aptes氨基化氧化铝原理
- 格式:docx
- 大小:14.97 KB
- 文档页数:2
氧化铝纤维溶胶凝胶法以氧化铝纤维溶胶凝胶法溶胶凝胶法是一种常用的制备氧化铝纤维的方法。
溶胶凝胶法通过溶胶和凝胶两个步骤,将氧化铝纤维制备成所需的形态和结构。
本文将介绍氧化铝纤维溶胶凝胶法的原理、制备过程以及在材料科学中的应用。
一、氧化铝纤维溶胶凝胶法的原理溶胶凝胶法是一种基于溶胶-凝胶转化的制备方法。
所谓溶胶,指的是均匀分散的微米级颗粒或分子团;凝胶则是指溶胶在适当条件下形成的三维网络结构。
在溶胶凝胶法中,首先制备氧化铝的溶胶,然后通过控制溶胶的凝胶过程,使其形成纤维状结构。
二、氧化铝纤维溶胶凝胶法的制备过程1. 制备溶胶:将适量的氧化铝粉末加入有机溶剂中,并进行超声处理,使氧化铝颗粒均匀分散在溶剂中。
然后加入表面活性剂,调节溶胶的粘度和稳定性。
2. 凝胶过程:控制溶胶中颗粒的凝聚,使其形成纤维状结构。
可以通过调节溶胶的pH值、温度、浓度和溶胶的凝胶剂等条件来控制凝胶过程。
3. 凝胶成型:将凝胶体均匀地分散在模具或模板中,并进行干燥和烧结处理,最终得到氧化铝纤维。
三、氧化铝纤维溶胶凝胶法在材料科学中的应用1. 高温绝缘材料:氧化铝纤维具有优异的高温稳定性和绝缘性能,广泛应用于高温绝缘材料的制备。
2. 催化剂载体:氧化铝纤维的大比表面积和多孔性使其成为理想的催化剂载体,可用于制备高效催化剂。
3. 材料增强剂:氧化铝纤维可以作为增强剂加入到复合材料中,提高材料的力学性能和耐热性。
4. 生物医用材料:氧化铝纤维具有良好的生物相容性,可用于制备生物医用材料,如人工骨骼和人工关节等。
氧化铝纤维溶胶凝胶法是一种制备氧化铝纤维的常用方法。
通过控制溶胶的制备和凝胶过程,可以得到具有不同形态和结构的氧化铝纤维。
氧化铝纤维在高温绝缘材料、催化剂载体、材料增强剂和生物医用材料等领域有广泛的应用。
溶胶凝胶法的研究和应用对于材料科学的发展具有重要意义。
科技信息2011年第19期SCIENCE &TECHNOLOGY INFORMATION 1拜耳法相关理论1.1拜耳法基本原理拜法生产氧化铝的工艺流程是由许多工序组成的,其中主要有:矿浆制备、矿浆溶出、溶出浆液的稀释、赤泥分离、洗涤、粗液精制、晶种分解,氢氧化铝分离、洗涤、分解母液蒸发等工序,而各工序控制的温度、浓度、若苛性比值都不同。
(1)用NaOH 溶液溶出铝土矿,所得到的铝酸钠溶液在添加晶种、不断搅的条件下,溶液中的氧化铝呈氢氧化铝析出。
(2)分解得到的母液,经蒸发浓缩后在高温下可用来溶出新的铝土矿。
拜耳法基本原理的实质用下列反应式表示:Al(OH)3(1或3)H 2O+2NaOH+aq 2NaAL(OH)+aq 1.2拜耳法溶出工艺简介溶出工艺的主要目的是以高产出率有效地提取铝土矿的氧化铝,并且使溶液充分脱硅,避免地过量的二氧化硅影响,把苛性碱的消耗量减至最少。
根据矿石形态不同选用不同的溶出工艺制度,溶出工艺相关信息如表1所示:表1溶出工艺相关信息对于三水铝石的低温溶出方案,典型的溶出温度为145°C ,更高的溶出温度会导致已溶解的三水铝石以一水落石出软铝石的形态结晶析出,而一水软铝石在130°C 以上较稳妥定,典型的溶出时间为30-60分钟,主要是为了使溶液充分脱硅,对于某一给定的赤泥条件,由于溶出过程自蒸发量少,所以低温溶出氧化铝厂需要更高的蒸发能力。
