n n a n N n +=∈+,经检验,符合要求. (2)由(1)得:()*12n n a n N n +=∈+.1222n n T a a a n ==+, 2244114(2)(2)(3)23n T n n n n n ⎛⎫∴=>=- ⎪+++++⎝⎭,22212111112441342333n n S T T T n n n ⎛⎫⎛⎫∴=++>-++-=-- ⎪ ⎪+++⎝⎭⎝⎭,112224333n n n S a n ++∴>-=-+, 所以,当*n N ∈时,11243n n S a +>-.7.(1)证明见解析,31nn x =-(2)()(),22,∞∞--⋃+(3)证明见解析【解析】(1)因为2n ≥,且*1,32n n n N x x -∈=+,所以()1131n n x x -+=+,即1131n n x x -+=+(常数); 因为113x +=,所以{}1n x +是首项为3,公比为3的等比数列,所以11333n n n x -+=⨯=,即31n n x =-;数列{}n x 的通项公式为31n n x =-.(2)由题可知()()3*log 10,1n n nn x y xn N x +=>∈+,由(1)可得3log 3033n n n n n y ==>,所以1113n ny n y n ++=<,即1n n y y +<,数列{}n y 为单调递减数列.所以n y 最大值为113y =;因为当[]1,1m ∈-吋,不等式239181n y t mt <-+恒成立,所以29180t mt ->恒成立.所以2291809180t t t t ⎧->⎨+>⎩,解得2t <-或2t >.所以t 的取值范围为()(),22,∞∞--⋃+.(3)四边形11n n n n P Q Q P ++的面积是()()114123n n n n n y y x x n T +++-+==.因为()()331134111n n n n n n ⎛⎫<=- ⎪+++⎝⎭,所以1211111111111313122233411n T T nT n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++<-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 因为*n ∈N,所以13313311n n ⎛⎫-=-< ⎪++⎝⎭;所以121113.2nT T nT +++<8.(1)21n a n =-;(2)1a ≤-或2a ≥.【解析】(1)当2n ≥时,n a=∴1nn S S --=1=1=, 所以数列是首项为1,公差为1n ,又由n a 121n n n =+-=-(2n ≥),当1n =时,11a =也适合,所以21n a n =-. (2)∴()()()111111221212121n n a a n n n n +==--+-+,∴11111111111233521212212n T n n n ⎛⎫⎛⎫=-+-++-=-< ⎪ ⎪-++⎝⎭⎝⎭, 又∴对任意的*N n ∈,不等式24n T a a <-恒成立,,∴22a a ≤-,解得1a ≤-或2a ≥.即所求实数a 的范围是1a ≤-或2a ≥. 9.(1)21n nS n =+(2)证明见解析 【解析】(1)∴11n n a a n +-=+,∴212a a -=,323a a -=,…1n n a a n --= 由上述1n -个等式相加得12n a a n -=++,∴()1122n n n a a n +=+++=, ∴11121n a n n ⎛⎫=- ⎪+⎝⎭,11111122121223111n n S n n n n ⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭.(2)令()()22221441112n n S b n n n n n ⎛⎫⎛⎫⎛⎫===>⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭, ∴11111111244233412222n n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫>-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 又因为()22221411441111n n S b n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫===<=- ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭,且11b =∴11111111414143323341211n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫<+-+-++-=+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,综上,232nn T n >>+,得证. 10.(1)()12n n a n -*=∈N (2)证明见解析【解析】(1)解:由214n n n S S a ++=+得24n n a a +=. 所以,当()21n k k *=-∈N 时,21214k k a a +-=,所以数列{}21k a -是首项为11a =,公比为4的等比数列, 故11211414k k k a a ---=⨯=⨯,即()211222122k k k a ----==. 当()2n k k *=∈N 时,则2224k k a a +=,所以,数列{}2k a 是首项为22a =,公比为4的等比数列,所以,1121224242k k k k a a ---=⨯=⨯=.所以()12n n a n -*=∈N .(2)证明:由(1)知11111212n n n a --⎛⎫=< ⎪+⎝⎭,所以0121121111111111221111122221122nn n a a a -⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭+++<++++=<= ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭--.故原不等式成立.11.(1)证明见解析,122n n a -=+(2)证明见解析【解析】(1)解:当2n ≥时,由11232n n n S S S +-+=-可变形为()1122n n n n S S S S +--=--, 即122n n a a +=-,即()1222n n a a +-=-,所以()12222n n a n a +-=≥-,又因为13a =,24a =,可得1221,22a a -=-=,所以21222a a -=-,所以数列{}2n a -是以1为首项,2为公比的等比数列,所以122n n a --=,所以数列{}n a 的通项公式为122n n a -=+.(2)解:由122n n a -=+,可得()()11111221122222222n n n n nn n n n b a a ----+===-++++, 所以123n n T b b b b =+++⋅⋅⋅+1111111111134466102222322n n n-=-+-+-+⋅⋅⋅+-=-+++,因为1022n >+,所以1113223n -<+,即13n T <,又因为()11322n f n =-+,n *∈N 单调递增, 所以()()111212212n T b ≥==++,所以11123n T ≤<. 12.证明见解析 【详解】证明:212221n n n n -<+,∴135212452246235721n nn n -⨯⨯⨯⋯⨯<⨯⨯⨯⋯⨯+.213521135212421()()()24622462352121n n n n n n n --∴⨯⨯⨯⋯⨯<⨯⨯⨯⋯⨯⨯⨯⨯⋯⨯=++.∴135212462n n -⨯⨯⨯⋯⨯()f x x x -,x ∈当4π,∴cos cos 4x π>∴()10f x x '->()f x x x ∴-在上递增,()(0)0f x f ∴>=x x >,=∴综上:135212462n n -⨯⨯⨯⋯⨯< 13.(1)1n a n =+ ,212n n b +=(2)证明见解析【解析】(1)由题意,数列{}n a 是等差数列,23a =,数列{}n b 是等比数列,18b =,公比3q >, 设{}n a 的公差为d ,由()()23833q d q d d =+⎧⎪⎨=-⋅+⎪⎩可得()()()28333d d d +=-+,∴3d =-或1d =±,33q d =+>,∴1d =,∴4q =可得:()()223211n a a n d n n =+-=+-⨯=+, 11211842n n n n b b q --+==⨯=.(2)()()()()2124443log 2212221111n n n n c n n n n +++==<=++++ 且()()()3112n n n n +>++∴()()()()()21112112n c n n n n n n n <=-+++++∴()()()121111111122323341122n c c c n n n n ++⋅⋅⋅+<-+-+⋅⋅⋅+-<⨯⨯⨯⨯+++,故不等式得证. 14.(1)2(2)证明见解析 【解析】(1)因为()*134N n n n a a n a +=∈+,所以111141n n a a +⎛⎫+=+ ⎪⎝⎭等式两边同时取以a 为底的对数可得111log 1log 1log 4a a a n n a a +⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭,()*N n ∈又数列1log 1a n a ⎧⎫⎛⎫⎪⎪+⎨⎬ ⎪⎪⎪⎝⎭⎩⎭是公差为2的等差数列可知log 42a =,即2a =(2)由(1)可知数列11n a ⎧⎫+⎨⎬⎩⎭是公比为4的等比数列,可得11111414n n n a a -⎛⎫+=+= ⎪⎝⎭,可得数列{}n a 的通项公式为()*1N 14n n a n =∈- 记1n n n a b a +=可求得其通项公式为()1*4141N n n n b n +-=∈- 显然{}n b 为正项数列,因此()11*N 5n S S b n ≥==∈另一方面,构造数列{}n c 满足()*N 4n n c b n =-∈可得其通项公式为()*1N 34n n c n =∈- 注意到1113134414n n n n c ---⎛⎫=≤ ⎪⋅+-⎝⎭,记{}n c 的前n 项和为n T ,可得11441314n n T -≤<-, 而由于4n n c b =-,因此()*4N n n T S n n =-∈,从而443n S n <+,综上所述,4543n S n ≤<+.。
