应用多元统计分析课后题答案
- 格式:pdf
- 大小:1.36 MB
- 文档页数:68
第二章2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=-- 其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
第二章2.1 试述多元联合分布和边缘分布之间的关系。
设,是p维随机向量,称由它的q(<p)个分量组成的子向量,的分布为的边缘分布,相对地把的分布称为联合分布。
当的分布函数为F,时,的分布函数即边缘分布函数为F,=P()= F,当X有分布密度f(,)则也有分布密度,即边缘密度函数为:f(,)=(,)2.2 设随机向量服从二元正态分布,写出其联合分布密度函数和各自的边缘密度函数。
联合分布密度函数,0 , 其他==()所以指数部分变为令t== exp[] exp[] ,=0 ,其他 同理,exp[] ,=0 ,其他2.3 已知随机向量 的联合分布密度函数为,其中, 。
求:(1) 随机变量各自的边缘密度函数、均值与方差。
解:==同理,==同理可得()22dc x E +=同理可得()()1222d c x D -=(2)随机变量的协方差和相关系数。
E(==E(==E(==E(=D(E(D(E(Cov E(E(=.===(3)判断是否独立。
不相互独立。
2.4设随机向量,服从正态分布,已知其协差阵为对角阵,证明的分量是相互独立的随机变量。
Σ= ΣΣΣΣ与不相关又 ,服从正态分布与 相互独立。
( , , , , , ) 2.5解: 依据题意,X=E(X)=D(X)=注:利用 11p n n ⨯'=1X X , S 1()n n n n''=-11X I X 其中 1001n ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦I 在SPSS 中求样本均值向量的操作步骤如下:1. 选择菜单项Analyze →Descriptive Statistics →Descriptives ,打开Descriptives 对话框。
将待估计的四个变量移入右边的Variables 列表框中,如图2.1。
图2.1 Descriptives 对话框2. 单击Options 按钮,打开Options 子对话框。
在对话框中选择Mean 复选框,即计算样本均值向量,如图2.2所示。