2实验过程及分析2.1铝酸钠浆液的分析氧化铝生产过程中的铝酸钠浆液主要有如下几种:烧结法溶出后的铝酸钠赤泥浆液,分解过程中含氢氧化铝的铝酸钠浆液。
另外,还有经过沉降分离过滤后含少量悬浮物的铝酸钠溶液。
对铝酸钠浆液进行下列测定:液固比、固体含量、细度、悬浮物和比重等物理性质,以及全碱、氧化铝、苛性钠、碳酸钠、二氧化硅、氧化铁、硫酸根、氧化镓、有机物等化学成分。
对各种浆液中的液固比及固体含量进行测定,可以了解矿浆配料的情况;赤泥浆液的过滤沉降性能以及种子分解过程中氢氧化铝种子添加量等。
氧化铝生产工艺一、拜耳法生产氧化铝原理氧化铝生产过程的实质就是将铝土矿中的氧化铝与杂质进行分离的过程,兴安化工采用拜耳法工艺生产原理如下:用苛性碱溶液在高温、高压、高碱浓度条件下溶出铝土矿中氧化铝制得铝酸钠溶液,在低温、常压、低碱浓度条件下从铝酸钠溶液分解析出氢氧化铝,氢氧化铝经焙烧炉在950℃条件下焙烧变成产品氧化铝,分解后母液经蒸发提高浓度后用来循环重新溶出新的一批铝土矿,拜耳法的实质也就是同一反应在不同条件下的交替进行: Al203(1或3)H2O+2NaOH+aq 2NaAl(OH)4+aq二、拜耳法生产氧化铝工序1、合格矿浆制备(原料车间)将铝土矿破碎到符合要求的粒度(≤15mm),与石灰和含有游离的NaOH的循环母液按一定的比例混合一道送入湿磨内进行细磨,制成合格的原矿浆。
2、矿浆高压溶出(溶出车间)原矿浆在常压脱硅槽经8个小时脱硅后由GEHO泵送入溶出系统。
矿浆在溶出系统首先由全套管预热器预热,再用约60巴新蒸汽间接加热到溶出温度,保温溶出60分钟在高压下溶出,铝土矿内所含氧化铝溶解成铝酸钠进入溶液,而氧化铁和氧化钛以及大部分的二氧化硅等杂质进入固相残渣即赤泥中,溶出所得矿浆称压煮矿浆,经自蒸发器减压降温后送入稀释槽。
3、赤泥分离洗涤(沉降车间)稀释矿浆在深锥沉降槽内进行絮凝沉降,溢流进粗液槽,底流进入洗涤沉降槽进行四次反向洗涤,末次洗涤底流由rGEHO泵送至赤泥堆场进行干法堆存,粗液槽中的粗液用泵送往叶滤机进行压力过滤,过滤时加入助滤剂石灰乳,滤饼送沉降洗涤系统,滤后的精液由精液泵送往板式热交换器。
4、精液晶种分解(分解车间)精液经板式热交换器与分解母液进行热交换冷却到设定温度,再与种子过滤滤饼在晶种槽内混合后用晶种泵送至平底机械搅拌槽组成的分解系列的首槽或2#槽,经连续分解48小时后从12#(13#)槽底用泵抽取分解浆液进行旋流分级,分级前加入部分过滤母液稀释,分级溢流返回分解槽,底流再用部分母液冲稀后自压至成品过滤系统,分解出料槽的分解浆液从槽上部出料自流至种子过滤系统,种子过滤的滤饼用精液冲入晶种槽,母液送母液槽,母液槽内的分解母液部分送氢氧化铝分级用于稀释分级机进料和底流,其余经板式热交换器与精液进行交换后送蒸发原液槽。
拜耳法氧化铝溶出的原理和工艺摘要拜耳法用于生产氧化铝是目前生产氧化铝的主要工业方法,生产氧化铝的工艺有原矿浆制备、高压溶出、压煮矿浆稀释及赤泥分离和洗涤、晶种分解、氢氧化铝分级和洗涤、氢氧化铝焙烧、母液蒸发及苏打苛化等主要生产工序。
关键词拜耳法;氧化铝;原理工艺拜耳法用于氧化铝生产已有近百年的历史,几十年来已经有了很大的发展和改进。
目前仍是世界上生产氧化铝的主要工业方法。
拜耳法用在处理低硅铝土矿(一般要求A/S为7~10),特别是用在处理三水铝石型铝土矿时流程简单,作业方便、能量消耗低,产品质量好等优点。