数列求和-错位相减、裂项相消◆错位相减法错位相减法是求解由等差数列a n 和等比数列b n 对应项之积组成的数列c n (即c n =a n b n )的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练.在讲等比数列的时候, 我们推导过等比数列的求和公式,其过程正是利用错位相减的原理, 等比数列的通项b n 其实可以看成等差数列通项a n a n =1 与等比数列通项b n 的积.公式秒杀:S n =(A ⋅n +B )q n -B (错位相减都可化简为这种形式,对于求解参数A 与B ,可以采用将前1项和与前2项和代入式中,建立二元一次方程求解.此方法可以快速求解出结果或者作为检验对错的依据.)【经典例题1】设数列a n 的前n 项和为S n ,若a 1=1,S n =a n +1-1.(1)求数列a n 的通项公式;(2)设b n =na n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1n ∈N ∗ ; (2)T n =2-n +22n.【解析】(1)因为a 1=1,S n =a n +1-1.所以S 1=a 2-1,解得a 2=2.当n ≥2时,S n -1=a n -1,所以a n =S n -S n -1=a n +1-a n ,所以2a n =a n +1,即a n +1a n=2.因为a 2a 1=2也满足上式,所以a n 是首项为1,公比为2的等比数列,所以a n =2n -1n ∈N ∗ .(2)由(1)知a n +1=2n ,所以b n =n2n ,所以T n =1×12+2×12 2+3×12 3+⋯+n ×12 n⋯①12T n =1×12 2+2×12 3+⋯+(n -1)×12 n +n ×12n +1⋯②①-②得12T n =12+12 2+12 3+⋯+12 n -n ×12 n +1=121-12 n1-12-n ×12 n +1=1-1+n 2 12 n ,所以T n =2-n +22n.【经典例题2】已知等差数列a n 的前n 项和为S n ,数列b n 为等比数列,且a 1=b 1=1,S 3=3b 2=12.(1)求数列a n ,b n 的通项公式;(2)若c n =a n b n +1,求数列c n 的前n 项和T n .【答案】(1)a n =3n -2,b n =4n -1(2)T n =4+n -1 4n +1【解析】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,由题意得:3a 1+3d =12,解得:d =3,所以a n =1+3n -1 =3n -2,由3b 2=12得:b 2=4,所以q =a2a 1=4,所以b n =4n -1(2)c n =a n b n +1=3n -2 ⋅4n ,则T n =4+4×42+7×43+⋯+3n -2 4n ①,4T n =42+4×43+7×44+⋯+3n -2 4n +1②,两式相减得:-3T n =4+3×42+3×43+3×44+⋯+3×4n -3n -2 4n +1=4+3×16-4n +11-4-3n -2 4n +1=-12+3-3n 4n +1,所以T n =4+n -1 4n +1【经典例题3】已知各项均为正数的等比数列a n 的前n 项和为S n ,且S 2=6,S 3=14.(1)求数列a n 的通项公式;(2)若b n =2n -1a n,求数列b n 的前n 项和T n .【答案】(1)a n =2n n ∈N * (2)T n =3-2n +32n 【解析】(1)设等比数列a n 的公比为q ,当q =1时,S n =na 1,所以S 2=2a 1=6,S 3=3a 1=14,无解.当q ≠1时,S n =a 11-q n 1-q ,所以S 2=a 11-q 21-q =6,S 3=a 11-q 31-q=14.解得a 1=2,q =2或a 1=18,q =-23(舍).所以a n =2×2n -1=2n n ∈N * .(2)b n =2n -1a n =2n -12n .所以T n =12+322+523+⋯+2n -32n -1+2n -12n ①,则12T n=122+323+524+⋯+2n -32n+2n -12n +1②,①-②得,12T n =12+222+223+224+⋯+22n -2n -12n +1=12+2122+123+124+⋯+12n -2n -12n +1=12+2×141-12n -1 1-12-2n -12n +1=32-2n +32n +1.所以T n =3-2n +32n.【练习1】已知数列a n 满足a 1=1,a n +1=2a n +1n ∈N ∗ .(1)求数列a n 的通项公式;(2)求数列n a n +1 的前n 项和S n .【答案】(1)a n =2n -1(2)S n =n -1 ⋅2n +1+2【解析】(1)由a n +1=2a n +1得:a n +1+1=2a n +1 ,又a 1+1=2,∴数列a n +1 是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1.(2)由(1)得:n a n +1 =n ⋅2n ;∴S n =1×21+2×22+3×23+⋅⋅⋅+n -1 ⋅2n -1+n ⋅2n ,2S n =1×22+2×23+3×24+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1,∴-S n =2+22+23++2n-n ⋅2n +1=21-2n1-2-n ⋅2n +1=1-n ⋅2n +1-2,∴S n =n -1 ⋅2n +1+2.【练习2】已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n 的通项公式;(2)设b n =na n ,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =(n -1)⋅2n +1【解析】(1)令n =1得S 1=a 1=2a 1-1,∴a 1=1,当n ≥2时,S n -1=2a n -1-1,则a n =S n -S n -1=2a n -2a n -1,整理得a n =2a n -1,∴an a n -1=2,∴数列a n 是首项为1,公比为2的等比数列,∴a n =2n -1;(2)由(1)得b n =na n =n ⋅2n -1,则T n =1⋅20+2⋅21+3⋅22+⋅⋅⋅+n ⋅2n -1,2T n =1⋅21+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n ,两式相减得-T n =20+21+22+23+⋅⋅⋅+2n -1-n ⋅2n =1-2n1-2-n ⋅2n ,化简得T n =1-2n +n ⋅2n =(n -1)⋅2n +1.【练习3】已知数列a n 的前n 项和为S n ,且3S n =4a n -2.(1)求a n 的通项公式;(2)设b n =a n +1⋅log 2a n ,求数列b n 的前n 项和T n .【答案】(1)a n =22n -1(2)T n =409+6n -59×22n +3【解析】(1)当n =1时,3S 1=4a 1-2=3a 1,解得a 1=2.当n ≥2时,3a n =3S n -3S n -1=4a n -2-4a n -1-2 ,整理得a n =4a n -1,所以a n 是以2为首项,4为公比的等比数列,故a n =2×4n -1=22n -1.(2)由(1)可知,b n =a n +1⋅log 2a n =2n -1 ×22n +1,则T n =1×23+3×25+⋯+2n -1 ×22n +1,4T n =1×25+3×27+⋯+2n -1 ×22n +3,则-3T n =23+26+28+⋯+22n +2-2n -1 ×22n +3=23+26-22n +41-4-2n -1 ×22n +3=-403-6n -53×22n +3.故T n =409+6n -59×22n +3.【练习4】已知数列a n 满足a 1=1,a n +1=2n +1a na n +2n(n ∈N +).(1)求证数列2n a n 为等差数列;(2)设b n =n n +1 a n ,求数列b n 的前n 项和S n .【答案】(1)证明见解析 (2)S n =n -1 ⋅2n +1+2【解析】(1)由已知可得a n +12n +1=a n a n +2n ,即2n +1a n +1=2n a n +1,即2n +1a n +1-2n a n =1,∴2n a n 是等差数列.(2)由(1)知,2n a n =2a 1+n -1 ×1=n +1,∴a n =2nn +1,∴b n =n ⋅2nS n =1⋅2+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n2S n =1⋅22+2⋅23+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1相减得,-S n=2+22+23+⋅⋅⋅+2n-n⋅2n+1=21-2n1-2-n⋅2n+1=2n+1-2-n⋅2n+1∴S n=n-1⋅2n+1+2◆裂项相消法把数列的通项拆成相邻两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.在消项时要注意前面保留第几项,最后也要保留相对应的倒数几项.例如消项时保留第一项和第3项,相应的也要保留最后一项和倒数第三项.常见的裂项形式:(1)1n(n+k)=1k1n-1n+k;(2)1(2n-1)(2n+1)=1212n-1-12n+1;(3)1n+k+n=1k(n+k-n);(4)2n+1n2(n+1)2=1n2-1(n+1)2;(5)2n2n-12n+1-1=12n-1-12n+1-1;(6)2n(4n-1)n(n+1)=2n+1n+1-2nn;(7)n+1(2n-1)(2n+1)2n =1(2n-1)2n+1-1(2n+1)2n+2;(8)(-1)n(n+1)(2n+1)(2n+3)=14(-1)n2n+1-(-1)n+12n+3(9)(-1)nn-n-1=(-1)n(n+n-1)=(-1)n n-(-1)n-1n-1(10)1n(n+1)(n+2)=121n(n+1)-1(n+1)(n+2).(11)n⋅n!=n+1!-n!(12)kk+1!=1k!-1k+1!【经典例题1】已知正项数列a n中,a1=1,a2n+1-a2n=1,则数列1a n+1+a n的前99项和为( )A.4950B.10C.9D.14950【答案】C【解析】因为a2n+1-a2n=1且a21=1,所以,数列a2n是以1为首项,1为公差的等差数列,所以,a2n=1+n-1=n,因为数列a n为正项数列,则a n=n,则1a n+1+a n=1n+1+n=n+1-nn+1+nn+1-n=-n+n+1,所以,数列1a n+1+a n的前99项和为-1+2-2+3-⋯-99+100=10-1=9.故选:C.【经典例题2】数列a n 的通项公式为a n =2n +1n 2n +12n ∈N *,该数列的前8项和为__________.【答案】8081【解析】因为a n =2n +1n 2n +12=1n 2-1(n +1)2,所以S 8=1-122+122-132 +⋯+182-192 =1-181=8081.故答案为:8081.【经典例题3】已知数列a n 的前n 项和为S n =n 2,若b n =1a n a n +1,则数列{b n }的前n 项和为________.