8.羰基合成(新)
- 格式:ppt
- 大小:1.65 MB
- 文档页数:78
羰基化学合成的新技术分析及应用王㊀鹏,汤永飞摘㊀要:化工技术在工业体系中发挥的作用越来越大,很多化工产品在社会中的需求量较大,其中羰基化学品及其合成物是重要的化学产品㊂首先,分析了羰基化学合成技术的基本概念,其次,阐述了羰基化学合成的具体新技术,并对羰基化学合成技术的相关应用情况进行了分析㊂关键词:羰基;化学合成;新技术一㊁引言羰基化学品在化工体系中占有重要的地位,如对羰基苯甲醛是一种较为精细化的化工品㊂在该化工品中,羰基和醛基较为活泼,容易发生化学反应,并可以用来合成其他多种类型的化学产品㊂文章系统分析了丁辛醇羰基合成催化剂化学再生方法㊁羧酸及其衍生物的合成等羰基化学合成技术,及其在实际应用中所具备的优势㊂二㊁羰基化学合成羰基化学合成是化工系统中常采用的方法,丁醇和辛醇可以在同一套装置中用羟基合成的方法生产,故习惯称为丁辛醇㊂丁辛醇是合成精细化工产品的重要原料,主要用于生产增塑剂㊁溶剂㊁脱水剂㊁消泡剂㊁分散剂㊁浮选剂㊁石油添加剂及合成香料等㊂中国丁辛醇产业已处产能过剩边缘,行业饱和度整体处于较高水平,基本实现自给自足格局㊂通过羰基化学合成反应,研发上述化学产品,在实际应用中具有重要意义㊂三㊁羰基化学合成的新技术分析(一)丁辛醇羰基合成催化剂化学再生方法对于丁辛醇羰基合成催化剂化学再生方法,它包括以下步骤:第一,除掉丁辛醇羰基合成催化剂母液中游离状态的S2-和Cl-;第二,除掉丁辛醇羰基合成催化剂母液中杂质与贵金属络合形成的贵金属络合物中的杂质;第三,然后将再生剂C加入催化剂母液中和过量的再生剂B,再生剂C为有机酸;第四,用再生剂A反复洗涤丁辛醇羰基合成催化剂母液数次,直至洗掉母液中残余的再生剂B和再生剂C为止㊂采用这种方法降低了丁辛醇羰基合成催化剂中金属离子Fe3+,Ne2+和S2-等金属离子,降低了丁辛醇羰基合成催化剂中永久性中毒的离子,激发了催化活性㊂在丁辛醇羰基合成催化剂化学再生方法中,在非生产状态下的丁辛醇羰基合成反应工艺条件下,将再生剂A与丁辛醇羰基合成催化剂母液均匀混合,对存在于丁辛醇羰基合成催化剂母液中的游离状态的S2-和Cl-进行洗涤,使催化剂母液中产生丁辛醇羰基合成催化剂相和再生剂A相分层,S2-和Cl-转移到再生剂A相中,保留丁辛醇羰基合成催化剂相,排掉再生剂A相,再生剂A相为脱盐水㊂(二)β-取代羧酸及其衍生物的合成从现有的报道来看,构建重要的有机合成中间体与众多药物活性分子的核心骨架的β-羰基取代的羰基类化合物利用脱羧-Aldol反应来实现㊂但是,由于对该类反应认识的局限,存在底物结构受限㊁产物收率很低㊁对映选择性差等缺陷㊂在此基础上,设计开发新的底物结构,实现一类结构新颖的β羰基酸类化合物的合成具有重要的理论研究意义和实际应用价值㊂此外,现有的报道具有诸多局限,构建高立体选择性的β羰基酸类化合物以及含多官能团的β羰基酸类化合物的报道极少㊂基于此,进一步了解脱羧加成反应的性质,拓展该反应类型和应用,为β羰基酸骨架结构分子提供了新的技术和途径㊂为此可以采用一种β羰基酸类化合物的合成方法,该方法操作简单㊁产品质量好,具有较高的推广及应用价值㊂在该方法的技术方案中,以α,β不饱和酮酸酯类化合物与丙二酸为原料,在有机溶剂A中,加入金属与手性配体以摩尔比1ʒ1 1.5混合反应10 