现在除了受原料条件限制的某些地区外,大多数氧化铝厂都采用拜耳法生产氧化铝。
拜耳法处理一水硬铝石型铝土矿时工艺条件要苛刻一些。
拜耳法最主要的缺点是不能单独地处理氧化硅含量高的矿石。
1 拜耳法生产氧化铝的原理基本原理是拜耳法精心研究出来的。
他在1889年的第一专利谈到用氢氧化铝的晶粒作为种子,使铝酸钠溶液分解,也就是种子分解法。
1892年提出第二个专利系统地闸述了铝土矿所含氧化铝可以在氢氧化钠溶液中溶解成铝酸钠的原理,也就是今天所采用的溶出工艺方法。
此法用在处理低硅铝土矿,特别是处理三水铝石型优质铝土矿,其经济效果远非其他生产方法所能比拟。
直到现在工业生产上实际使用的拜耳法工艺还是以上述两个基本原理为依据。
为了纪念拜耳称之为拜耳法。
原理归纳如下。
用苛性碱溶液溶出铝土矿中氧化铝而制得铝酸钠溶液,采用溶液降温、加晶种、搅拌的条件下,从溶液中分解出氢氧化铝,将分解后母液(主NaOH)经蒸发用来溶出新的一批铝土矿,溶出过程是在加压下进行的。
拜耳法的实质也就是下一反应在不同的条件下交替进行:2 拜耳法生产氧化铝的工艺由于各地铝土矿成份和结构的不同所以采用的技术条件各有特点,各个工厂的具体工艺流程也常有差别。
拜耳法处理一水硬铝石型铝土矿的基本流程如图1所示。
拜耳法生产氧化铝有原矿浆制备,高压溶出,压煮矿浆稀释及赤泥分离和洗涤、晶种分解、氢氧化铝分级和洗涤、氢氧化铝焙烧、母液蒸发及苏打苛化等主要生产工序。
活性氧化铝系列产品设备工艺原理活性氧化铝概述活性氧化铝,又称氧化铝活性催化剂或氧化铝固体酸催化剂,是一种常用于化学反应的高效催化剂。
作为一种稳定且可重复使用的催化剂,活性氧化铝在石油、精细化工、化学制剂等领域中得到广泛应用。
在提高反应速率、提高产物选择性、减少副反应以及实现绿色化生产等方面都具有重要的作用。
目前,活性氧化铝的生产主要通过氢氧化铝热解或氧化铝水解反应得到。
这种制备方法生产的氧化铝粒子尺寸分布范围广,晶型不规则,活性较低,难以满足应用要求。
为此,研究人员提出了一种新的活性氧化铝制备方法:溶胶-凝胶法。
这种方法可以获得更为均匀、纯净、晶格清晰、并且催化活性更高的氧化铝颗粒,质量更为稳定,有着独特的优势和应用前景。
设备工艺原理溶胶-凝胶法包括溶胶制备、凝胶形成和烧结等过程,其设备主要包括溶胶准备装置、凝胶成型装置以及热处理设备三个部分。
溶胶制备装置溶胶制备是溶胶-凝胶法的第一步,通常通过水热法将钠硫酸、氯化钠等化学药品组成的混合物溶解于水中,得到锆基溶胶。
这种锆基溶胶具有良好的均匀性、纯度和活性,并且能够控制颗粒尺寸,从而为后续制备活性氧化铝颗粒打下良好的基础。
在制备过程中需注意,由于制备条件的不同,不同类型的溶胶产生的颗粒分布范围和晶型也各不相同。
因此,需要根据不同的实际需求和条件来选择使用合适的溶胶制备方法,以获得具有理想性能和性质的氧化铝颗粒。
凝胶成型装置凝胶成型是制备活性氧化铝的关键步骤之一。
通过将溶胶制成固态凝胶,可形成具有规则形状的氧化铝颗粒,提高其催化效率和反应速率,增强其应用稳定性。
不同于常规的化学制剂溶液,溶胶是一种胶体颗粒分散系统。
为了得到质量稳定、形状规则和成分均匀的氧化铝颗粒,必须采用特殊的凝胶成型设备,如滴定法、喷雾干燥法、旋转沉积法等。
其中,滴定法是较为简单而有效的凝胶成型方法,通过将溶胶滴入冷却剂中,使其凝固成颗粒。
这种制备方法对控制颗粒形状和尺寸有良好的效果,并且可以实现大批量生产。