【答案】n 2n +1【解析】当n =1时,a 1=S 1=12=1,当n ≥2时,a n =S n -S n -1=n 2-n -1 2=2n -1,且当n =1时,2n -1=1=a 1,故数列a n 的通项公式为a n =2n -1,b n =1a n a n +1=1(2n -1)(2n +1)=1212n -1-12n +1 ,则数列{b n }的前n 项和为:121-13 +13-15 +15-17 +⋯+12n -1-12n +1 =121-12n +1 =n 2n +1.故答案为:n2n +1【练习1】数列12n +1+2n -1的前2022项和为( )A.4043-12B.4045-12C.4043-1D.4045-1【答案】B 【解析】解:12n +1+2n -1=2n +1-2n -12n +1+2n -1 2n +1-2n -1=2n +1-2n -12记12n +1+2n -1 的前n 项和为T n ,则T 2022=123-1+5-3+7-5+⋯+4045-4043=124045-1 ;故选:B 【练习2】数列a n 的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列,又记b n =1a 2n +1⋅a 2n +3,数列b n 的前n 项和T n =______.【答案】n6n +9【解析】由对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列可得:2S n =a 2n +a n ,当n ≥2时可得2S n -1=a 2n -1+a n -1,所以2a n =2S n -2S n -1=a 2n +a n -a 2n -1-a n -1,所以a 2n -a n -a 2n -1-a n -1=0,所以(a n +a n -1)(a n -a n -1-1)=0,由数列a n 的各项均为正数,所以a n -a n -1=1,又n =1时a 2n -a n =0,所以a 1=1,所以a n =n ,b n =1a 2n +1⋅a 2n +3=1(2n +1)(2n +3)=1212n +1-12n +3 ,T n =1213-15+15-17+⋯12n +1-12n +3 =1213-12n +3 =n 6n +9.故答案为:n6n +9.【练习3】12!+23!+34!+⋅⋅⋅+nn +1 !=_______.【答案】1-1n +1 !【解析】∵k k +1 !=k +1-1k +1 !=1k !-1k +1 !,∴12!+23!+34!+⋅⋅⋅+n n +1 !=1-12!+12!-13!+13!-14!+⋅⋅⋅+1n -1 !-1n !+1n !-1n +1 !=1-1n +1 !.故答案为:1-1n +1 !.【练习4】设数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n .(1)求a n 的通项公式;(2)求数列a n3n +1 的前n 项和T n .【答案】(1)a n =33n -2(2)T n =3n3n +1【解析】(1)解:数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n ,当n =1时,得a 1=3,n ≥2时,a 1+4a 2+⋯+(3n -5)a n -1=3(n -1),两式相减得:(3n -2)a n =3,∴a n =33n -2,当n =1时,a 1=3,上式也成立.∴a n =33n -2;(2)因为a n 3n +1=3(3n -2)(3n +1),=13n -2-13n +1,∴T n =11-14+14-17+⋯+13n -2-13n +1,=1-13n +1=3n3n +1.【练习5】已知数列a n 的前n 项和为S n ,且2S n =1-a n n ∈N ∗ .(1)求数列a n 的通项公式;(2)设b n =log 13a n ,C n =n +1-nb n b n +1,求数列C n 的前n 项和T n【答案】(1)a n =13n (2)T n =1-1n +1【解析】(1)当n =1时,2a 1=2S 1=1-a 1,解得:a 1=13;当n ≥2时,2a n =2S n -2S n -1=1-a n -1+a n -1,即a n =13a n -1,∴数列a n 是以13为首项,13为公比的等比数列,∴a n =13 n =13n .(2)由(1)得:b n =log 1313 n =n ,∴C n =n +1-n n n +1=1n -1n +1,∴T n =1-12+12-13+13-14+⋅⋅⋅+1n -1-1n +1n -1n +1=1-1n +1.【练习6】已知数列a n 中,2n a 1+2n -1a 2+⋯+2a n =n ⋅2n .(1)证明:a n 为等比数列,并求a n 的通项公式;(2)设b n =(n -1)a nn (n +1),求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =2n -1n ∈N *(2)2n n +1-1【解析】(1)解:2n a 1+2n -1a 2+⋯+2a n =n ⋅2n ,即为a 1+a 22+⋯+a n2n -1=n ·······①,又a 1+a 22+⋯+a n -12n -2=n -1,········②,①-②得a n2n -1=1,即a n =2n -1(n ≥2),又当n =1时,a 1=1=21-1,故a n =2n -1n ∈N * ;从而a n +1a n =2n2n -1=2n ∈N * ,所以a n 是首项为1,公比为2的等比数列;(2)由(1)得b n =(n -1)2n -1n (n +1)=2n n +1-2n -1n ,所以S n =212-201 +223-212 +⋯+2n n +1-2n -1n =2nn +1-1.【练习7】记S n 是公差不为零的等差数列a n 的前n 项和,若S 3=6,a 3是a 1和a 9的等比中项.(1)求数列a n 的通项公式;(2)记b n =1a n ⋅a n +1⋅a n +2,求数列b n 的前20项和.【答案】(1)a n =n ,n ∈N *(2)115462【解析】(1)由题意知a 23=a 1⋅a 9,设等差数列a n 的公差为d ,则a 1a 1+8d =a 1+2d 2,因为d ≠0,解得a 1=d又S 3=3a 1+3d =6,可得a 1=d =1,所以数列a n 是以1为首项和公差为1的等差数列,所以a n =a 1+n -1 d =n ,n ∈N *(2)由(1)可知b n =1n n +1 n +2 =121n n +1 -1n +1 n +2,设数列b n 的前n 和为T n ,则T n =1211×2-12×3+12×3-13×4+⋅⋅⋅+1n n +1 -1n +1 n +2=1212-1n +1 n +2,所以T 20=12×12-121×22 =115462所以数列b n 的前20和为115462【练习8】已知等差数列a n 满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N +).(1)求数列a n ,b n 的通项公式;(2)数列b n 的前n 项和为S n ,求S n .【答案】(1)a n =2n +1,b n =14n n +1(2)S n =n 4n +1【解析】(1)由题意,可设等差数列a n 的公差为d ,则a 1+2d =72a 1+10d =26,解得a 1=3,d =2,∴a n =3+2n -1 =2n +1;∴b n =1a 2n -1=12n +1 2-1=14n 2+4n =14n n +1 ;(2)∵b n =14n n +1=141n -1n +1 ,S n =141-12+12-13+⋯+1n -1n +1 =141-1n +1 =n 4n +1.【练习9】已知正项数列a n 的前n 项和为S n ,且4、a n +1、S n 成等比数列,其中n ∈N ∗.(1)求数列a n 的通项公式;(2)设b n =4S na n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =n +n2n +1【解析】(1)解:对任意的n ∈N ∗,a n >0,由题意可得4S n =a n +1 2=a 2n +2a n +1.当n =1时,则4a 1=4S 1=a 21+2a 1+1,解得a 1=1,当n ≥2时,由4S n =a 2n +2a n +1可得4S n -1=a 2n -1+2a n -1+1,上述两个等式作差得4a n =a 2n -a 2n -1+2a n -2a n -1,即a n +a n -1 a n -a n -1-2 =0,因为a n +a n -1>0,所以,a n -a n -1=2,所以,数列a n 为等差数列,且首项为1,公差为2,则a n =1+2n -1 =2n -1.(2)解:S n =n 1+2n -12=n 2,则b n =4S n a n a n +1=4n 22n -1 2n +1 =4n 2-1+12n -1 2n +1 =1+12n -1 2n +1=1+1212n -1-12n +1,因此,T n =n +121-13+13-15+⋯+12n -1-12n +1 =n +n2n +1.【练习10】已知S n 是数列a n 的前n 项和,a 1=1,___________.①∀n ∈N ∗,a n +a n +1=4n ;②数列S n n 为等差数列,且S nn 的前3项和为6.从以上两个条件中任选一个补充在横线处,并求解:(1)求a n ;(2)设b n =a n +a n +1a n ⋅a n +1 2,求数列b n 的前n 项和T n .【答案】(1)条件选择见解析,a n =2n -1(2)T n =2n n +12n +12【解析】(1)解:选条件①:∀n ∈N ∗,a n +a n +1=4n ,得a n +1+a n +2=4n +1 ,所以,a n +2-a n =4n +1 -4n =4,即数列a 2k -1 、a 2k k ∈N ∗ 均为公差为4的等差数列,于是a 2k -1=a 1+4k -1 =4k -3=22k -1 -1,又a 1+a 2=4,a 2=3,a 2k =a 2+4k -1 =4k -1=2⋅2k -1,所以a n =2n -1;选条件②:因为数列S n n 为等差数列,且S nn 的前3项和为6,得S 11+S 22+S 33=3×S 22=6,所以S 22=2,所以S n n 的公差为d=S 22-S 11=2-1=1,得到Sn n =1+n -1 =n ,则S n =n 2,当n ≥2,a n =S n -S n -1=n 2-n -1 2=2n -1.又a 1=1满足a n =2n -1,所以,对任意的n ∈N ∗,a n =2n -1.(2)解:因为b n =a n +a n +1a n ⋅a n +1 2=4n 2n -1 22n +1 2=1212n -1 2-12n +1 2,所以T n =b 1+b 2+⋅⋅⋅+b n =12112-132+132-152+⋅⋅⋅+12n -1 2-12n +1 2 =121-12n +1 2 =2n n +1 2n +12.【过关检测】一、单选题1.S n=12+24+38+⋯+n2n=( )A.2n-n2n B.2n+1-n-22nC.2n-n+12n+1D.2n+1-n+22n【答案】B 【解析】由S n=12+24+38+⋯+n2n,得12S n=1×122+2×123+3×124+⋯+n⋅12n+1,两式相减得12S n=12+122+123+124+⋯+12n-n⋅12n+1=121-12n1-12-n12 n+1=1-12n-n⋅12 n+1=2n+1-n-22n+1.