120分钟得到催化剂,在0 60ħ温度的条件下直接充分反应3 120小时,反应完毕后经过分离纯化得到所述脱羧aldol加成的β羰基酸类化合物㊂四㊁羰基化学合成新技术的应用羰基化学合成新技术在实际中的应用较为广泛,丁辛醇羰基合成装置中的催化剂母液从原始投料运行后,随着催化剂母液的长时间运行,催化活性会慢慢降低,同时由于反应原料(合成气㊁丙烯)㊁溶剂(丁醛)带入的一些毒剂㊁抑制剂(如S㊁ci等),会造成催化活性迅速降低㊂对毒剂而言,生产工艺中对原料(合成气㊁丙烯)中的有毒成分都有严格的控制指标,且丁辛醇羰基合成反应工艺对原料设计了净化装置,实行严格的脱毒工艺,催化剂的活性只会缓慢下降㊂抑制剂能引起催化剂活性降低,但这种降低不是永久性的㊂在反应系统中的主要抑制剂包括:羧酸(丁酸)㊁乙基丙基丙烯醛(EPA)㊁丙基二苯基膦(ropp)㊁丁二烯/丙二烯等㊂故在实际应用中可以采用一种从烯烃淡基化催化剂废液中回收金属铑的方法㊂该方法采用减压蒸馏㊁蒸发和灰化的方法对金属铑进行回收,特别对于低浓度铑废液中铑的回收效果较为理想㊂回收铑粉后,再合成铑配合物催化剂㊂该方法是基于铑配合物催化剂废液中铑粉的再回收,工艺流程长,铑粉在整个回收过程中损失大㊂通过化学合成反应,最终合成所需要的产品,满足实际应用需求㊂五㊁结语随着羰基化学品合成技术水平的提高,近年来,在化工生产实际中也采用了很多羰基化学合成新技术,对于推动羰基化学合成技术水平的提高具有重要的一样㊂文章所分析的羰基化学合成技术,在实际的化工生产中可以加以采用㊂参考文献:[1]付双滨,秦玉升,乔立军,等.高伯羰基含量聚(碳酸酯-醚)多元醇的制备[J].高分子学报,2019,v.50(4):20-25.[2]罗米娜,朱鹏飞,陈馥,等.2-羰基-1-萘甲醛缩邻苯二胺席夫碱及其铜(II)配合物的合成及组成测定:介绍一个大学化学综合实验[J].大学化学,2019,35(4):65-67.[3]姚坤,刘浩,袁乾家,等.钯催化三组分烯丙基串联反应:化学专一性合成N-酰亚甲基-2-吡啶酮[J].化学学报,2019(10):45-47.作者简介:王鹏,汤永飞,南京诚志清洁能源有限公司㊂491。
羰基化过程第⼋章羰基化过程8.3 甲醇羰基化合成醋酸1.醋酸的⽤途:醋酸是重要的有机原料,主要⽤于⽣产醋酸⼄烯、醋酐、对苯⼆甲酸、聚⼄烯醇、醋酸酯、氯⼄酸、醋酸纤维素等。
醋酸也⽤于医药、农药、染料、涂料、合成纤维、塑料和黏合剂等⾏业。
⼯业上醋酸的⽣产⽅法有多种,但以甲醇为原料羰基合成醋酸⼯艺,不但原料价廉易得,⽽且⽣成醋酸的选择性⾼达99%以上,基本上⽆副产物;投资省,⽣产费⽤低,相对⼄醛氧化法有明显的优势。
8.3.1 甲醇羰化反应合成醋酸的基本原理甲醇羰化反应合成醋酸主要有BASF⾼压法与孟⼭都低压法,⼆种⽅法的化学原理基本相同,反应过程⼤同⼩异。
8.3.1.1 ⾼压法甲醇羰化反应合成醋酸基本原理BAsF⾼压法采⽤钴碘催化循环,过程如图所⽰。
整个催化反应⽅程式如下:Co2(CO)8(催化剂)CH3COOH + HI HCo(CO)4CH3I + H2O(络合物1)CHCOI (络合物5) CH3(络合物2)+ HICH3COCo(CO)4CH3COCo(CO)4(络合物4)(络合物3)对应反应式见P380(8-22)-(8-29).上述反应中,⾸先是Co2(CO)8(催化剂原位)与H2O +CO反应得到HCo(CO)4 (络合物1),CH3OH与HI反应得到CH3I(碘甲烷),CH3I(碘甲烷)⼜与HCo(CO)4 (络合物1)反应得到CH3Co(CO)4(络合物2)+ HI,HI完成⼀个循环。
