落球法测液体的粘度系数
- 格式:docx
- 大小:37.60 KB
- 文档页数:2
【精品】落球法测量液体的粘滞系数液体的粘滞系数是指单位面积上两层流体在相对运动时所受到的剪切应力的比值,也就是黏性的量度。
在工业、生产和科学研究等领域中,液体的粘滞系数是一个非常重要的参数。
在化学、药品、民用和环保领域中,测定液体的粘滞系数会直接影响到液体的使用和品质。
通过落球法测量液体粘滞系数的方法已经被广泛应用于实际生产和实验研究中。
接下来将详细介绍落球法测量液体粘滞系数的原理、步骤和注意事项。
1.实验原理落球法是通过测量液体对采用特定顺序掉落的球的阻力大小,来推导出液体的粘滞系数,也称为斯托克斯法。
当液体中的一个球在受力平衡下自由落下时,其滑动阻力与重力相等,此时运动的速度达到稳定状态即恒速状态。
斯托克斯公式如下:F=6πηrv其中,F是球所受的阻力,η是流体粘度,r是球半径,v是球的降速度。
所以,液体粘度可以根据公式推算而得。
2.实验步骤2.1 器材准备实验器材准备如下:称量器、物理天平、万能架、滑动卡尺、测定液体、掉球器、支架灵敏度等。
2.2 实验前准备确定采用哪一种球进行实验,并注意该球的重量、半径和密度等参数,并确保球表面必须光滑。
将掉落器的底部设定为垂直于测量板并与水平面相等,并确保测量板的温度稳定。
取一定量的液体,将其转移至规定的容器中,在容器中保留足够的空间让球自由下落。
①将测定液体倒入容器中,确保液面高度超过掉落球轨道的最低位置。
注意,要等待液体温度稳定。
②仔细地沿着轨道掉落球。
③随后根据滑动卡尺得到球的降落距离。
④重复上述实验,至少取3次实验结果,以得到更为准确的粘滞系数。
3.注意事项①实验中必须确保液体温度稳定,并在测量前等待液体温度稳定。
②球表面必须光滑,以确保实验的准确性。
③实验室环境应尽可能减少干扰因素。
④在实验中,控制液体的落球速度必须稳定。
4.实验数据处理通过上述实验步骤所获得的数据,可以根据斯托克斯公式计算液体粘着力值。
如果实验数值有误差,可以通过多次实验,并对数据进行平均数计算,以获得更准确的结果。
实验4 落球法测量液体的粘滞系数液体粘滞系数又叫内摩擦系数或粘度,是描述流体内摩擦力性质的一个重要物理量,它表征流体反抗形变的能力,只有在流体内存在相对运动时才表现出来。
液体在管道中的传输、机械润滑油的选择、物体在液体中的运动等与都与液体的粘滞系数有关。
液体粘滞系数可用落球法,毛细管法,转筒法等测量方法,其中落球法适用于测量粘滞系数(以下简称η)较高的液体。
η的大小取决于液体的性质与温度,温度升高η值将迅速减小。
如蓖麻油在室温附近温度改变1℃时η值改变约10%。
因此,测定液体在不同温度η值才有意义,欲准确测量液体的粘滞系数,必须精确控制液体温度。
1 [实验目的]1.1 观察液体的内摩擦现象,学会用落球法测量不同温度下蓖麻油的粘滞系数。
1.2 了解PID 温度控制的原理。
1.3练习用停表计时,用螺旋测微器测直径。
2 [实验仪器]变温粘度仪,ZKY-PID 温控实验仪,停表,螺旋测微计,钢球若干。
3 [仪器介绍]3.1落球法变温粘度仪变温粘度仪的外型如图11-1所示。
待测液体装在细长的样品管中,能使液体温度较快的与加热温达到平衡,样品管壁上有刻度线,便于测量小球下落的距离。
样品管外的加热水套连接到温控仪,通过热循环水加热样品。
底座下有调节螺钉,用于调节样品管的铅直。
3.2开放式PID 温控实验仪温控实验仪包含水箱,水泵,加热器,控制及显示电路等部分。
温控试验仪内置微处理器,带有液晶显示屏,具有操作菜单化,能根据实验对象选择PID 参数以达到最佳控制,能显示温控过程的温度变化曲线和功率变化曲线及温度和功率的实际值,能存储温度及功率变化曲线,控制精度高等特点。
开机后,水泵开始运转,显示屏显示操作菜单,可选择工作方式输入序号及室温,设定温度及PID 参数使用▲▼键选择项目,▲▼键设定参数,按确认键进入下一屏,按返回键返回上一屏。