所以S n=2n+1-n-22n.故选:B.2.数列n⋅2n的前n项和等于( ).A.n⋅2n-2n+2B.n⋅2n+1-2n+1+2C.n⋅2n+1-2nD.n⋅2n+1-2n+1【答案】B【解析】解:设n⋅2n的前n项和为S n,则S n=1×21+2×22+3×23+⋯+n⋅2n, ①所以2S n=1×22+2×23+⋯+n-1⋅2n+n⋅2n+1, ②①-②,得-S n=2+22+23+⋯+2n-n⋅2n+1=21-2n1-2-n⋅2n+1,所以S n=n⋅2n+1-2n+1+2.故选:B.3.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则数列{nan}的前n项和为( )A.-3+(n+1)×2nB.3+(n+1)×2nC.1+(n+1)×2nD.1+(n-1)×2n【答案】D【解析】设等比数列{an}的公比为q,易知q≠1,所以由题设得S3=a11-q31-q=7S6=a11-q61-q=63 ,两式相除得1+q3=9,解得q=2,进而可得a1=1,所以an=a1qn-1=2n-1,所以nan=n×2n-1.设数列{nan }的前n 项和为Tn ,则Tn =1×20+2×21+3×22+⋯+n ×2n -1,2Tn =1×21+2×22+3×23+⋯+n ×2n ,两式作差得-Tn =1+2+22+⋯+2n -1-n ×2n =1-2n1-2-n ×2n =-1+(1-n )×2n ,故Tn =1+(n -1)×2n .故选:D .4.已知等差数列a n ,a 2=3,a 5=6,则数列1a n a n +1的前8项和为( ).A.15B.25C.35D.45【答案】B 【解析】由a 2=3,a 5=6可得公差d =a 5-a 23=1 ,所以a n =a 2+n -2 d =n +1,因此1a n a n +1=1n +1 n +2 =1n +1-1n +2 ,所以前8项和为12-13 +13-14 +⋯+19-110 =12-110=25故选:B 5.已知数列a n 的前n 项和为S n ,S n +4=a n +n +1 2.记b n =8a n +1a n +2,数列的前n 项和为T n ,则T n 的取值范围为( )A.863,47 B.19,17C.47,+∞D.19,17【答案】A 【解析】因为数列a n 中,S n +4=a n +(n +1)2,所以S n +1+4=a n +1+n +2 2,所以S n +1+4-S n +4 =a n +1-a n +2n +3,所以a n =2n +3.因为b n =8a n +1a n +2,所以b n =82n +5 2n +7=412n +5-12n +7 ,所以T n =417-19+19-111+⋅⋅⋅+12n +5-12n +7=417-12n +7 .因为数列T n 是递增数列,当n =1时,T n =863,当n →+∞时,12n +7→0,T n →47,所以863≤T n <47,所以T n 的取值范围为863,47 .故选:A .6.已知数列满足a 1+2a 2+3a 3+⋯+na n =n 2,设b n =na n ,则数列1b n b n +1的前2022项和为( )A.40424043B.20214043C.40444045D.20224045【答案】D【解析】因为a 1+2a 2+3a 3+⋯+na n =n 2①,当n =1时,a 1=1;当n ≥2时,a 1+2a 2+3a 3+⋯+n -1 a n -1=(n -1)2②,①-②化简得a n =2n -1n ,当n =1时:a 1=2×1-11=1=1,也满足a n =2n -1n,所以a n =2n -1n ,b n =na n =2n -1,1b n b n +1=1(2n -1)(2n +1)=1212n -1-12n +1 所以1b n b n +1的前2022项和121-13+13-15+⋯+12×2022-1-12×2022+1 =121-12×2022+1 =20224045.故选:D .7.已知数列a n 满足a 1=1,且a n =1+a n a n +1,n ∈N *,则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=( )A.2021 B.20202021C.122021D.22021【答案】B 【解析】∵a n =1+a n a n +1,即a n +1=a n 1+a n ,则1a n +1=1+a n a n =1a n +1∴数列1a n是以首项1a 1=1,公差d =1的等差数列则1a n =1+n -1=n ,即a n =1n∴a n a n +1=1n n +1=1n -1n +1则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=1-12+12-13+...+12020-12021=20202021故选:B .8.等差数列a n 中,a 3=5,a 7=9,设b n =1a n +1+a n,则数列b n 的前61项和为( )A.7-3B.7C.8-3D.8【答案】C 【解析】解:因为等差数列满足a 3=5,a 7=9,所以d =a 7-a 37-3=1,所以a n =a 3+n -3 d =n +2,所以b n =1n +3+n +2=n +3-n +2,令数列b n 的前n 项和为S n ,所以数列b n 的前n 项和S n =4-3+5-4+⋯+n +3-n +2=n +3-3,所以S 61=8-3.故选:C .9.设数列n 22n -1 2n +1的前n 项和为S n ,则( )A.25<S 100<25.5B.25.5<S 100<26C.26<S 100<27D.27<S 100<27.5【答案】A 【解析】由n 2(2n -1)(2n +1)=14⋅4n 24n 2-1=141+14n 2-1 =141+121(2n -1)(2n +1)=14+1812n -1-12n +1,∴S n =n 4+181-13+13-15+⋅⋅⋅+12n -1-12n +1 =n 4+181-12n +1 =n (n +1)2(2n +1),∴S 100=100×1012(2×100+1)≈25.12,故选:A .10.已知数列a n 满足a n =1+2+4+⋯+2n -1,则数列2n a n a n +1 的前5项和为( )A.131B.163C.3031D.6263【答案】D 【解析】因为a n =1+2+4+⋯+2n -1=2n -1,a n +1=2n +1-1,所以2n a n a n +1=2n 2n -1 2n +1-1 =2n +1-1 -2n-1 2n -1 2n +1-1=12n -1-12n +1-1.所以2n a n a n +1 前5项和为121-1-122-1 +122-1-123-1 +⋯+125-1-126-1 =121-1-126-1=1-163=6263故选:D 11.已知数列a n 的首项a 1=1,且满足a n +1-a n =2n n ∈N * ,记数列a n +1a n +2 a n +1+2的前n 项和为T n ,若对于任意n ∈N *,不等式λ>T n 恒成立,则实数λ的取值范围为( )A.12,+∞ B.12,+∞C.13,+∞D.13,+∞【答案】C 【解析】解:因为a n +1-a n =2n n ∈N * ,所以a 2-a 1=21,a 3-a 2=22,a 4-a 3=23,⋯⋯,a n -a n -1=2n -1,所以a n -a 1=21+22+⋯+2n -1=21-2n -1 1-2=2n -2,n ≥2 ,又a 1=1,即a n =2n -1,所以a n +1=2n ,所以a n +1a n +2 a n +1+2 =2n 2n +1 2n +1+1=12n +1-12n +1+1,所以T n =121+1-122+1+122+1-123+1+⋯+12n +1-12n +1+1=13-12n +1+1<13所以λ的取值范围是13,+∞ .故选:C 12.在数列a n 中,a 2=3,其前n 项和S n 满足S n =n a n +12 ,若对任意n ∈N +总有14S 1-1+14S 2-1+⋯+14S n -1≤λ恒成立,则实数λ的最小值为( )A.1B.23C.12D.13【答案】C 【解析】当n ≥2时,2S n =na n +n ,2S n -1=n -1 a n -1+n -1 ,两式相减,整理得n -2 a n =(n -1)a n -1-1①,又当n ≥3时,n -3 a n -1=n -2 a n -2-1②,①-②,整理得n -2 a n +a n -2 =2n -4 a n -1,又因n -2≠0,得a n +a n -2=2a n -1,从而数列a n 为等差数列,当n =1时,S 1=a 1+12即a 1=a 1+12,解得a 1=1,所以公差d =a 2-a 1=2,则a n =2n -1,S n =na 1+n (n -1)2d =n 2,故当n ≥2时,14S 1-1+14S 2-1+⋯+14S n -1=122-1+142-1+⋯+12n 2-1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =121-12n +1 ,易见121-12n +1 随n 的增大而增大,从而121-12n +1 <12恒成立,所以λ≥12,故λ的最小值为12,故选:C .二、填空题13.已知正项数列{an }满足a 1=2且an +12-2an 2-anan +1=0,令bn =(n +2)an ,则数列{bn }的前8项的和等于__.【答案】4094【解析】由a 2n +1-2a 2n -a n a n +1=0,得(an +1+an )(an +1-2an )=0,又an >0,所以an +1+an >0,所以an +1-2an =0,所以an +1a n=2,所以数列{an }是以2为首项,2为公比的等比数列,所以a n =2×2n -1=2n ,所以b n =n +2 a n =n +2 ⋅2n ,令数列{bn }的前n 项的和为Tn ,T 8=3×21+4×22+⋯+9×28,则2T 8=3×22+4×23+⋯+9×29,-T 8=6+22+23+⋯+28 -9×29=6+221-271-2-9×29=2-8×29=-4094,则T 8=4094,故答案为:4094.14.已知数列{an }的前n 项和为Sn ,且Sn =2an -2,则数列n a n的前n 项和Tn =__.【答案】2-n +22n.【解析】解:∵Sn =2an -2,∴Sn -1=2an -1-2(n ≥2),设公比为q ,两式相减得:an =2an -2an -1,即an =2an -1,n ≥2,又当n =1时,有S 1=2a 1-2,解得:a 1=2,∴数列{an }是首项、公比均为2的等比数列,∴an =2n ,n a n =n2n ,又Tn =121+222+323+⋯+n2n ,12Tn =122+223+⋯+n -12n +n 2n +1,两式相减得:12Tn =12+122+123+⋯+12n -n 2n +1=121-12n1-12-n2n +1,整理得:Tn =2-n +22n.