CH3Co(CO)4(络合物2)与H2O反应转化为CH3COCo(CO)4(络合物3), CH3COCo(CO)4(络合物3)与CO反应得到CH3COCo(CO)4络合物4), (络合物4)与HI反应得到(络合物5), (络合物5)与H2O反应的到CH3COOH + HCo(CO)4 +HI,HI完成了另⼀个循环, HCo(CO)4(络合物1)也完成了⼀个循环.上述⼀系列复杂的反应过程要求在较⾼的温度下才能保持合理反应速率,⽽为了在较⾼温度下稳定[Co(CO)4]-(络合物1)]配位化合物,必须提⾼⼀氧化碳分压,从⽽决定了⾼压法⽣产⼯艺的苛刻反应条件。
摘要基于合成丙烯酸(酯)、丁二酸酸酐、丁烯二酸二丁酯和丙烯醛等系列有机产品进行了综述.重点探讨了乙炔羰基合成丙烯酸(酯)的催化剂和反应工艺条件.镍基和钯基催化剂是催化乙炔羰基合成:对乙炔羰丙烯酸(酯)的良好催化剂,同时钯基催化剂也是催化乙炔羰基合成丁二酸酸酐和丁烯二酸二酯的良好催化剂.镍基和钯基催化剂的复合及负载化是今后乙炔羰基合成研究的主要发展方向关键词:乙炔;羰基合成;丁二酸酸酐;丁烯二酸二酯;镍基和钯基催化剂二、前言2.1羰基的性质由于氧的强吸电子性,碳原子上易发生亲核加成反应。
其它常见化学反应包括:亲核还原反应,羟醛缩合反应。
2.1.1羟醛缩合在稀碱或稀酸的作用下,两分子的醛或酮可以互相作用,其中一个醛(或酮)分子中的α-氢加到另一个醛(或酮)分子的羰基氧原子上,其余部分加到羰基碳原子上,生成一分子β-羟基醛或一分子β-羟基酮。
这个反应叫做羟醛缩合或醇醛缩合(aldolcondensation)。
通过醇醛缩合,可以在分子中形成新的碳碳键,并增长碳链。
羟醛缩合反应历程,以乙醛为例说明如下:第一步,碱与乙醚中的α-氢结合,形成一个烯醇负离子或负碳离子:第二步是这个负离子作为亲核试剂,立即进攻另一个乙醛分子中的羰基碳原子,发生加成反应后生成一个中间负离子(烷氧负离子)。
第三步,烷氧负离子与水作用得到羟醛和OH。
稀酸也能使醛生成羟醛,但反应历程不同。
酸催化时,首先因质子的作用增强了碳氧双键的极化,使它变成烯醇式,随后发生加成反应得到羟醛。
生成物分子中的α-氢原子同时被羰基和β-碳上羟基所活化,因此只需稍微受热或酸的作用即发生分子内脱水而生成,α,β-不饱和醛。
凡是α-碳上有氢原子的β-羟基醛、酮都容易失去一分子水。
这是因为α-氢比较活泼,并且失水后的生成物具有共轭双键,因此比较稳定。
除乙醛外,由其他醛所得到的羟醛缩合产物,都是在α-碳原子上带有支链的羟醛或烯醛。
羟醛缩合反应在有机合成上有重要的用途,它可以用来增长碳链,并能产生支链。
羰基氧化成羧基全文共四篇示例,供读者参考第一篇示例:羰基氧化成羧基是有机化学中一种重要的反应类型,也是有机合成中常见的一种转化过程。
在这一反应中,含有羰基的有机物通过氧化反应,将羰基上的氧原子转化为羧基上的一个羟基,形成羧基化合物。
这个过程在有机合成中具有重要意义,可以通过研究羰基氧化成羧基的机理和条件,设计出合成目标物的高效合成路线。