Ξ 收稿日期:2009-06-11作者简介:谢灵珠(1974—),女,四川人,讲师,主要从事航空军械研究.DNA 电化学生物传感器的研究与应用Ξ谢灵珠1,杨 涛2,包小林3(1.海军航空工程学院青岛分院,山东青岛 266042;2.青岛科技大学,山东青岛 266042;3.青岛海军潜艇学院,山东青岛 266000)摘要:介绍了DNA 电化学生物传感器的原理和特点,对DNA 探针固定、杂交的指示的研究设计进展进行了综述,并对其在生物武器、基因疾病诊断、体外药物分析和筛选及环境检测进行了展望.关键词:DNA 电化学生物传感器;生物电化学分析中图分类号:T J6文献标识码:A 文章编号:1006-0707(2009)09-0119-06 脱氧核糖核酸(DNA )是遗传信息的载体,具有存储和传递信息的功能.对于核酸的分析在生物化学和生物分子学中具有极其重要的意义,但随着基因工程技术的飞速发展,传统的生化分析方法已不能满足其分析测试的需要.因此许多交叉学科的分析手段在生命科学领域的应用便引起了广泛关注.DNA 电化学生物传感器就是代表这种思想的一种崭新的技术构思,这类传感器凭借生物体内物质间的特异性亲和力能够快速、直接地识别特定序列的DNA ,既具有选择性好、种类多、测试费用低及适合联机化的优点,又具有电化学分析中简便、快速、灵敏的特点.DNA 电化学生物传感器在生物武器、遗传工程、环境检测和临床医学等领域具有重要的应用价值,采用生物传感器测定DNA 序列经过十几年的发展已成为电化学分析中的热点,许多课题组正致力于研究微型化高灵敏度的DNA 传感器.1 DNA 电化学生物传感器的基本原理和结构 DNA 电化学生物传感器的工作原理是:在适当的条件下,固定在电极表面上已知序列的单链DNA 片段(DNA 探针)与溶液中的待测DNA 发生杂交,利用两条互补单链DNA (ssDNA )间的特异性相互作用,使之形成双链DNA (ds 2DNA ).同时借助于能够识别ssDNA 和dsDNA 的杂交指示剂在杂交前后的电化学响应的改变,来定性检测目标基因是否存在;或者将待测基因固定在电极表面,然后与溶液中的已标定杂交指示剂的DNA 探针进行杂交来检测待测基因序列[1].一般而言,在一定范围内,指示剂的响应信号与待测DNA 的物质的量成线性关系,可据此来检测DNA 的含量,以达到定量测量的目的. 需要指出的是,DNA 非常适合做生物传感之用,因为互补碱基对之间的相互作用是特异性的,而且结合强烈,用单原子、功能基团或长侧链修饰过的核苷酸也可以进行碱基配对,这对于设计非放射性的传感器非常重要.同时DNA 电化学传感方式可以分为:直接DNA 电化学、间接DNA 电化学、DNA 特定的氧化还原的指示检测、纳米粒子的电化学放大、以DNA 为媒介的电子传递等方式,这几种方式各有优缺点(见表1),Deumm ond 等人[2]曾对此有详细的论述.DNA 电化学生物传感器的基本元件包括一个分子识别层和一个换能器.一条单链DNA 探针序列被固定在电极上形成识别层,DNA 探针是此类传感器的生物敏感元件,它是单链DNA 片段或整链,长度从十几个到上千个核苷酸不等,一般使用已被公认的可以识别出待测序列所需的最短序列,其碱基序列与被测DNA 片段的碱基互补;换能器即是杂交指示体系,它的功能是将DNA 杂交信息转化为电压、电流或电导等可以测定的电化学信号,并且对固定化的ssDNA 和dsDNA 具有选择性响应,根据其变化的有无和变化的程度就可以对样品中的DNA 结构和含量等信息加以测定.