故答案为:Tn =2-n +22n .15.将1+x n (n ∈Ν+)的展开式中x 2的系数记为a n ,则1a 2+1a 3+⋅⋅⋅+1a 2015=__________.【答案】40282015【解析】1+xn的展开式的通项公式为T k +1=C k n x k ,令k =2可得a n =C 2n =n n -12;1a n =2n n -1=21n -1-1n ;所以1a 2+1a 3+⋅⋅⋅+1a 2015=21-12 +212-13 +⋯+212014-12015=21-12015 =40282015.故答案为:40282015.16.数列a n 的前项n 和为S n ,满足a 1=-12,且a n +a n +1=2n 2+2nn ∈N * ,则S 2n =______.【答案】2n 2n +1【解析】由题意,数列{a n }满足a n +a n +1=2n 2+2n,可得a 2n -1+a 2n =2(2n -1)2+2(2n -1)=2(2n -1)(2n +1)=12n -1-12n +1,所以S 2n =11-13+13-15+⋯+12n -1-12n +1=1-12n +1=2n2n +1,故答案为:2n2n +1三、解答题17.已知数列a n 满足a 1=1,2a n +1a n +a n +1-a n =0.(1)求证:数列1a n 为等差数列;(2)求数列a n a n +1 的前n 项和S n .【答案】(1)证明见解析;(2)S n =n2n +1.【解析】(1)令b n =1a n ,因为b n +1-b n =1a n +1-1a n =a n -a n +1a n ⋅a n +1=2,所以数列b n 为等差数列,首项为1,公差为2;(2)由(1)知:b n =2n -1;故a n =12n -1;所以a n a n +1=12n -1 2n +1=1212n -1-12n +1 ;所以S n =a 1a 2+a 2a 3+⋯+a n a n +1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =n 2n +1;18.已知正项数列a n 的前n 项和为S n ,a n +1-a n =3n ∈N * ,且S 3=18.(1)求数列a n 的通项公式;(2)若b n =1a n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =3n (2)T n =n9n +9【解析】(1)∵a n +1-a n =3,∴数列a n 是以公差为3的等差数列.又S 3=18,∴3a 1+9=18,a 1=3,∴a n =3n .(2)由(1)知b n =13n ×3n +1=19×1n -1n +1 ,于是T n =b 1+b 2+b 3+⋅⋅⋅+b n =191-12 +12-13 +13-14 +⋅⋅⋅+1n -1n +1 =191-1n +1 =n 9n +919.已知数列a n 的首项为3,且a n -a n +1=a n +1-2 a n -2 .(1)证明数列1a n -2 是等差数列,并求a n 的通项公式;(2)若b n =-1 n an n +1,求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =1n+2(2)-1+-1 n1n +1【解析】(1)因为a n -a n +1=a n +1-2 a n -2 ,所a n -2 -a n +1-2 =a n +1-2 a n -2 ,则1a n +1-2-1a n -2=1,所以数列1a n -2 是以13-2=1 为首项,公差等于1的等差数列,∴1a n -2=1+n -1 =n ,即a n =1n+2;(2)b n =-1 n a n n +1=-1 n 1n n +1+2n +1 =-1 n 1n +1n +1 ,则S n =-1+12 +12+13 -13+14 +⋅⋅⋅+-1 n 1n +1n +1 =-1+-1 n 1n +1;综上,a n =1n +2,S n =-1+-1 n 1n +1 .20.已知数列a n 中,a 1=-1,且满足a n +1=2a n -1.(1)求证:数列a n -1 是等比数列,并求a n 的通项公式;(2)若b n =n +11-a n +1,求数列b n 的前n 项和为T n .【答案】(1)证明见解析,a n=-2n+1(2)T n=32-n+32n+1【解析】(1)解:对任意的n∈N∗,a n+1=2a n-1,所以a n+1-1=2a n-1,且a1-1=-2,所以数列a n-1是以-2为首项,2为公比的等比数列.所以a n-1=-2n,所以a n=-2n+1.(2)解:由已知可得b n=n+11-a n+1=n+12n+1,则T n=222+323+424+⋯+n+12n+1,所以,12T n=223+324+⋯+n 2n+1+n+12n+2,两式相减得12T n=222+123+⋯+12n+1-n+12n+2=12+181-12n-11-12-n+12n+2=34-1 2n+1-n+12n+2=34-n+32n+2,因此,T n=32-n+32n+1.21.已知等比数列a n,a1=2,a5=32.(1)求数列a n的通项公式;(2)若数列a n为正项数列(各项均为正),求数列(2n+1)⋅a n的前n项和T n.【答案】(1)a n=2n或a n=2·-2n-1;(2)T n=2+(2n-1)⋅2n+1.【解析】(1)等比数列a n的公比为q,a1=2,a5=32,则q4=a5a1=16,解得q=±2,所以当q=2时,a n=2n,当q=-2时,a n=2⋅(-2)n-1.(2)由(1)知,a n=2n,则有(2n+1)⋅a n=(2n+1)⋅2n,则T n=3×21+5×22+7×23+⋯+(2n+1)⋅2n,于是得2T n=3×22+5×23+⋯+(2n-1)⋅2n+(2n+1)⋅2n+1,两式相减,得-T n=6+2×(22+23+⋯+2n)-(2n+1)⋅2n+1=6+2×22×(1-2n-1)1-2-(2n+1)⋅2n+1=-2-(2n-1)⋅2n+1,所以T n=2+(2n-1)⋅2n+1.22.已知等差数列a n满足a1=1,a2⋅a3=a1⋅a8,数列b n的前n项和为S n,且S n=32b n.(1)求数列a n,b n的通项公式;(2)求数列a n b n的前n项和T n.【答案】(1)a n=1或a n=2n-1;b n=3n;(2)若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.【解析】(1)设等差数列a n的公差为d,∵a1=1,a2⋅a3=a1⋅a8,∴1+d1+2d=1+7d,化简得2d2-4d=0,解得:d=0或d=2,若d=0,则a n=1;若d=2,则a n=2n-1;由数列b n的前n项和为S n=32b n-32①,当n=1时,得b1=3,当n≥2时,有S n-1=32b n-1-32②;①-②有b n=32b n-32b n-1,即b nb n-1=3,n≥2,所以数列b n是首项为3,公比为3的等比数列,所以b n=3n,综上所述:a n=1或a n=2n-1;b n=3n;(2)若a n=1,则a n b n=b n=3n,则T n=3+32+⋯+3n=31-3n1-3=33n-12,若a n=2n-1,则a n b n=2n-13n,则T n=1×3+3×32+⋯+2n-1×3n③;③×3得3T n=1×32+3×33+⋯+2n-1×3n+1④;③-④得:-2T n=3+2×32+2×33+⋯+2×3n-2n-1×3n+1=3+2×32(1-3n-1)1-3-(2n-1)×3n+1整理化简得:T n=n-13n+1+3,综上所述:若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.。
专题一(2)裂项相消法求数列前n 项和学习目标 1裂项相消法求和的步骤和注意事项 2使学生能用裂项相消法来解决分式数列的求和探究(一)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.例1、说明:(1)裂项相消法的关键就是将数列的每一项拆成二项或多项,使数列中的项出现有规律的抵消项,进而达到求和的目的。
即:把数列的通项拆成两项之差,在求和时一些正负项相互抵消,于是前n 项和变成首尾若干项之和. 适合于分式型数列的求和。
(2)利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.(3)一般地若{a n }是等差数列,则1a n a n +1=1d (1a n -1a n +1),1a n ·a n +2=12d (1a n -1a n +2).(4)此外根式在分母上时可考虑利用有理化因式相消求和.变式练习:项和的前)2(1,,531,421,311求数列n n n +⋅⋅⋅⨯⨯⨯.变式与拓展:1、项和的前)13)(23(1,,,741,411求数列n n n +-⋅⋅⋅⨯⨯例2、设{a n }是等差数列,且a n ≠0.求证1a 1a 2+1a 2a 3+…+1a n a n +1=na 1a n +1.证明:设{a n }的公差为d ,则1a 1a 2+1a 2a 3+…+1a n a n +1=⎝ ⎛⎭⎪⎫1a 1-1a 2·1a 2-a 1+⎝ ⎛⎭⎪⎫1a 2-1a 3·1a 3-a 2+…+⎝ ⎛⎭⎪⎫1a n -1a n +1·1a n +1-a n=1d ⎝ ⎛⎭⎪⎫1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1=1d ⎝ ⎛⎭⎪⎫1a 1-1a n +1=1d ·a 1+nd -a 1a 1a n +1=na 1a n +1. 所以1a 1a 2+1a 2a 3+…+1a n a n +1=n a 1a n +1.常见的拆项公式有:例3、已知数列{a n }:11,211+,3211++,…1123n+++,…,求它的前n 项和。
