数列裂项相消法求和
- 格式:ppt
- 大小:207.50 KB
- 文档页数:19
数列求和裂项相消法公式
数列裂项相消公式:1/[n(n+1)]=(1/n)-[1/(n+1)]。
裂项是指这是分解与组合思想在数列求和中的具体应用。
是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。
通项分解(裂项)倍数的关系。
通常用于代数,分数,有时候也用于整数。
公式,在数学、物理学、化学、生物学等自然科学中用数学符号表示几个量之间关系的式子。
具有普遍性,适合于同类关系的所有问题。
在数理逻辑中,公式是表达命题的形式语法对象,除了这个命题可能依赖于这个公式的自由变量的值之外。
.裂项相消法利用列相消法乞降,注意抵消后其实不必定只剩下第一和最后一,也有可能前面剩两,后边剩两,再就是通公式列后,有需要整前面的系数,使列前后等式两保持相等。
( 1 )假如 {a n }等差数列,11.( 11) ,11.(1 1 )a n a n 1 d a n a n 1a n a n 22d a n a n 2( 2 )111 n(n1) n n1( 3 )1k)1 ( 1n1)n(n k n k( 4 )1 1 (11)(2n 1()2n 1) 2 2n 1 2n 1( 5 )n(n12)1[1(n1] 1)( n2n(n 1)1)(n2)( 6 )1n1nn n1( 7 )11n k n) n n k(k1. 已知数列的前n和,.(1 )求数列的通公式;(2 ),求数列的前n和.[ 分析 ] (1)⋯⋯⋯⋯⋯①.,⋯⋯⋯⋯⋯②①②得 :即⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分在①中令, 有, 即,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分故2. 已知 {a n} 是公差 d 的等差数列,它的前n 和 S n, S4=2S 2 +8 .(Ⅰ)求公差 d 的;(Ⅱ)若 a 1 =1 , T n是数列 {} 的前 n 和,求使不等式T n≥全部的n ∈N* 恒建立的最大正整数m 的;[ 分析 ] (Ⅰ)数列{a n }的公差 d ,∵ S4 =2S 2 +8 ,即 4a 1 +6d=2(2a 1 +d) +8,化得:4d=8,解得 d=2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(Ⅱ)由 a 1=1 , d=2 ,得 a n =2n-1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分∴=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分.∴ T n ===≥ ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分又∵ 不等式n全部的 n ∈ N* 恒建立,T ≥∴ ≥,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分化得: m 2 -5m-6≤0 ,解得: -1 ≤m ≤6 .∴ m 的最大正整数 6 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分3.) 已知各均不同样的等差数列{a n } 的前四和S4 =14, 且 a 1 ,a3 ,a7成等比数列 . ( Ⅰ) 求数列 {a n } 的通公式 ;( Ⅱ)T n数列的前n和,求T2 012的.[ 答案 ] ( Ⅰ ) 公差 d, 由已知得(3 分)解得 d=1或d=0(舍去),∴a1=2. (5分)故 a n =n+1. (6分)(Ⅱ)==-,(8分).∴T n= - + - + ⋯+ -= -=. (10 分)∴T2012 =. (12分)4.) 已知数列 {a}是等差数列 ,- =8n+4, 数列 {|an |} 的前 n 和 S ,数列的前 nn n 和 T n .(1)求数列 {a n }的通公式 ;(2)求 : ≤T n <1.[ 答案 ] (1) 等差数列 {a n }的公差d,a n =a 1 +(n-1)d. (2分)∵- =8n+4,∴(a n+1 +a n )(a n+1 -a n )=d(2a 1 -d+2nd)=8n+4.当 n=1,d(2a 1 +d)=12;当 n=2,d(2a 1 +3d)=20.解方程得或(4分)知 ,a n =2n或a n=-2n都足要求.∴a n =2n或a n=-2n. (6分)(2) 明 : 由 (1) 知 :a n =2n或a n=-2n.∴|a n |=2n..∴S n =n(n+1). (8分)∴== -.∴T n=1- + - + ⋯+ -=1-. (10 分 )∴ ≤T n <1. (12分)5. 