在有机化学中,羰基是一个常见的官能团,包括醛、酮和酸酐等化合物。
羰基氧化成羧基的过程可以通过氧化剂来实现,常用的氧化剂包括过氧化氢、高锰酸钾、二氧化氯等。
在适当的条件下,这些氧化剂可以将羰基上的氧原子氧化为羧基上的羟基,完成羧基化的反应。
羰基氧化成羧基的反应往往发生在碱性条件下。
通常情况下,碱性条件有助于加速氧化反应的进行,并且也有利于形成羧基化合物。
在碱性溶液中,羰基的C=O键可以先被氧化为醌,然后再氧化为羧基。
这种氧化过程在有机合成中被广泛应用,例如在醛酮类化合物的氧化反应、有机合成路线设计中等。
除了碱性条件外,温度和氧化剂的选择也对羰基氧化成羧基的反应过程有着重要的影响。
在适当的温度下,氧化剂可以有效地将羰基氧化为羧基,而不会导致不可逆反应或者生成副产物。
在设计反应条件时,需要考虑到温度、氧化剂的选择以及反应时间等因素,以获得理想的反应结果。
羰基氧化成羧基的反应机理涉及多种氧化反应中间体的生成和转化过程。
一般而言,羰基氧化反应是一个有机物质氧化的过程,羰基上的氧原子被氧化剂氧化生成羧基。
氧化剂通常是一种高氧化态的氧化剂,可以释放氧原子进行氧化反应。
羰基上的氧原子在氧化过程中首先被转化为醌,然后再进一步氧化成羧基。
这种逐步氧化的过程可以通过一系列中间体来实现,其中包括过渡态和离子化合物等。
第二篇示例:羰基氧化成羧基是一种重要的有机化学反应。
在这个过程中,一个羰基(含有羰基官能团的化合物)被氧化成一个羧基(含有羧基官能团的化合物)。
这个反应在有机合成中具有广泛的应用,在制备各种化合物中起着重要的作用。
羰基合成羰基合成羰基合成正文又称氢甲酰化。
烯烃与一氧化碳和氢气在催化剂作用下,在烯烃双键上同时加上氢原子和甲酰基生成比原来烯烃多一个碳原子的两种异构醛的反应过程。
由于工业中最终产品为醇,因此又常把醛加氢为醇的反应包括在羰基合成中。
羰基合成是羰化(或羰基化)的一种,后者是指把CO引入另一个分子中的反应,如甲醇羰化生产醋酸(见彩图)。
1930年,美国D.F.史密斯等首先发现乙烯和水煤气在钴催化剂作用下,可以得到醛和醇。
这一发现促使利用氢甲酰化反应生产洗涤剂用高碳醇(链长C12~C14)的开发研究。
1938年,德国鲁尔化学公司O.勒伦获乙烯的氢甲酰化生成丙醛的专利,第二次世界大战中,在德国首先建成了利用羰基合成过程生产合成醇的工业装置,但未生产。
1945年建成第一个羰基合成生产高级脂肪醛的10kt规模装置,用来生产合成洗涤剂。
1963年,美国壳牌公司用改进的钴催化剂由丙烯生产正丁醇和α-乙基己醇,其后又生产用于合成洗涤剂的高碳醇。
1976年,美国联合碳化物公司又开发了用铑催化剂进行丙烯氢甲酰化的过程。
类型羰基合成是均相液相反应过程,实际生产过程,可分为两种情况:①在钴或铑催化剂作用下,烯烃与氢及一氧化碳进行氢甲酰化生成两种异构醛,经分离出催化剂后,在另一反应器中,再催化加氢成醇:②在改进的钴催化剂作用下,在同一反应器中同时进行烯烃、氢与一氧化碳的氢甲酰化反应和醛的催化加氢反应而制得醇。
催化剂各种过渡金属羰基络合物对氢甲酰化反应均有催化作用。
但只有钴和铑的羰基络合物用于工业化生产。
①钴催化剂:主要采用八羰基二钴【Co2(CO)8】。
它可以预先制成,然后加入反应器中;也可用金属钴、钴的氧化物、碳酸钴或钴的脂肪酸盐,在反应器中与原料气一氧化碳和氢反应制得。
