应用多元统计分析 北大版 第一章
- 格式:ppt
- 大小:463.50 KB
- 文档页数:76
精心整理第一章多元分析概述第一节引言多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法。
近30年来,随着计算机应用技术的发展和科研生产的迫切需要,多元统计分析技术被广泛地应用于地质、气象、水文、医学、工业、农业和经济等许多领域,已经成为解、H.Hotelling 、、许宝騄等人作了一系列得奠基性工作,使多元分析在理论上得到了迅速得发展。
20世纪40年代在心理、教育、生物等方面有不少得应用,但由于计算量大,使其发展受到影响,甚至停滞了相当长得时间。
20世纪50年代中期,随着电子计算机得出现和发展,使多元分析方法在地质、气象、医学、社会学等方面得到广泛得应用。
20世纪60年代通过应用和实践又完善和发展了理论,由于新的理论、新的方法不断涌现又促使它的应用范围更加扩大。
20世纪70年代初期在我国才受到各个领域的极大关注,并在多元统计分析的理论研究和应用上也取得了很多显着成绩,有些研究工作已达到国际水平,并已形成一支科技队伍,活跃在各条战线上。
在20世纪末与本世纪初,人们获得的数据正以前所未有的速度急剧增加,产生了很多超大型数据库,遍及超级市场销售、银行存款、天文学、粒子物理、化学、质学、社会学、考古学、环境保护、军事科学、文学等方面都有广泛的应用,这里我们例举一些实际问题,进一步了解多元统计分析的应用领域,让读者从感性上加深对多元统计分析的认识。
1、城镇居民消费水平通常用八项指标来描述,如人均粮食支出、人均副食支出、人均烟酒茶支出、人均衣着商品支出、人均日用品支出、人均燃料支出、人均非商品支出。
这八项指标存在一定的线性关系。
为了研究城镇居民的消费结构,需要将相关强的指标归并到一起,这实际就是对指标进行聚类分析。
2、在企业经济效益的评价中,涉及到的指标往往很多,如百元固定资产原值实现产值、百元固定资产原值实现利税、百元资金实现利税、百元工业总产值实现利税、百元销售收入实现利税、每吨标准煤实现工业产值、每千瓦时电力实现工业产值、345他们每个人若干项症状指标数据。
第一章多元分析概述第一节引言多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法。
近30年来,随着计算机应用技术的发展和科研生产的迫切需要,多元统计分析技术被广泛地应用于地质、气象、水文、医学、工业、农业和经济等许多领域,已经成为解决实际问题的有效方法。
然而,随着In ternet的日益普及,各行各业都开始采用计算机及相应的信息技术进行管理和决策,这使得各企事业单位生成、收集、存储和处理数据的能力大大提高,数据量与日俱增,大量复杂信息层出不穷。
在信息爆炸的今天,人们已经意识到数据最值钱的时代已经到来。
显然,大量信息在给人们带来方便的同时也带来一系列问题。
比如:信息量过大,超过了人们掌握、消化的能力;一些信息真伪难辩,从而给信息的正确应用带来困难;信息组织形式的不一致性导致难以对信息进行有效统一处理等等,这种变化使传统的数据库技术和数据处理手段已经不能满足要求.In ternet 的迅猛发展也使得网络上的各种资源信息异常丰富,在其中进行信息的查找真如大海捞针。
这样又给多元统计分析理论的发展和方法的应用提出了新的挑战。
多元统计分析起源于上世纪初,1928年Wishart发表论文《多元正态总体样本协差阵的精确分布》,可以说是多元分析的开端。
20世纪30年代R.A. Fisher 、H.Hotelling 、S.N.Roy、许宝騄等人作了一系列得奠基性工作,使多元分析在理论上得到了迅速得发展。
20世纪40年代在心理、教育、生物等方面有不少得应用,但由于计算量大,使其发展受到影响,甚至停滞了相当长得时间。
20世纪50年代中期,随着电子计算机得出现和发展,使多元分析方法在地质、气象、医学、社会学等方面得到广泛得应用。
20世纪60年代通过应用和实践又完善和发展了理论,由于新的理论、新的方法不断涌现又促使它的应用范围更加扩大。
20世纪70年代初期在我国才受到各个领域的极大关注,并在多元统计分析的理论研究和应用上也取得了很多显著成绩,有些研究工作已达到国际水平,并已形成一支科技队伍,活跃在各条战线上。
第一章绪论§1.1 什么是多元统计分析在工业、农业、医学、气象、环境以及经济、管理等诸多领域中,常常需要同时观测多个指标。
例如,要衡量一个地区的经济发展,需要观测的指标有:总产值、利润、效益、劳动生产率、万元生产值能耗、固定资产、流动资金周转率、物价、信贷、税收等等;要了解一种岩石,需观测或化验的指标也很多,如:颜色、硬度、含碳量、含硫量等等;要了解一个国家经济发展的类型也需观测很多指标,如:人均国民收入,人均工农业产值、人均消费水平等等。
在医学诊断中,要判断某人是有病还是无病,也需要做多项指标的体检,如:血压、心脏脉搏跳动的次数、白血球、体温等等。
总之,在科研、生产和日常生活中,受多种指标共同作用和影响的现象是大量存在的,举不胜举。
上述指标,在数学上通常称为变量,由于每次观测的指标值是不能预先确定的,因此每个指标可用随机变量来表示。
如何同时对多个随机变量的观测数据进行有效的统计分析和研究呢?一种做法是把多个随机变量分开分析,一次处理一个去分析研究;另一种做法是同时进行分析研究。
显然前者做法有时是有效的,但一般来说,由于变量多,避免不了变量之间有相关性,如果分开处理不仅会丢失很多信息,往往也不容易取得好的研究结果。
而后一种做法通常可以用多元统计分析方法来解决,通过对多个随机变量观测数据的分析,来研究变量之间的相互关系以及揭示这些变量内在的变化规律,如果说一元统计分析是研究一个随机变量统计规律的学科,那么多元统计分析则是研究多个随机变量之间相互依赖关系以及内在统计规律性的一门统计学科,同时,利用多元分析中不同的方法还可以对研究对象进行分类(如指标分类或样品分类)和简化(如把相互依赖的变量变成独立的或降低复杂集合的维数等等)。
在当前科技和经济迅速发展的今天,在国民经济许多领域中特别对社会经济现象的分析,只停留在定性分析上往往是不够的。
为提高科学性、可靠性,通常需要定性与定量分析相结合。
实践证明,多元分析是实现做定量分析的有效工具。
《多元统计分析》目录前言第一章基本知识﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5 §1·1总体,个体与样本﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5 §1·2样本数字特征与统计量﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍6 §1·3一些统计量的分布﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍9 第二章统计推断﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍15 §2·1参数估计﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍15 §2·2假设检验﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍19 第三章方差分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍32 §3·1一个因素的方差分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍32 §3·2二个因素的方差分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍37 §3·3用方差分析进行地层对比﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍44 第四章回归分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍49 §4·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍49 §4·2回归方程的确定﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍49 §4·3相关系数及其显着性检验﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍52 §4·4回归直线的精度﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍55 §4·5多元回归分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍56 §4·6应用实例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍60 第五章逐步回归分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍65 §5·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍65 §5·2“引入”和“剔除”变量的标准﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍66 §5·3矩阵变换法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍67 §5·4回归系数,复相关系数和剩余标准差的计算﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍69 §5·5逐步回归计算方法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍70§5·6实例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍74 第六章趋势面分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍80 §6·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍80 §6·2图解汉趋势面分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍81 §6·3计算法趋势面分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍83 第七章判别分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍90 §7·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍90 §7·2判别变量的选择﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍91 §7·3判别函数﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍92 §7·4判别方法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍96 §7·5多类判别分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍104 第八章逐步判别分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍110 §8·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍110 §8·2变量的判别能力与“引入”变量的统计量﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍110 §8·3矩阵变换与“剔除”变量的统计量﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍113 §8·4计算步聚与实例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍115 第九章聚类分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 125 §9·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍125 §9·2数据的规格化(标准化)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍125 §9·3相似性统计量﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍126 §9·4聚类分析方法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍131 §9·5实例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍134 §9·6最优分割法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍134 第十章因子分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍142 §10·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍142 §10·2因子的几何意义﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍143 §10·3因子模型﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍145§10·4初始因子载荷矩阵的求法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍147 §10·5方差极大旋围﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍152 §10·6计算步聚﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍156 §10·7实例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍157 附录﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍162 附录1标准正态分布函数量﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍162 附录2正态分布临界值u a表﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍164 附录3t分布临界值t a表﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍165 附录4(a)F分布临界值Fa表(a=0·1)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍附录4(b)F分布临界值Fa表 (a=0·05) ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍附表4(c)F分布临界值Fa表(a=0·01)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍附表5 x2分布临界值xa2表﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍第一章基本知识§1·1总体、个体与样本总体(母体)、个体一(样本点)和样本(子样)是统计分析中常用的名词。
《应用多元统计分析》第01章_多元分析概述应用多元统计分析多元统计分析是一门研究如何分析多个变量之间关系的统计学方法。
它是统计学的一个重要分支,广泛应用于社会学、心理学、教育学、经济学、医学以及市场研究等领域。
多元分析的目的是通过分析多个变量之间的关系,揭示出隐藏在数据背后的规律和结构,从而更好地理解现象和推断未知的关系。
首先,多元统计分析与一元统计分析相比,不再是对单个变量进行分析,而是同时考虑多个变量之间的关系。
一元统计分析主要关注其中一个变量的分布情况、均值和差异;而多元统计分析则通过研究多个变量之间的关系,来揭示这些变量之间的结构和模式。
多元分析的研究对象可以是连续变量或离散变量,比如一组被试的身高、体重、年龄等连续变量,或者一组被试的性别、学历、职业等离散变量。
多元分析既可以是描述性的分析,也可以是推断性的分析。
多元统计分析一般包括两个主要方面的内容,即多元方差分析和多元回归分析。
多元方差分析用于研究多个自变量对一个因变量的影响,比如研究不同处理条件对实验数据的影响。
多元回归分析则用于研究多个自变量对一个连续因变量的影响,比如通过多个指标预测一个人的绩效评级。
多元统计分析方法有很多,常见的方法包括主成分分析、因子分析、聚类分析、判别分析、结构方程模型等。
每种方法都有其适用的场景和假设条件,研究者需要根据自己的研究目的选择合适的方法进行分析。
多元统计分析涉及复杂的数学和统计原理,因此在进行多元分析之前,研究者首先需要对统计学的基本概念和方法有一定的了解,例如随机变量、概率分布、假设检验等。
此外,研究者还需要使用统计软件进行数据的处理和分析,如SPSS、R、Python等。
多元统计分析的应用广泛,下面以社会学领域的一个例子来说明多元分析的应用。
假设我们想研究不同社会经济因素对人们的幸福感的影响,我们可以收集一组被试的社会经济因素(如收入、教育程度、职业等)和幸福感的数据,然后对这些数据进行多元回归分析。