已知等差数列 {a n } 的公差2, 前 n 和 S n ,且 S1,S2 ,S4成等比数列 .( Ⅰ) 求数列 {a n } 的通公式 ;( Ⅱ) 令 b n =(-1)n-1,求数列 {b n }的前 n 和 T n .[ 答案 ] 看分析[ 分析 ] ( Ⅰ ) 因 S1 =a 1 ,S2=2a 1 +×2=2a1+2,S =4a1+×2=4a1+12,4由意得 (2a 1+2) 2 =a 1 (4a 1+12),解得 a 1 =1,因此 a n =2n-1.( Ⅱ)b n =(-1)n-1=(-1)n-1=(-1) n-1当 n 偶数 , T n =-=1-=.当 n 奇数 , T n =-.因此 T n =..+⋯+-+⋯-+++=1+=6.已知点的象上一点,等比数列的首,且前和( Ⅰ) 求数列和的通项公式;( Ⅱ) 若数列[ 分析 ]解: (Ⅰ)由于的前项和为,问,因此的最小正整数,是多少?因此,,,又数列是等比数列,因此,因此,又公比,因此,由于,又因此数列因此因此,因此,因此组成一个首项为 1 ,公差为,当时,.(6分),1 的等差数列,,,(Ⅱ) 由(Ⅰ ) 得,(10 分)由得,知足的最小正整数为 72.(12 分)7. 在数列,中,,,且成等差数列,成等比数列() .(Ⅰ)求,,及,,,由此概括出,的通项公式,并证明你的结论;(Ⅱ)证明:.[ 分析 ] (Ⅰ)由条件得,由此可得.猜想. ( 4分)用数学概括法证明:①当时,由上可得结论建立.②假定当时,结论建立,即,那么当时,.因此当时,结论也建立.由①②,可知对全部正整数都建立. ( 7 分)(Ⅱ)由于.当时,由(Ⅰ)知.因此.综上所述,原不等式建立. (12分)8. 已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求使建立的最小.的正整数的.[ 分析 ](1)当,,由,⋯⋯⋯⋯⋯⋯⋯⋯1分当,∴是以首,公比的等比数列.⋯⋯⋯⋯⋯⋯⋯⋯4分故⋯⋯⋯⋯⋯⋯⋯ 6 分(2 )由( 1)知,⋯⋯⋯⋯⋯⋯ 8 分,故使建立的最小的正整数的.⋯⋯⋯⋯⋯⋯12分.9.己知各均不相等的等差数列 {a n } 的前四和 S4=14 ,且 a 1, a 3, a 7成等比数列.(I)求数列 {a n } 的通公式;( II ) T n数列的前n和,若T n≤¨ 恒建立,求数的最小.[ 分析 ] 122.解得(Ⅰ)公差 d. 由已知得⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯,因此3 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(Ⅱ),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分恒建立,即恒建立10.又∴的最小⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯已知数列前和,首,且,,成等差数列.12 分.(Ⅰ)求数列的通公式;( II )数列足,求:,[分析] (Ⅰ)成等差数列,∴,,当,,两式相减得:.因此数列是首,公比 2 的等比数列,.(6分)( Ⅱ),(8分),.(12 分)11. 等差数列 {a n } 各均正整数, a 1 =3,前n和S n,等比数列{b n}中, b1=1,且b 2 S2 =64, {} 是公比64 的等比数列 .( Ⅰ) 求 a n与 b n ;(Ⅱ) 明: + +⋯+ <.. [ 答案 ] ( Ⅰ ){a n } 的公差d, {b n }的公比q, d 正整数 ,a n =3+(n-1) d,b n =q n-1.依意有①由(6+d) q=64知q正有理数,又由q=知, d 6 的因子 1, 2, 3, 6之一,解①得d=2, q=8.故 a n =3+2(n-1) =2n+1, b n =8n-1.( Ⅱ) 明 :S n =3+5+⋯+(2n+1) =n(n+2) ,因此+ +⋯+ =+++⋯+==<.12.等比数列{a n}的各均正数, 且 2a 1+3a 2 =1,=9a 2a 6.( Ⅰ) 求数列 {a n }的通公式 ;( Ⅱ) b n =log 3 a 1+log3a 2 +⋯+log 3 a n ,求数列的前n和.[ 答案 ] ( Ⅰ ) 数列 {a n} 的公比q.由=9a 2 a 6得=9 , 因此 q 2=.因条件可知q>0,故q=..由 2a 1 +3a 2 =1 得 2a 1 +3a 1 q=1,因此a1=.故数列 {a n } 的通公式 a n=.( Ⅱ) b n =log 3 a 1+log3a 2 +⋯+log 3 a n=-(1+2+⋯+n)=-,故=-=-2,+ +⋯+ =-2++⋯+=-.因此数列的前 n 和 -.13. 