在反应条件下,由Co2(CO)8生成的四羰基氢钴【HCo(CO)4】,是催化活性体。
Co2(CO)8即使在室温下也极易分解。
为了保持更多的HCo(CO)4,反应须在较高的一氧化碳分压下进行。
【羰基合成与选择氧化国家重点实验室贡献】序羰基合成是有机合成领域中一个重要的反应类型,它在药物合成、材料合成以及天然产物合成等方面具有广泛的应用。
而选择氧化国家重点实验室则是我国科学院下属的一个重要研究机构,致力于材料科学和化学领域的研究与创新。
本文将通过对羰基合成与选择氧化国家重点实验室的贡献进行深入探讨,希望能够为读者全面、深刻地呈现这一主题内容。
一、羰基合成的基本原理与应用在有机化学中,羰基合成是一种重要的合成方法,它主要是指含有羰基(C=O)官能团的化合物的合成反应。
羰基合成可以通过酰基化、羟醛缩合、卡宴-瑞乐梯这些常见的反应来实现。
该合成方法在药物合成、香料合成、高分子合成以及化学工业中都具有重要的应用。
传统的非类固醇抗炎药、激素类药物等都是通过羰基合成方法合成的。
另外,在农药合成、天然产物合成以及有机合成化学品的生产过程中,羰基合成也起着举足轻重的作用。
(在文章中多次提及羰基合成这一主题词,突出其重要性和应用范围)二、选择氧化国家重点实验室的介绍选择氧化国家重点实验室成立于1986年,是我国科学院下属的一个国家重点实验室,也是我国材料科学和化学领域的研究与创新中心。
实验室主要围绕氧化物材料的设计、制备与应用展开研究工作,包括固体电子器件、催化剂、新能源材料以及环境净化材料等方面。
实验室拥有一支高水平的科研团队,取得了一系列重要的研究成果,并在国内外产生了广泛的影响。
(在文章中多次提及选择氧化国家重点实验室,突出其在材料科学和化学领域的地位和作用)三、羰基合成在选择氧化国家重点实验室的贡献选择氧化国家重点实验室在羰基合成领域作出了重要的贡献。
通过对新型载体、催化剂以及反应条件的优化,实验室为羰基合成提供了一系列高效、高选择性的合成方法。
实验室团队利用稀土掺杂氧化物材料设计了一种新型催化剂,成功实现了对芳香酮类化合物的选择性羰基化反应。
这项研究成果不仅提高了反应的转化率和产率,还减少了副反应产物的生成,具有重要的应用潜力。
课后习题思考题(第一章)1 现代化学工业的特点是什么?2 化学工艺学的研究范畴是什么3 简述石油化工原料乙烯的用途4 利用合成气可以合成哪些产品5 你觉得应该如何来学习该门课程?6 化学工艺与化学工程有何不同?思考题(第二章)√1 为什么说石油、天然气和煤是现代化学工业的重要原料资源?它们的综合利用途径有哪些?2生物质和再生资源的利用前景如何?3 何谓化工生产工艺流程?举例说明工艺流程是如何组织的。
4 何谓循环式工艺流程?它有什么优缺点?5 何谓转化率?何谓选择性?对于多反应体系,为什么要同时考虑转化率和选择性两个指标?6 催化剂有哪些基本特征?它在化工生产中起到什么作用?在生产中如何正确使用催化剂?7 在天然气开采中,有时可获得含有C6~C8烃类的天然汽油,为了改善其辛烷值,用蒸馏塔除去其中的轻组分。