高三数学倒序相加错位相减裂项抵消求和试题答案及解析1.数列的前项和为,若,则等于A.B.C.D.【答案】D【解析】因为.所以.【考点】1.数列的通项的裂项.2.数列的求和.2.求下面各数列的前n项和:(1),…(2) ,…【答案】(1)(2)【解析】(1)∵a=,n∴S=n==.==1+,(2)∵an∴S=n+n3.在等差数列中,已知,.(1)求;(2)若,设数列的前项和为,试比较与的大小.【答案】(1) ;(2)当时,;当时,.【解析】(1)根据等差数列的通项公式把已知转化成关于和的方程,再利用公式,求出;(2)由(1)的结果,代入得到,观察形式,利用裂项相消求和,得到,再用做差法比较和的大小,分解因式后,讨论的范围,得到大小关系,此题考察等差数列的基础知识,以及求和的方法,比较大小时,不要忘记讨论,再比较大小,总体属于基础题型. 试题解析:(1)由题意得: 2分解得 4分. 6分(2)因为,所以, 7分10分所以= =, 12分所以当时,;当时,. 14分【考点】1.等差数列的公式;2裂项相消;3.比较法.4.在数列中,,.(1)设,求数列的通项公式;(2)求数列的前项和.【答案】(1);(2).【解析】(1)在题中等式两边同时除以得,则,即,利用累加法得;(2)根据第(1)题求出,利用分组求和,,后面括号式子利用错位相加法求得结果.试题解析:(1)由已知得,原式同除以得,则,即,所以……累加,得所以由(1)得,所以设,①,②①-②,得所以,所以【考点】1.累加法求通项公式;2.分组求和法和错误相减法求和.5.已知数列,满足,,(1)求的值;(2)猜想数列的通项公式,并用数学归纳法证明;(3)己知,设,记,求.【答案】(1);;(2),证明见解析;(3)3..【解析】(1)这属于已知数列的递推关系式,求数列的项的问题,我们只要在已知递推关系式中依次令就可以依次求出;(2)用归纳法归纳数列的通项公式,我们可以由数列的前几项想象各项与项数之间的联系,如,,,,从而归纳出结论,然后数学归纳法证明,这里数学归纳法的基础即第一步已经不需另证了,关键是第二步,假设时,,然后由已知条件求出,那么结论就是正确的;(3)按常规方法,先求,,接着求数列的前项和,根据其通项公式的形式(它是一个等差数列所一个等比数列对应项相乘所得),求和用乘公比经错位相减法,求得,然后借助已知极限可求出极限.试题解析:(1),∴.,分别令,可得,(2)猜想数列的通项公式为.用数学归纳法证明如下:证明 (i)当时,由(1)知结论成立;当时,,结论成立.(ii)假设时,结论成立,即.当时,.所以,,即时,结论也成立.根据(i)和(ii)可以断定,结论对一切正整数都成立.(3)由(2)知,,.于是,,.所以,.【考点】(1)数列的项;(2)数学归纳法;(3)借位相减法,极限.6.设数列满足,.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】(1)先令求出的值,然后令时,在原式中用得到一个新的等式,并将该等式与原等式作差,求出数列在时的通项公式,并对的值是否符合上述通项公式进行检验,从而最终确定数列的通项公式;(2)先求出数列的通项公式,并根据数列的通项公式结构选择裂项法求和.试题解析:(1)因为,,①所以当时,.当时,,②,①-②得,,所以.因为,适合上式,所以;(2)由(1)得,所以,所以.【考点】1.定义法求数列的通项公式;2.裂项法求和7.设,的所有非空子集中的最小元素的和为,则= .【答案】【解析】这个问题主要是研究集合中的每个元素在和中分别出现多少次,事实上,以为例,集合中比大的所有元素组成的集合的所有子集共有个,把加进这些子集里形成新的集合,每个都是最小元素为的集合的子集,而最小元素为的集合的子集也就是这些,故在中出现次,同理出现次,…,出现1次,所以有,这个和用错位相减法可求得.【考点】子集的个数,借位相减法求数列的和.8.已知数列的前项和为,且,则______________.【答案】.【解析】由题意知,所以,下式减上式得.【考点】错位相减求和9.已知数列,,,,,为数列的前项和,为数列的前项和.(1)求数列的通项公式;(2)求数列的前项和;(3)求证:.【答案】(1);(2);(3)详见解析.【解析】(1)解法一是根据数列递推式的结构选择累加法求数列的通项公式;解法二是在数列的递推式两边同时除以,然后利用待定系数法求数列的通项公式,进而求出数列的通项公式;(2)先求出数列的通项公式,然后根据数列的通项结构,选择裂项相消法求数列的前项和;(3)对数列中的项利用放缩法,然后利用累加法即可证明所要证的不等式.试题解析:(1)法一:,法二:(2)(3)证明:,.【考点】1.累加法求数列的通项公式;2.待定系数法求数列的通项公式;3.裂项相消法求数列的和;4.利用放缩法证明数列不等式10.已知数列具有性质:①为整数;②对于任意的正整数,当为偶数时,;当为奇数时,.(1)若为偶数,且成等差数列,求的值;(2)设(且N),数列的前项和为,求证:;(3)若为正整数,求证:当(N)时,都有.【答案】(1) 0或2;(2)证明见试题解析;(3)证明见试题解析.【解析】(1)根据数列具有性质,为偶数,要,这时要求,必须讨论的奇偶性,分类讨论;(2)要证不等式,最好能求出,那么也就要求出数列的各项,那么我们根据数列定义,由为奇数,则为奇数,为偶数,接下来各项都是偶数,一起到某项为1,下面一项为0,以后全部为0.实际上项为1的项是第项(成等比数列),故可求;(3)由于是正整数,要证明从某一项开始,数列各项均为0,这提示我们可首先证明为非负(这可用数学归纳法加以证明),然后由于数列的关系,可见数列在出现0之前,是递减的,下面要考虑的是递减的速度而已.当为偶数时,;当为奇数时,,因此对所有正整数,都有,依此类推有,只要,则有.试题解析:(1)∵为偶数,∴可设,故,若为偶数,则,由成等差数列,可知,即,解得,故;(2分)若为奇数,则,由成等差数列,可知,即,解得,故;∴的值为0或2.(4分)(2)∵是奇数,∴,,,依此类推,可知成等比数列,且有,又,,,∴当时,;当时,都有.(3分)故对于给定的,的最大值为,所以.(6分)(3)当为正整数时,必为非负整数.证明如下:当时,由已知为正整数,可知为非负整数,故结论成立;假设当时,为非负整数,若,则;若为正偶数,则必为正整数;若为正奇数,则必为非负整数.故总有为非负整数.(3分)当为奇数时,;当为偶数时,.故总有,所以,当时,,即.( 6分)又必为非负整数,故必有.(8分)【另法提示:先证“若为整数,且,则也为整数,且”,然后由是正整数,可知存在正整数,使得,由此推得,,及其以后的项均为0,可得当时,都有】【考点】(1)递推数列与等差数列;(2)数列的前项和;(3)数列的通项与综合问题.11.数列中,,前项的和是,且,.(1)求数列的通项公式;(2)记,求.【答案】(1);(2).【解析】(1)先利用与之间的关系对时,利用求出数列在时的表达式,然后就进行检验,从而求出数列的通项公式;(2)在(1)的基础下,先求出数列的通项公式,然后利用公式法求出数列的通项公式.试题解析:(1)当且时,由,得,上述两式相减得,,故数列是以为首项,以为公比的等比数列,;(2),.【考点】1.定义法求数列通项;2.等差数列求和12.已知数列中,前和(1)求证:数列是等差数列(2)求数列的通项公式(3)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求的最小值,若不存在,试说明理由。
用裂项相消法解决错位相减法问题设数列{}n a ,{}n b 分别是等差、等比数列,令n n n b a c ⋅=求数列{}n c 的前n 数和nT此类问题的典型方法是错位相减法,此种方法对学生的计算能力,整理能力要求较高, 但是,这类问题也并不是只有错位相减法才能解决,下面介绍一种比较简单的方法.例1.数列{}n a ,其通项()nn n a 213⋅+=,求其前n 项和n S .解.假设()()[]()n n n n n n q pn q n p b b n a 22121311⋅+-⋅++=-=⋅+=++()nq p pn 22⋅++=, 因为()n n n a 213⋅+=()nq p pn 22⋅++=,所以3=p ,5-=q , 所以()[]()nn n n n n n b b a 253251311⋅--⋅-+=-=++①, 在①中,()[]112513++⋅-+=n n n b ,()nn n b 253⋅-=,所以n n n a a a a S ++++=-121 ()12b b -=()23b b -+ +()1--+n n b b ()n n b b -++111b b n -=+()[]425131+⋅-+=+n n ()42231+⋅-=+n n .注释:差比数列求和完全可以转化为裂项求和,并且方法简洁,容易掌握. 检验:此过程在草纸上进行81=a ,81=s ,n s 对1=n 成立,3621=+a a ,361=s ,n s 对2=n 成立,验证1s ,2s ,可以保卫你的胜利果实. 例2.数列{}n a ,其通项n n n a 22=,求其前n 项和n S .解.假设1122222++-===n n n n n b b n n a nf qn pn 22++=()()n f n q n p 2112++++-()1222+--+-+=n q p f n p q pn 1222+=n n所以2=p ,4=q ,6=f ,所以1+-=n n n b b a nn n 26422++=()()12261412+++++-n n n ①,在①中,nn n n b 26422++=,()()n n n n b 26141221++++=+, 所以n n n a a a a S ++++=-121 ()21b b -=()32b b -+ +()n n b b -+-1()1+-+n n b b11+-=n b b -=6()()12261412+++++-n n n nn n 26362++-=. 故=n S nn n 26362++-=,()1,*≥∈n N n . 注释:通过两到例题,大家能感觉到用裂项相消法处理错位相减法问题有独到的魅力,掌握住该方法,错位相减法问题可以无忧亦!。
错位相减变成裂项相消的公式
我们要找出错位相减如何变成裂项相消的公式。
首先,我们需要理解错位相减和裂项相消的概念。
错位相减是一种求和的方法,通常用于求等差数列或等比数列的和。
裂项相消则是将一个序列的每一项都拆分成两个部分,使得在求和时某些项会相互抵消。
假设我们有一个等差数列或等比数列,其通项公式为a_n = a × r^(n-1),其中 a 是首项,r 是公比。
错位相减的公式是:
S_n = a_1 + a_2 + ... + a_n
= a × (r^n - 1) / (r - 1)
裂项相消的公式是:
S_n = 1/a + 2/a^2 + ... + n/a^n
= (a^n - 1) / (a - 1)^2
现在我们要找出如何从错位相减的公式得到裂项相消的公式。
通过错位相减,我们可以得到裂项相消的公式。
具体来说,对于等差数列或等比数列,我们可以使用错位相减法来得到裂项相消的公式。
具体步骤如下:
1. 首先写出错位相减的公式。
2. 然后将错位相减的公式进行变形,得到一个新的公式。
3. 最后将新公式进行整理,即可得到裂项相消的公式。