等差数列 {a n } 的各均正数,a 1=3, 其前 n 和 S n ,{b n } 等比数列 ,b 1 =1, 且b 2 S2 =16,b3 S3 =60.( Ⅰ) 求 a n和 b n ;(Ⅱ)求+ +⋯+.[ 答案 ] ( Ⅰ ) {a n }的公差d, 且 d 正数 ,{b n }的公比q,a n =3+(n-1)d,b n=q n-1 ,依意有 b 2 S2 =q ·(6+d)=16,b 3 S3 =q 2·(9+3d)=60,(2分).解得 d=2,q=2.(4分)故 a n =3+2(n-1)=2n+1,b n =2n-1.(6分)( Ⅱ)S n =3+5+⋯+(2n+1)=n(n+2),(8分)因此+ +⋯+=+++⋯+=(10 分)== -.(12 分 )14. 数列 {a n } 的前 n 和 S n足 :S n =na n -2n(n-1).等比数列{b n}的前n和T n,公比a 1 ,且 T5 =T 3 +2b 5 .(1)求数列 {a n }的通公式 ;(2) 数列的前n和M n,求:≤M n<.[ 答案 ](1) ∵T5 =T 3+2b 5 ,∴b 4+b 5=2b 5,即 (a 1 -1)b 4 =0, 又 b 4≠0, ∴a1 =1.n ≥2,a n =S n -S n-1 =na n -(n-1)a n-1 -4(n-1),即(n-1)a n-(n-1)a n-1 =4(n-1).∵n-1 ≥1, ∴a n -a n-1 =4(n≥2),.∴数列{a n }是以 1 首 ,4 公差的等差数列,∴a n =4n-3. (6分)(2)明:∵==·,(8 分)∴M n =++ ⋯+==< ,(10 分)又易知 M n增 ,故 M n≥M 1=.上所述 , ≤M n < . (12分)。
裂项相消法数列求和例题
裂项相消法(Telescoping Series)是一种在数列求和中常用的技巧。
它适用于一些特定的数列,能够简化数列求和的过程。
下面我将通过一个例题来说明裂项相消法的应用。
考虑以下数列,\[1 \frac{1}{2} + \frac{1}{2} \frac{1}{3} + \frac{1}{3} \frac{1}{4} + \ldots + (-
1)^{n+1}\frac{1}{n}.\]
我们可以观察到每两项之间的部分可以相消,留下一个简化后的表达式。
具体来说,我们可以将相邻的两项相加,然后相减,这样中间的部分就会相消掉,只留下首尾两项的和。
这个过程可以写成如下形式:
\[S_n = \left(1 \frac{1}{2}\right) + \left(\frac{1}{2} \frac{1}{3}\right) + \left(\frac{1}{3} \frac{1}{4}\right) + \ldots + \left(\frac{1}{n-1} \frac{1}{n}\right) +
\left(\frac{1}{n} \frac{1}{n+1}\right).\]
观察上式,中间部分的项都相消了,只剩下了首项1和尾项\(-
1/n\)。
因此,数列的部分和可以简化为\[S_n = 1
\frac{1}{n+1}.\]
这个例子展示了裂项相消法在数列求和中的应用。
通过巧妙地调整数列中各项的组合方式,我们可以简化数列求和的过程,得到一个更加简洁的表达式。
希望这个例题能够帮助你理解裂项相消法的应用。
如果你还有其他关于数列求和或者裂项相消法的问题,欢迎继续提问。
数列裂项相消法数列裂项相消法是一种常用的数学技巧,用于求解一些复杂的数列求和问题。
以下是几个例子,说明该方法的应用。
例1:已知等差数列{an},其中a1=1,d=2,求前n项和Sn。
解:首先,我们可以将等差数列的通项公式表示为an=a1+(n-1)d=1+2(n-1)=2n-1。
然后,我们可以将前n项和表示为Sn=a1+a2+...+an。
接下来,我们使用裂项相消法,将相邻两项相加,得到:Sn=(1+3)+(3+5)+...+[(2n-3)+(2n-1)]=2+4+ (2)=n(n+1)例2:已知等比数列{an},其中a1=1,q=2,求前n项和Sn。
解:首先,我们可以将等比数列的通项公式表示为an=a1*q^(n-1)=2^(n-1)。
然后,我们可以将前n项和表示为Sn=a1+a2+...+an。
接下来,我们使用裂项相消法,将相邻两项相减,得到:Sn=(1-2)+(2-4)+...+[2^(n-2)-2^(n-1)]+2^(n-1)=-1-1-...-1+2^(n-1)=-(n-1)+2^(n-1)=(2^n)-1-(n-1)=(2^n)-n例3:已知数列{an},其中an=n^2,求前n项和Sn。
解:首先,我们可以将数列的通项公式表示为an=n^2。
然后,我们可以将前n项和表示为Sn=a1+a2+...+an。
接下来,我们使用裂项相消法,将相邻两项相减,得到:Sn=(1^2-0^2)+(2^2-1^2)+...+[n^2-(n-1)^2]=1+3+5+...+(2n-1)=n^2通过以上例子可以看出,裂项相消法是一种非常实用的数学技巧,可以用于求解各种复杂的数列求和问题。
