《应用多元统计分析》第05章_聚类分析
- 格式:ppt
- 大小:1.88 MB
- 文档页数:86
应用多元统计分析聚类分析多元统计分析是一种利用多个变量对数据进行综合分析的方法,通过对各个变量之间的关系进行分析,可以帮助我们了解数据的内在规律,揭示变量之间的相互作用,为问题的解决提供依据和参考。
其中,聚类分析是多元统计分析中的一种方法,它通过将样本数据划分为不同的组别,使得组内的样本之间相似度较高,组间的样本相似度较低,从而实现数据的分类和整理。
聚类分析的过程一般可分为以下几个步骤:1.确定聚类的目标与方法:在进行聚类分析之前,需要明确分析的目标,即希望把样本分成多少个组别,以及采用什么样的分析方法。
2.选择合适的变量和数据:聚类分析需要选择一些具有代表性的变量作为分析对象,并准备好相应的数据。
这些变量可以是数值型、名义型或顺序型的,但需要注意的是,不同类型的变量需要采用不同的距离度量。
3.计算样本间的距离:通过选择合适的距离度量方法,可以度量各个样本之间的相似度或距离,常用的距离度量方法有欧氏距离、曼哈顿距离和相关系数等。
4.执行聚类分析:根据选定的聚类方法,进行聚类分析。
常用的聚类方法有层次聚类和非层次聚类两种,其中层次聚类可以进一步分为凝聚聚类和分裂聚类等。
5.判断聚类结果的合理性:根据实际情况和问题要求,对得到的聚类结果进行合理性检验。
可以通过观察不同聚类组别内的样本特征和组间的差异度,评估聚类结果的合理性。
6.解释和应用聚类结果:根据聚类分析得到的结果,可以对分类的样本进行解释和应用。
例如,可以找到各个类别的典型样本,分析其特征和规律,为问题的解决提供参考和支持。
聚类分析在实际应用中具有很广泛的应用价值。
例如,在市场细分方面,可以利用聚类分析将消费者划分为不同的群体,有针对性地开展精准营销;在医药领域中,可以通过聚类分析将疾病患者划分为不同的病种,帮助医生进行诊断和治疗方案的选择;在社会科学研究中,可以利用聚类分析将受访者划分为不同的人群,通过对不同人群的特征分析,了解社会问题背后的机制和原因。
多元统计分析-聚类分析聚类分析是⼀个迭代的过程对于n个p维数据,我们最开始将他们分为n组每次迭代将距离最近的两组合并成⼀组若给出需要聚成k类,则迭代到k类是,停⽌计算初始情况的距离矩阵⼀般⽤马⽒距离或欧式距离个⼈认为考试只考 1,2⽐较有⽤的⽅法是3,4,5,8最喜欢第8种距离的计算 欧式距离 距离的⼆范数 马⽒距离 对于X1, X2均属于N(u, Σ) X1,X2的距离为 (X1 - X2) / sqrt(Σ)那么不同的聚类⽅法其实也就是不同的计算类间距离的⽅法1.最短距离法 计算两组间距离时,将两组间距离最短的元素作为两组间的距离2.最长距离法 将两组间最长的距离作为两组间的距离3.中间距离法 将G p,G q合并成为G r 计算G r与G k的距离时使⽤如下公式 D2kr = 1/2 * D2kp + 1/2 * D2kq + β * D2pq β是提前给定的超参数-0.25<=β<=04.重⼼法 每⼀组都可以看成⼀组多为空间中点的集合,计算组间距离时,可使⽤这两组点的重⼼之间的距离作为类间距离 若使⽤的是欧⽒距离 那么有如下计算公式 D2kr = n p/n r * D2kp + n q/n r * D2kq - (n p*n q / n r*n r ) * D2pq5.类平均法 两组之间的距离 = 组间每两个样本距离平⽅的平均值开根号 表达式为D2kr = n p/n r * D2kp + n q/n r * D2kq6.可变类平均法 可以反映合并的两类的距离的影响 表达式为D2kr = n p/n r *(1- β) * D2kp + n q/n r *(1- β) * D2kq + β*D2pq 0<=β<17.可变法 D2kr = (1- β)/2 * (D2kp + D2kq) + β*D2pq8.离差平⽅和法 这个⽅法⽐较实⽤ 就是计算两类距离的话,就计算,如果将他们两类合在⼀起之后的离差平⽅和 因为若两类本⾝就是⼀类,和本⾝不是⼀类,他们的离差平⽅和相差较⼤ 离差平⽅和:类中每个元素与这⼀类中的均值距离的平⽅之和 若统⼀成之前的公式就是 D2kr = (n k + n p)/(n r + n k) * D2kp + (n k + n q)/(n r + n k) -(n k)/(n r + n k) * * D2pq⼀些性质 除了中间距离法之外,其他的所有聚类⽅法都具有单调性 单调性就是指每次聚类搞掉的距离递增 空间的浓缩和扩张 D(A)>=D(B) 表⽰A矩阵中的每个元素都不⼩于B D(短) <= D(平) <= D(长) D(短,平) <= 0 D(长,平) >= 0 中间距离法⽆法判断。