进入测量界面后,屏幕上方的数据栏从左至右依次显示序号,设定温度,初始温度,当前温度,当前功率,调节时间等参数。
实验报告实验题目:落球法测定液体的黏度实验目的:本实验的目的是通过用落球法测量油的粘度,学习并掌握测量的原理和方法。
实验原理:1、斯托克斯公式粘滞阻力是液体密度、温度和运动状态的函数。
如果小球在液体中下落时的速度V 很小,球的半径r也很小,且液体可以看成在各方向上都是无限广阔的F =6 二Vr ( 1)η是液体的粘度,Sl制中,η的单位是Pa S2、雷诺数的影响雷诺数R e来表征液体运动状态的稳定性。
设液体在圆形截面的管中的流速为V,液体的密度为ρ,粘度为η圆管的直径为2r,则2v-r(2) 奥西思-果尔斯公式反映出了液体运动状态对斯托克斯公式的影响:3 19 2F =6 二rv (1 R e R e•…)(3)16 10802式中旦项和19虫项可以看作斯托克斯公式的第一和第二修正项。
16 1080随着R e的增大,高次修正项的影响变大。
3、容器壁的影响考虑到容器壁的影响,修正公式为r r 3 19 2F =6 二rv (1 2.4 )(1 3.3 )(1 R e R e. . . ) ( 4)R h 16 10 8 04、η的表示因F是很难测定的,利用小球匀速下落时重力、浮力、粘滞阻力合力等于零,由式(4) 得4 3r r 3 19 2二r3(「! θ)g =6 二rv (1 2.4 )(1 3.3 )(1 ∙R e- R:…)(5)3 Rh 16 10801 (-r°)gd η:18 d d 3v(1 2.4 )(1 3.3 )(1 R e2R 2h 16 -^^Re …)1080(6)a.当R e<0.1 时,可以取零级解,则式(6)就成为0 J 18≡o)gd2d dv(1 2.4 )(1 3.3 )2R 2h(7)即为小球直径和速度都很小时,粘度η的零级近似值b.0.1<R e<0.5 时,可以取一级近似解,式(6)就成为I(IeR 1621 ( T - τ°)gd18 d dv(1 2.4 )(1 3.3 -)2R 2h它可以表示成为零级近似解的函数:31 = 0 - —dv G16(8)c.当R e>0.5时,还必须考虑二级修正,则式(6)变成32(1 R16219 2 1 (「讥)gdR e )1080 18 v(1 2.4 d )(1 3.3 d)2R 2h19 dv P0 2(0)2]27 0 I(9)实验内容:1、利用三个橡皮筋在靠近量筒下部的地方,分出两个长度相等的区域,利用秒表测量小球通过两段区域的时间,调整橡皮筋的位置,并保持两段区域等长,寻找两次测量时间相等的区域,测出两段区域总长度I。
1υπρηr g V m 6)(排-=2d r =tl =υ实验三落球法测定液体的粘滞系数【实验目的】(1)掌握用落球法测定液体粘滞系数的原理和方法。
(2)学会使用电子天平,并会称量固体、液体密度。
(3)用落球法实验仪测定液体实时温度下的粘滞系数。
【实验仪器】落球法粘滞系数测定仪,激光光电计时仪,电子天平,砝码,2mm 小钢球,蓖麻油,米尺,千分尺,电子秒表,电子温度计等。
【实验原理】当金属小球在粘滞性液体中铅直下落时,由于附着于球面的液层与周围其他液层之间存在着相对运动,因此小球受到粘滞阻力,它的大小与小球下落的速度有关。
如果液体无限深广,在小球下落速度υ较小的情况下斯托克斯给出:6f r πηυ=(1)式中:r 是小球的半径,υ是小球下落的速度;η为液体的粘度,单位是s Pa ⋅。
如图(一)所示,小球在液体中下落时受到三个竖直方向的力:小球的重力G =mg (m 为小球的质量);液体作用于小球的浮力F =排gV ρ(V 是小球的体积,ρ是液体的密度);粘滞阻力6f r πηυ=(其方向与小球运动方向相反);D 为量筒直径,H 为量筒中液体高度。
小球开始下落时,由于速度尚小,所以阻力f 也不大;但随着下落速度的增大,阻力也随之增大。
最后三个力达到平衡,即r gV mg πηυρ6+=排,于是,小球做匀速直线运动。