需要注意的是,在使用该方法时,需要根据具体的数列类型和题目要求来选择合适的裂项方式。
创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*对于本题通项公式类型的数列,采用的“求前n项和”的方法叫“裂项相消法”——就是把通项拆分成“两项的差”的形式,使得恰好在求和时能够“抵消”多数的项而剩余少数几项。
很多题目要善于进行这种“拆分”请看几例:(1)本题:()()2211111nn n n nan n n n++===-++-+(变形过程中用了“分子有理化”技巧)得12233411111 11111 nn n nS n++ =++++==+ -----…【往下自己求吧!答案C 】(2)求和1111122334(1)nSn n=++++⨯⨯⨯+…解:通项公式:()()()1111111n n n a n n n n n n +-===-+++ 所以 111111*********n S n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭…1111n n n =-+=+(3)求和 1111377111115(41)(43)n S n n =++++⨯⨯⨯-+… 解:()()()()()()43411111141434414344143n n n a n n n n n n +--⎛⎫===- ⎪-+-+-+⎝⎭得 1111377111115(41)(43)n S n n =++++⨯⨯⨯-+ (11111111)143771111154143n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦… 1114343n ⎛⎫=- ⎪+⎝⎭ ()343nn =+(4)求和 1111132435(2)n S n n =++++⨯⨯⨯+… ()()()21111122222n n n a n n n n n n +-⎛⎫===- ⎪+++⎝⎭()()()()1111111113243546572112n S n n n n n n =++++++++⨯⨯⨯⨯⨯--++… 1111111111111112132435462112n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥--++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦…11111212n n =+--++ (仔细看看上一行里边“抵消”的规律 ) 311212n n =--++ 最后这个题,要多写一些项,多观察,才可能看出抵消的规律来。
经典研材料裂项相消法求和大全一、引言在研究材料的裂项性质时,求和是一个非常常见的操作。
而裂项相消法是一种常用的技巧,可以简化裂项求和的过程,并得到一个更加简洁的结果。
本篇文章将介绍一些经典的研材料裂项相消法求和的例子,希望可以帮助读者更好地理解和应用这一技巧。
二、裂项相消法求和的基本思路裂项相消法的基本思路是通过巧妙地加减项,使得一些项的系数相消,从而得到一个更简单的求和结果。
下面将介绍一些常用的裂项相消法。
三、具体示例1.例题一求和S=1-2+3-4+5-6+...+(-1)^n*n的值。
解:我们可以观察到这个求和式的两项之间有一定的规律。
可以发现,每两个相邻的项都是一正一负,并且绝对值递增。
因此,我们可以尝试将这两项相加进行简化。
S=(1-2)+(3-4)+(5-6)+...+[(-1)^(n-1)*n+(-1)^n*(n+1)]通过配对相加的方式,可以得到:S=-1+(-1)+(-1)+...+(-1)=-n因此,求和S的值为-n。
2.例题二求和S=1*2+2*3+3*4+...+(n-1)*n的值。
解:我们可以观察到这个求和式的每一项都是两个因数的乘积,并且这两个因数的差值为1、因此,我们可以尝试将这两项相减进行简化。
S=(1*2)+(2*3)+(3*4)+...+[(n-1)*n]通过配对相减的方式,可以得到:S=(2-1)+(3-2)+(4-3)+...+(n-(n-1))S=1+1+1+...+1=n-1因此,求和S的值为n-13.例题三求和S=1+3+6+10+15+...+n(n+1)/2的值。
解:我们可以观察到这个求和式的每一项都是一个等差数列的前n项和,而这个等差数列的公差为1、因此,我们可以尝试构造一个等差数列来进行简化。
S=1+3+6+10+15+...+n(n+1)/2将每一项用等差数列的前n项和来表示:S=(1+2+3+4+...+n)+(2+3+4+5+...+n)+(3+4+5+6+...+n)+...+(n(n+1)/2)可以观察到,每一项的相邻两项有很多项是相同的,只有前k项相同,后面的一些项就不同了。