数列难题专题一.解答题(共13小题)1.已知等差数列{a n}满足a2=2,a1+a4=5.(I)求数列{a n}的通项公式;(II)若数列{b n}满足:b1=3,b2=6,{b n﹣a n}为等比数列,求数列{b n}的前n 项和T n.2.已知数列{a n}的前n项和为S n满足S n=,且a1﹣1,2a2,a3+7成等差数列.(1)求数列{a n}的通项公式;(2)令b n=2log9a n(n∈N*),求数列的前n项和T n.3.已知等比数列{a n}的前n项和为S n,a1=2,a n>0(n∈N*),S6+a6是S4+a4,S5+a5的等差中项.(1)求数列{a n}的通项公式;(2)设,数列的前n项和为T n,求T n.4.已知数列{a n}的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=log2a n,求.5.各项均为正数的等比数列{a n}的前n项和为S n.已知a1=3,S3=39.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{c n}满足,求数列{c n}的前n项和T n.6.已知数列{a n}的前n项和为S n=n2+1,在等比数列{b n}中,b1=,公比q=;(Ⅰ)求a n;(Ⅱ)令c n=a n•b n,设T n为{c n}的前n项和,求T n.7.已知数列{a n}的前n项和是S n,且S n=1(n∈N),数列{b n}是公差d 不等于0的等差数列,且满足:b1=,b2,b5,b14成等比数列.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)设c n=a n•b n,求数列{c n}的前n项和T n.8.已知等差数列{a n}满足a3=6,前7项和为S7=49.(1)求{a n}的通项公式;(2)设数列{b n}满足,求{b n}的前n项和T n.9.已知正数等比数列{a n}的前n项和S n满足:.(1)求数列{a n}的首项a1和公比q;(2)若b n=na n,求数列{b n}的前n项和T n.10.已知等比数列{a n}的公比q>0,a2a3=8a1,且a4,36,2a6成等差数列.(1)求数列{a n}的通项公式;(2)记,求数列{b n}的前n项和T n.11.已知正项数列{a n}的前n项和为S n,且(1+a n)2=4S n+4,等比数列{b n}的首项为1,公比为q(q≠1),且3b1,2b2,b3成等差数列.(1)求{a n}的通项公式;(2)求数列{a n b n}的前n项和T n.12.已知数列{a n}的前n项和为S n,a n>0且满足a n=2S n﹣﹣(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.13.已知数列{a n}的前n项和为S n,且a1=2,2S n=(n+1)2a n﹣n2a n+1,数列{b n}满足b1=a1,nb n+1=a n b n.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)若数列{c n}满足c n=a n+b n(n∈N*),求数列{c n}的前n项和T n.参考答案与试题解析一.解答题(共13小题)1.已知等差数列{a n}满足a2=2,a1+a4=5.(I)求数列{a n}的通项公式;(II)若数列{b n}满足:b1=3,b2=6,{b n﹣a n}为等比数列,求数列{b n}的前n 项和T n.【分析】(Ⅰ)由题意可得,解得a1=d=1,即可求出通项公式,(Ⅱ)b1=3,b2=6,{b n﹣a n}为等比数列,求出b n=n+2n,再分组求和即可.【解答】解:(Ⅰ)等差数列{a n}满足a2=2,a1+a4=5,则,解得a1=d=1,∴a n=1+(n﹣1)=n,(Ⅱ)∵b1=3,b2=6,{b n﹣a n}为等比数列,设公比为q,∴b1﹣a1=3﹣1=2,b2﹣a2=6﹣2=4,∴q=2,∴b n﹣a n=2×2n﹣1=2n,∴b n=n+2n,∴数列{b n}的前n项和T n=(1+2+3+…+n)+(2+22+…++2n)=+=+2n+1﹣2.【点评】本题考查了等差数列和等比数列的通项公式和求和公式,考查了运算能力,属于基础题.2.已知数列{a n}的前n项和为S n满足S n=,且a1﹣1,2a2,a3+7成等差数列.(1)求数列{a n}的通项公式;(2)令b n=2log9a n(n∈N*),求数列的前n项和T n.【分析】(1)根据a n=S n﹣S n﹣1可得出{a n}的递推公式,于是{a n}为等比数列,根据a1﹣1,2a2,a3+7成等差数列解方程计算a1即可得出a n;(2)计算b n=,使用裂项法求和.【解答】解:(1)由得2S n=3a n﹣a1,由,做差得a n=3a n﹣1(n≥2),∴数列{a n}是公比为3的等比数列,又a1﹣1,2a2,a3+7成等差数列,4a2=a1+a3+6,即12a1=a1+9a1+6,解得a1=3,∴.(2)b n=2log93n=n,∴,∴.【点评】本题考查了等比数列的性质,裂项法求和,属于基础题.3.已知等比数列{a n}的前n项和为S n,a1=2,a n>0(n∈N*),S6+a6是S4+a4,S5+a5的等差中项.(1)求数列{a n}的通项公式;(2)设,数列的前n项和为T n,求T n.【分析】(1)根据S6+a6是S4+a4,S5+a5的等差中项建立关系,a1=2,即可求解数列{a n}的通项公式(2)设,将{a n}的通项公式带入化简可得{b n}的通项公式,利用裂项相消法前n项和为T n,【解答】解:(1)∵S6+a6是S4+a4,S5+a5的等差中项.∴2(S4+a4)=S4+a4+S5+a5化简得4a6=a4∵a1=2,{a n}是等比数列,设公比为q,则.∵a n>0(n∈N*),∴q>0∴q=∴数列{a n}的通项公式a n==;(2)由==2n﹣3.∴数列{b n}的通项公式b n=2n﹣3.那么:==数列的前n项和为T n=(﹣1﹣1)+(1﹣)+()+……+()=﹣1﹣=.【点评】本题考查了等比数列的通项公式与前n项和公式,考查了推理能力与计算能力,属于基础题.4.已知数列{a n}的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=log2a n,求.【分析】(1)根据数列的递推公式即可求出,(2)根据对数的运算性质和裂项求和,即可求出结果.【解答】解:(1)当n≥2时,a n=S n﹣S n﹣1=(23n+1﹣2)﹣(23n﹣2﹣2)=23n﹣2,当n=1时,a1=S1=23×1﹣2,符合上式∴a n=23n﹣2,(n∈N*).(2)由(1)得b n=log2a n=3n﹣2,∴==(﹣),∴=[(1﹣)+(﹣)+…+(﹣)]=(1﹣)=【点评】本题考查了数列的递推公式和裂项求和,考查了运算能力,属于中档题5.各项均为正数的等比数列{a n}的前n项和为S n.已知a1=3,S3=39.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{c n}满足,求数列{c n}的前n项和T n.【分析】(Ⅰ)由a1=3,S3=39,知q2+q﹣12=0.故q=3,或q=﹣4,由此能求出,(Ⅱ)根据等差数列和等比数列的求和公式计算即可.【解答】解:(Ⅰ)设{a n}的公比为q,由a1=3,S3=39得,于是q2+q﹣12=0,解得q=3(q=﹣4不符合题意,舍去)故.(Ⅱ)由(Ⅰ)得,则,则…=.【点评】本题考查数列的通项及前n项和,考查等比数列的求和公式,属于中档题.6.已知数列{a n}的前n项和为S n=n2+1,在等比数列{b n}中,b1=,公比q=;(Ⅰ)求a n;(Ⅱ)令c n=a n•b n,设T n为{c n}的前n项和,求T n.【分析】(Ⅰ)由数列{a n}的前n项和为S n=n2+1,利用,由此能求出a n.(Ⅱ)利用等比数列{b n}中,b1=,公比q=,求出=()n,从而c n=a n•b n=,由此利用错位相减法能求出T n.【解答】解:(Ⅰ)∵数列{a n}的前n项和为S n=n2+1,∴a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=(n2+1)=[(n﹣1)2+1]=2n,当n=1时,a n=2=a1,∴a n=2n.(Ⅱ)∵在等比数列{b n}中,b1=,公比q=,∴=()n,∴c n=a n•b n=,∴{c n}的前n项和:T n=+,①=+6×+…+2n×()n+1,②①﹣②,得:=2[+…+()n]﹣2n×()n+1=2×﹣2n×()n+1=1﹣(1+)×()n,∴T n=﹣(n+)×()n.【点评】本题考查数列的通项公式、前n项和公式的求法,考查等比数列、错位相减法等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.7.已知数列{a n}的前n项和是S n,且S n=1(n∈N),数列{b n}是公差d 不等于0的等差数列,且满足:b1=,b2,b5,b14成等比数列.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)设c n=a n•b n,求数列{c n}的前n项和T n.【分析】(I)S n=1(n∈N),n≥2时,S n﹣1+a n﹣1=1,相减可得:a n﹣a n﹣1=0,化为:a n=a n﹣1.利用等比数列的通项公式可得a n.数列{b n}是公差d不等于0的等差数列,且满足:b1==1.由b2,b5,b14成等比数列.可得=b2•b14,(1+4d)2=(1+d)(1+13d),d≠0.解得d.即可得出.(Ⅱ)设c n=a n•b n=.利用错位相减法即可得出.【解答】解:(I)S n=1(n∈N),n≥2时,S n﹣1+a n﹣1=1,相减可得:a n﹣a n﹣1=0,化为:a n=a n﹣1.n=1时,a1+=1,解得a1=.∴数列{a n}是等比数列,首项为,公比为.∴a n==2×.数列{b n}是公差d不等于0的等差数列,且满足:b1==1.∵b2,b5,b14成等比数列.∴=b2•b14,∴(1+4d)2=(1+d)(1+13d),d≠0.解得d=2.∴b n=1+2(n﹣1)=2n﹣1.(Ⅱ)设c n=a n•b n=.求数列{c n}的前n项和T n=+……+.=+……++,相减可得:T n=+4﹣=+4×﹣,化为:T n=2﹣.【点评】本题考查了数列递推关系、等差数列与等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.8.已知等差数列{a n}满足a3=6,前7项和为S7=49.(1)求{a n}的通项公式;(2)设数列{b n}满足,求{b n}的前n项和T n.【分析】(1)根据等差数列的求和公式和等差数列的性质即可求出,(2)根据错位相减法即可求出.【解答】解:(1)由,得a4=7∵a3=6,∴d=1,∴a1=4,∴a n=n+3(2)=n•3n,∴T n=1×31+2×32+3×33+…+n×3n,∴3T n=1×32+2×33+3×34+…+n×3n+1,∴﹣2T n=3+32+33+34+…+3n﹣n×3n+1=﹣n×3n+1,∴T n=【点评】本题考查了等差数列的求和公式和等差数列的性质以及错位相减法,属于中档题9.已知正数等比数列{a n}的前n项和S n满足:.(1)求数列{a n}的首项a1和公比q;(2)若b n=na n,求数列{b n}的前n项和T n.【分析】(1)利用数列的递推关系式,求出数列的公比,然后求解数列的首项;(2)利用错位相减法求解数列的和即可.【解答】解:(1)∵,可知,,两式相减得:,∴,而q>0,则.又由,可知:,∴,∴a1=1.(2)由(1)知.∵,∴,.两式相减得=.∴.【点评】本题考查数列的递推关系式的应用,数列求和,考查计算能力.10.已知等比数列{a n}的公比q>0,a2a3=8a1,且a4,36,2a6成等差数列.(1)求数列{a n}的通项公式;(2)记,求数列{b n}的前n项和T n.【分析】(1)利用等差数列以及等比数列的通项公式列出方程组,求出数列的首项与公比,然后求解数列的通项公式.(2)化简通项公式,利用错位相减法求解数列的和即可.【解答】(本题满分12分)解:(1)由a2a3=8a1得:a1q3=8 即a4=8又因为a4,36,2a6成等差数列所以a4+2a6=72将a4=8代入得:a6=42从而:a1=1,q=2所以:a n=2n﹣1…….