由上式可得:令小球的直径为d ,并用,代入上式得ρπ'=36d m2)6.11)(4.21(18)(2HdD d l tgd ++-'=ρρηlt gd 18)(2ρρη-'=ltgd 18)(2ρρη-'=)6.11)(4.21(1Hd D d ++(2)式中,ρ'为小钢球的密度,l 为小球匀速下落的距离(即两激光束之间的距离),t 为小球下落l 距离所用的时间。
实验时,待测液体盛于量筒中,如图(一)所示,不能满足无限深广的条件。
实验证明,若小球沿筒的中心轴线下降,式(2)需要做如下修正方能符合实际情况:•式中,D 为量筒直径,H 为量筒中液体高度。
21 / 4实验一 落球法测液体的粘滞系数粘滞系数是液体的重要性质之一,它反映液体流动行为的特征.粘滞系数与液体的性质,温度和流速有关,准确测量这个量在工程技术方面有着广泛的实用价值.如机械的润滑,石油在管道中的传输,油脂涂料,医疗和药物等方面,都需测定粘滞系数.测量液体粘滞系数方法有多种,落球法(又称Stokes 法)是最基本的一种,它可用于测量粘度较大的透明或半透明液体,如蓖麻油,变压器油,甘油等.【实验目的】1.学习和掌握一些基本物理量的测量;2.学会落球法测定液体的粘滞系数.【实验原理】一个在液体中运动的物体会受到一个与其速度反方向的摩擦力,这个力的大小与物体的几何形状、物体的速度以及液体的内摩擦力有关.液体的内摩擦力可用粘滞系数η 来表征.对于一个在无限扩展液体中以速度v 运动的半径为r 的球形物体,斯托克斯(G.G. Stokes )推导出该球形物体受到的摩擦力即粘滞力为r v F ⋅⋅⋅=ηπ61 (1)当一个球形物体在液体中垂直下落时,它要受到三种力的作用,即向上的粘滞力F 1、向上的液体浮力F 2和向下的重力F 3.球体受到液体的浮力可表示为g r F ⋅⋅⋅=13234ρπ (2)上式中ρ 1为液体的密度,g 为重力加速度.球体受到的重力为g r F ⋅⋅⋅=23334ρπ (3)式中ρ 2为球体的密度.当球体运动某一时间后,上述三种力将达到平衡,即321F F F =+ (4)此时,球体将以匀速v 运动(v 也称为收尾速度).因此,可以通过测量球体的下落速度v 来确定液体的粘滞系数:22 / 4()v r g 92122⋅-⋅⋅=ρρη (5)这里v 可以从球体下落过程中某一区间距离s 所用时间t 得到,这样粘滞系数为()s t r ⋅⋅-⋅⋅=g 92122ρρη (6)在实际测量中,液体并非无限扩展,且容器的边界效应对球体受到的粘滞力有影响,因此公式(1)需要考虑这些因数做必要修正.对于在无限长,半径为R 的圆柱形液体轴线上下落的球体,修正后的粘滞力为⎥⎦⎤⎢⎣⎡⋅+⋅⋅⋅⋅=R r r v F 4.2161ηπ (7)这样公式(6)变为()R r s t g r ⋅+⋅⋅⋅-⋅⋅=4.21192122ρρη (8)如果考虑到圆柱形液体的长度L 并非无限长,还有r /L 量级的进一步修正.【实验仪器】 F 3F 1+F 2图1 液体中小球受力分析图落球法粘滞系数测定仪(见图2)、小钢球、蓖麻油、米尺、液晶数显千分尺、游标卡尺、液体密度计、电子天平、电子秒表和温度计等.【实验内容】1.调整粘滞系数测定仪(1)调整底盘水平,在底盘横梁上放重锤部件,调节底盘旋纽,使重锤对准底盘的中心圆点;(2)将实验架上的上,下二个激光器接通电源,可看见其发出红光.调节上、下二个激光器,使其红色激光束平行,并对准锤线;(3)收回重锤部件,将盛有被测液体的量筒放置到实验架底盘中央,并在实验中保持位置不变;(4)在实验架上放上钢球导管;(5)将小球放入钢球导管,看其是否能挡阻光线,若不能,则适当调整激光器位置.2.测量下落小球的匀速运动速度(1)测量上、下二个激光束之间的距离;(2)放小球入钢球导管,当小球落下,阻挡上面的红色激光束时,光线受阻,此时用秒表开始计时,到小球下落到阻挡下面的红色激光束时,计时停止,读出下落时间,重复测量6次以上.3.测量小钢球的密度ρ 2(1)用电子天平测量小钢球的质量m,测量一次;(2)用千分尺测其直径d,测量十次,计算平均值;(3)计算小钢球的密度ρ 2.23 / 44.用液体密度计测量蓖麻油的密度ρ 1(单次测量).用游标卡尺测量量筒的内径D(测量六次).用温度计测量液体温度(液体粘滞系数随温度变化很快,因此需要标明测量是在什么温度下进行的.).5.用公式(8)计算η 值,η 值保留三位有效数据,η 的单位为kg·m-1·s-1.6.用滚筒法测量蓖麻油的粘滞系数,根据落球法的测量结果和仪器说明书,选择合适的转子和转速。