如果天然汽油、塔顶馏出物和塔底中等辛烷值汽油的摩尔百分数组成为:物料名称天然汽油中等辛烷值汽油塔顶馏出物1. C6H14 25 0602. C7H16 25 3 03. C8H18 50 1 0假设它们的密度为0.8g/cm3,那么,从5000桶天然汽油中能生产出多少吨中等辛烷值汽油?(1桶 = 42 US加仑, 1US加仑=, 1dm3 =103cm3)8 某蒸馏柱分离苯-甲苯混合物,其质量组成各占50%,进料流量为10000kg/d,从柱顶冷凝器回收的产品含95%苯;柱底馏出物含95%甲苯。
离开柱顶进入冷凝器的产物蒸气流量是8000kg/d,全部冷凝为液体后,部分产品作为回流液返回蒸馏柱的上部,其余取出即为产品。
求回流与取出产品量之比。
在一个加氢裂化器中,较大分子烃经加氢裂解成较小分子烃。
已知输入和输出的烃类组成为:a) 烃类输入输出b) C5H12 10 mol%c) C6H14 40 mol%d) C7H16 20 mol%e) C12H26 100 mol% 30 mol%(1)每100 kmol原料烃可生产出多少C5~C7烃产品?(2)每100 kmol原料烃消耗多少氢气?(3)如果原料烃的密度是0.9 g/cm3,输出烃的密度是0.8 g/cm3,那么每输出10 m3的烃物料需要输入多少m3原料烃?9 假设某天然气全是甲烷,将其燃烧来加热一个管式炉,燃烧后烟道气的干基摩尔组成为%N2、%O2、%CO2。
一、概述羰基的加成反应是有机化学中一种重要的反应类型,具有广泛的应用价值。
本文将探讨羰基的加成反应在有机合成中的应用。
二、羰基的加成反应基本原理1. 羰基的结构特点羰基是含有碳氧双键的有机化合物官能团,一般表示为“C=O”。
羰基通常分为醛、酮和羧酸三种类型,它们具有较强的电性,是有机合成中常见的反应物和产物。
2. 羰基的加成反应羰基的加成反应是指具有亲核试剂(如胺、醇等)与羰基发生亲核加成反应,形成加成产物的过程。
这种反应通常在碱性或酸性条件下进行,产物可以是醇、醛、酮、羧酸等化合物。
三、羰基的加成反应在有机合成中的应用1. 羰基的还原羰基的加成反应可用于醛酮的还原反应,常见的还原试剂有金属氢化物(如氢化钠、氢化铝锂等)和还原醇(如醇、胺等)等。
借助该反应,可以将醛酮还原为相应的醇,扩大有机合成的应用范围。
2. 羰基的羟化反应在羰基的加成反应中,羟胺(氨和水的混合物)可以与醛酮发生羟化反应,形成羟醇。
这种反应被广泛应用于药物合成和其他有机合成领域,具有重要的化学和生物活性。
3. 羰基的羟胺加成在温和的酸性条件下,羟胺可以与羰基形成加成产物。
该反应常用于合成β-羟基酮或β-羟基醛的过程中,产物可以进一步转化为药物分子或生物活性分子。
4. 羰基的羟胺甲酰化在适当的反应条件下,羰基与羟胺发生甲酰化反应,生成羰基甲酰胺。
这种反应在药物合成和有机合成中具有重要的应用价值,可以构建含氨基酰胺结构的化合物。
5. 羰基的醇加成在碱性条件下,醇可以与羰基形成加成产物。
这种反应常用于合成醛醇或酮醇的过程中,产物在有机合成中具有重要的应用价值。
6. 羰基的氧化反应在适当的氧化条件下,羰基可以与氧化剂发生氧化反应,形成羧酸。
这种反应在生物活性分子或有机合成中具有重要的应用价值。
7. 羰基的胺加成在适当的酸性条件下,胺可以与羰基形成加成产物。
这种反应在合成酰胺类化合物中具有重要的应用价值,是有机合成中一种有效的方法。
四、结论羰基的加成反应在有机合成中具有广泛的应用价值,可以用于合成各种类型的有机化合物,包括醇、醛、酮、羧酸等。