(6分)(2)b n==2n•()n﹣1T n=2×()0+4×()1+6×()2+…+2(n﹣1)•()n﹣2+2n•()n﹣1……………………①T n=2×()1+4×()2+6×()3+…+2(n﹣1)•()n﹣1+2n•()n……………………②①﹣②得:T n=2×()0+2(()1+()2+…+()n﹣1)﹣2n•()n =2+2×﹣2n•()n=4﹣(n+2)•()n﹣1∴T n=8﹣(n+2)•()n﹣2………………………………………………….(12分)【点评】本题考查等差数列以及等比数列的应用,数列求和的方法,考查转化首项以及计算能力.11.已知正项数列{a n}的前n项和为S n,且(1+a n)2=4S n+4,等比数列{b n}的首项为1,公比为q(q≠1),且3b1,2b2,b3成等差数列.(1)求{a n}的通项公式;(2)求数列{a n b n}的前n项和T n.【分析】(1)利用递推关系式求出数列的通项公式.(2)利用乘公比错位相减法求出数列的和.【解答】解:(1)当n=1时,且(1+a1)2=4S1+4,即:,因为:a n>0,所以:a1=3,当n≥2时,(1+a n)2=4S n+4,①则:(1+a n﹣1)2=4S n﹣1+4,②①﹣②得:(a n+a n﹣1)(a n﹣a n﹣1)=2(a n+a n﹣1),所以:a n﹣a n﹣1=2.所以数列{a n}是首项为3,公差为2的等差数列,所以:a n=2n+1(2)因为等比数列{b n}的首项为1数列,公比为q的等比数列,且3b1,2b2,b3成等差数列.所以:4b2=3b1+b3,所以:4q=3+q2,解得:q=3或1(舍去)所以:q=3.故:则:.所以:T n=3•30+5•31+…+(2n+1)•3n﹣1③,3T n=3•31+5•32+…+(2n+1)•3n④,③﹣④得:﹣2T n=3+2(31+32+…+3n﹣1)﹣(2n+1)•3n,解得:,=n•3n.【点评】本题主要考查:利用a n与S n的递推关系求数列的通项公式以及错位相减法求和,考查运算求解能力,考查函数与方程思想、转化与化归思想等..12.已知数列{a n}的前n项和为S n,a n>0且满足a n=2S n﹣﹣(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.【分析】(Ⅰ)由已知数列递推式求得a1=1,且得到,则,两式联立可得(a n+1+a n)(a n+1﹣a n﹣2)=0,进一步得到a n﹣1﹣a n=2,说明数列{a n}是以1为首项,以2为公差的等差数列,则数列{a n}的通项公式可求;(Ⅱ)直接利用错位相减法求数列{}的前n项和T n.【解答】解:(Ⅰ)当n=1时,,解得a1=1;由a n=2S n﹣﹣,整理得,①∴,②②﹣①得:,∴(a n+1+a n)(a n+1﹣a n﹣2)=0,∵a n>0,∴a n+1﹣a n﹣2=0,即a n﹣1﹣a n=2.∴数列{a n}是以1为首项,以2为公差的等差数列,则a n=1+2(n﹣1)=2n﹣1;(Ⅱ)=,③,④③﹣④得:==.∴.【点评】本题考查数列递推式,考查了等差关系的确定,训练了错位相减法求数列的前n项和,是中档题.13.已知数列{a n}的前n项和为S n,且a1=2,2S n=(n+1)2a n﹣n2a n+1,数列{b n}满足b1=a1,nb n+1=a n b n.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)若数列{c n}满足c n=a n+b n(n∈N*),求数列{c n}的前n项和T n.【分析】(I)由2S n=(n+1)2a n﹣n2a n+1,可得:2S n+1=(n+2)2a n+1﹣(n+1)2a n+2,两式相减可得:2a n+1=a n+2+a n,可得数列{a n}是等差数列,2S1=22a1﹣a2,a1=2,解得a2.可得公差d,即可得出a n.由b1=a1=2,nb n+1=a n b n.可得b n+1=2b n,利用等比数列的通项公式可得b n.(II)c n=a n+b n=2n+2n,利用等差数列与等比数列的求和公式即可得出.【解答】解:(I)由2S n=(n+1)2a n﹣n2a n+1,可得:2S n+1=(n+2)2a n+1﹣(n+1)2a n+2,两式相减可得:2a n+1=(n+2)2a n+1﹣(n+1)2a n+2﹣(n+1)2a n+n2a n+1,∴2a n+1=a n+2+a n,∴数列{a n}是等差数列,2S1=22a1﹣a2,a1=2,解得a2=4.∴d=4﹣2=2.∴a n=2+2(n﹣1)=2n.由b1=a1=2,nb n+1=a n b n.∴b n+1=2b n,∴数列{b n}是等比数列,首项与公比都为2.∴b n=2n.(II)c n=a n+b n=2n+2n,∴数列{c n}的前n项和T n=+=2n+1+n2+n﹣2.【点评】本题考查了数列递推关系、等比数列与等差数列的通项公式求和公式及其性质,考查了推理能力与计算能力,属于中档题.。
高三数学倒序相加错位相减裂项抵消求和试题答案及解析1. 设等比数列{a n }的前n 项和为S n .已知a n+1=2S n +2() (1)求数列{a n }的通项公式;(2)在a n 与a n+1之间插入n 个数,使这n+2个数组成一个公差为d n 的等差数列,①在数列{d n }中是否存在三项d m ,d k ,d p (其中m,k,p 成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由; ②求证:.【答案】(1) (2)见解析【解析】(1)利用S n 与a n 之间的关系,即可得到关于a n+1,a n 的递推式,证明a n 为等比数列,且可以知道公比,当n=1时,可以得到a 1与a 2之间的关系,在根据a n 等比数列,可以消掉a 2得到首项的值,进而得到通项公式. (2)根据等差数列公差与项之间的关系(),可以得到,带入a n 得到d n 的通项公式.①假设存在,d m ,d k ,d p 成等比数列,可以得到关于他们的等比中项式子,把d n 的通项公式带入计算可以得到,则m,k,p 既成等差数列也是等比数列,所以三者相等,与数列{d n }中是否存在三项d m ,d k ,d p (不相等)矛盾,所以是不存在的. ②利用(2)所得求出的通项公式,再利用错位相减可以求得,利用不等式的性质即可得到证明原式.试题解析: (1)由, 可得:, 两式相减:. 2分 又, 因为数列是等比数列,所以,故.所以. 4分 (2)由(1)可知, 因为:,故:. 6分 ①假设在数列中存在三项(其中成等差数列)成等比数列,则:,即:,(*) 8分 因为成等差数列,所以,(*)可以化简为,故,这与题设矛盾. 所以在数列中不存在三项(其中成等差数列)成等比数列.10分②令,,11分两式相减:13分. 14分【考点】等比数列错位相减法不等式等差等比中项2.对于数列,把作为新数列的第一项,把或()作为新数列的第项,数列称为数列的一个生成数列.例如,数列的一个生成数列是.已知数列为数列的生成数列,为数列的前项和.(1)写出的所有可能值;(2)若生成数列满足的通项公式为,求.【答案】(1)(2)【解析】(1)列举出数列所有可能情况,共种,分别计算和值为,本题目的初步感观生成数列,(2)分段函数求和,注意“间断的周期性”. 因为,所以间断的周期为3,每3个作为一个“大元素”,所以先求.再利用求及的.因为,所以当时,当,试题解析:解:(1)由已知,,,∴,由于,∴可能值为. 3分(2)∵.∴时,..时,;时,;13分注:若有其它解法,请酌情给分】【考点】数列求和3.已知数列的前n项和为,且满足,.(1)求数列的通项公式;(2)设为数列{}的前n项和,求;(3)设,证明:.【答案】(1) (2)(3)见解析【解析】(1)当带入式子结合即可得到的值,当时,利用与的关系()即可得到是一个常数,即可得到数列为等差数列,但是需要验证是否符合,进而证明为等差数列,即可求的通项公式.(2)把(1)中得到的的通项公式带入可得,即为等差数列与等比数列的乘积,故需要利用错位相减法来求的前n项和.(3)把(1)得到的带入,观察的通项公式为分式,为求其前n项和可以考虑利用裂项求和法.进行裂项,在进行求和就可以得到的前n项和为,利用非负即可证明原不等式.试题解析:(1)由题意,当时,有,(1分)两式相减得即. (2分)由,得.所以对一切正整数n,有,(3分)故,即. (4分)(2)由(1),得,所以①(5分)①两边同乘以,得②(6分)①-②,得,(7分)所以,(8分)故. (9分)(3)由(1),得(12分)(13分). (14分)【考点】裂项求和错位相减不等式4.数列{an }的前n项和为Sn,若an=,则S4=________.【答案】【解析】an =,∴S4=1-+-+-+-=.5.数列的前项和为,且是和的等差中项,等差数列满足(1)求数列、的通项公式(2)设=,求数列的前项和.【答案】(1),(2)【解析】(1)由与的关系可得及,两式相减可得数列的通项公式,在使用与的关系时要注意与的情况讨论;(2)的通项公式是由一个等差数列与一个等比数列比值的形式,求其和时可用错位相减法.两式相减时要注意下式的最后一项出现负号,等比求和时要数清等比数列的项数,也可以使用这个求和公式,它可以避免找数列的数项;最终结果化简依靠指数运算,要保证结果的成功率,可用作为特殊值检验结果是否正确.试题解析:(1)由题意知,,故又时,由得,即故是以1为首项以2为公比的等比数列,所以.因为,所以的公差为2,所以(2)由=,得①②-②得所以【考点】1、与的关系;2、错位相减法求数列和.6.已知数列,满足,,(1)求的值;(2)猜想数列的通项公式,并用数学归纳法证明;(3)己知,设,记,求.【答案】(1);;(2),证明见解析;(3)3..【解析】(1)这属于已知数列的递推关系式,求数列的项的问题,我们只要在已知递推关系式中依次令就可以依次求出;(2)用归纳法归纳数列的通项公式,我们可以由数列的前几项想象各项与项数之间的联系,如,,,,从而归纳出结论,然后数学归纳法证明,这里数学归纳法的基础即第一步已经不需另证了,关键是第二步,假设时,,然后由已知条件求出,那么结论就是正确的;(3)按常规方法,先求,,接着求数列的前项和,根据其通项公式的形式(它是一个等差数列所一个等比数列对应项相乘所得),求和用乘公比经错位相减法,求得,然后借助已知极限可求出极限.试题解析:(1),∴.,分别令,可得,(2)猜想数列的通项公式为.用数学归纳法证明如下:证明 (i)当时,由(1)知结论成立;当时,,结论成立.(ii)假设时,结论成立,即.当时,.所以,,即时,结论也成立.根据(i)和(ii)可以断定,结论对一切正整数都成立.(3)由(2)知,,.于是,,.所以,.【考点】(1)数列的项;(2)数学归纳法;(3)借位相减法,极限.7.已知数列的前项和(为正整数)(1)令,求证数列是等差数列,并求数列的通项公式;(2)令,,试比较与的大小,并予以证明【答案】(1)见解析;(2)见解析【解析】(1)由题意数列的前项和表达式,先根据求数列的通项的递推关系式,再求数列是等差数列,根据等差数列的通项求数列的通项;(2)由(1)所求数列的通项先得,再利用错位相减法求得表达式,再把与作差比较大小,可利用数学归纳法证明试题解析:(I)在中,令n=1,可得,即当时,,又数列是首项和公差均为1的等差数列于是(II)由(I)得,所以由①-②得于是确定的大小关系等价于比较的大小由可猜想当证明如下:证法1:(1)当n=3时,由上验算显示成立。