落球法测液体的粘度系数
落球法是一种用于测量液体粘度的方法。
它主要通过让小球在液体中自由下落的过程
中测量所需时间和落程距离,来计算液体的粘度系数。
其中,落球法是一种比较简单和常
用的粘度测量方法,而且由于其测量原理比较简单,因此可以在实验室中比较方便地进行。
1.测量原理
落球法的测量原理主要是通过测量小球在液体中下落的时间和位移来计算其粘度系数。
在进行实验时,会让一个球体自由下落,并利用静态力学平衡原理,来计算出液体的粘度
系数。
根据牛顿运动定律,我们可以得到小球在液体中的运动方程:
$$m \frac{dv}{dt} = (m-\Delta m)g -F_f$$
其中,m是小球的质量,g是重力加速度,$\Delta m$是小球和液体之间的位移,
$F_f$是摩擦力。
由于小球的速度和加速度很小,因此我们可以近似简化为:
或者:
其中,$\Delta x$是小球在液体中的位移,$\eta$是液体的粘度系数,r是小球的半径,v是小球的下落速度。
通过上述公式,可以计算出液体的粘度系数。
2.实验步骤
落球法的实验步骤主要可分为以下几个部分:
2.1. 器材准备:首先,需要准备一个测量液体粘度的装置,该装置主要包括一个简
易的底部开口的垂直透明筒,用于盛放液体,并有一条尺度以测量液面的高度。
在筒的底
部有一个小洞,开口和管的内径相同,并有一个可调压轮和一个刻度尺。
此外,还需要一
个质量较小的小球,并测量它的准确半径和质量。
2.2. 测量液面高度:首先,在透明筒中加入液体并将小球放入筒中,使其自由下落
并逐渐适应液体。
然后利用刻度尺测量液面高度,记录下来。
此时,可初步根据液面高度
和球的初始位置估算粘度系数初值。
2.3. 测量小球下落时间:首先,将小球从静止位置释放,并让其自由下落,同时用
秒表测量下落所需的时间,并记录下来。
重复多次测量,取平均值。
2.5. 计算粘度系数:通过实验测量得到小球下落的时间和下落距离,就可以利用公
式计算液体的粘度系数。
由于在实验过程中,小球的速度非常小,因此可以忽略球的惯性力,从而使计算更加简单。
3.实验注意事项
3.1. 筒内应该尽量排除气泡,从而避免对实验结果的影响。
3.2. 小球的半径和质量等应该测量准确,并尽量保持稳定和一致。
3.3. 实验过程中,应该注意测量准确度。
需要多次测量并取平均值,以提高实验结
果的精度。
3.4. 选择较小的下落距离和下落时间,从而可以使计算更加简便。
4.实验误差分析
落球法在测量液体的粘度系数时,存在以下几个误差来源:
4.1. 液体的温度变化:由于温度的变化会影响液体的物理性质,因此实验中需要控
制液体温度并进行补偿。
4.2. 球半径的误差:球半径的误差会影响测量精度。
因此,需要测量球半径的误差,并尽量保证球半径的准确性和一致性。
4.3. 液体容器和小球表面的细微摩擦:由于液体容器和小球表面的细微摩擦力会产
生一定的阻力,因此需要对其进行校正和补偿。
4.4. 测量仪器的误差:由于测量仪器存在一定的误差,因此需要进行调整和修正,
以提高测量精度。
5.总结
落球法是一种简单、方便和常用的测量液体粘度系数的方法。
该方法主要通过测量小
球自由下落时的时间和位移来计算液体的粘度系数。
实验中需要注意选择准确的小球和液
体容器,并控制液体温度和测量仪器的误差。
此外,还需要注意多次测量并取平均值,以
提高测量精度。
最终,通过精确的测量和计算,可以得到准确的液体粘度系数。