一般而言,利用DNA 电化学生物传感器测定DNA 的整个过程包括以下几个步骤[3]:第一是ssDNA 的固定,制备DNA 探针,这是此类传感器制作中的首要问题.第二是杂交过程,即寻找合适的杂交条件,使得互补的待测DNA 与探针DNA 相遇较易形成dsDNA ,并最大程度的减少错配.第三是杂交的指示,即如何将杂交信息转化成可以测量的电化学信号,此步也可与上步同时进行.最后是电化学信号的检测.其中DNA 探针的固定和杂交的指示是DNA 电化学生物传感器的关键.图1为原理示意图.第30卷 第9期四川兵工学报2009年9月表1 DNA 电化学传感方式的比较传感器类型优 点缺 点直接DNA 电化学灵敏度高(femtom oles of target )无需标记步骤,应用电极范围宽背景信号高,不能多元化,破坏样品间接DNA 电化学灵敏度高(attom oles of target )通常不需要标记步骤,在同一电极上可以检测多个目标探针层难于制备,破坏样品DNA 特定的氧化还原的指示检测中等灵敏度(femtom oles of target ),很适合多个目标检测,样品保持不变化学标记方法须用“三明治”法,序列变化可能有疑问纳米粒子的电化学放大特别灵敏(femtom ole to zepom ole range ,10-15to 10-21m oles )可应用不同的纳米粒子适合多个目标的检测检测步骤多,表面结构的可靠性和强度有疑问,通常破坏样品以DNA 为媒介的电子传递灵敏度高(femtom ole range )检测简单,无需标记,仅适用于错配检测,序列独立,适用多样化,适用于DNA 2protein 检测步骤需要对目标样品的生物化学处理图1 电化学传感器原理2 DNA 探针的固定2.1 基体电极根据基体电极类型的不同,核酸修饰电极(NAME )一般可分为两大类:①核酸修饰汞电极,此类电极有一定优势[4].但热变性和质子化的ssDNA 分子能强烈地吸附于汞电极[5],这种DNA 疏水性碱基与汞电极疏水性表面间的强烈作用使电极表面的探针无法与靶序列杂交[6],从而限制了汞电极的应用.②核酸修饰固体电极.近些年来,固体电极的研究和应用占有绝对优势,如M illan 等[7]1993年采用玻碳电极制作DNA 传感器.随后Hashim oto 等[8]、Hiroy oshi 等[9]发展了金电极并制得DNA 传感器;其他如石墨电极、碳糊电极[10]、石墨印刷电极[11]、浸蜡石墨电极[12]、充石蜡石墨微孔穴电极[13]、纳米金电极[14]、热解石墨电极[15]、铂电极[16]、锡参杂的铟氧化物电极[17]等也被研究和应用.2.2 DNA 探针通常多采用人工合成的寡聚脱氧核糖核酸作为探针.在适当的温度、pH 值、离子强度下,电极表面的探针与靶序列分子选择性杂交形成双链DNA ,导致电极表面物质结构发生变化,这种前后差异可以用具有电活性的指示剂来识别,从而达到检测靶序列或特定基因的目的.根据一般实验经验,在选择DNA 探针时应遵循以下原则[18]:①探针长度为18~50个碱基,过长的探针将消耗较长的杂交时间、具有较低的合成产率;过短的探针又将缺少特异性.②G 、C 碱基的组成在40%~60%之间最好,G 、C 碱基比率在此范围之外,非特异性杂交将增加.③在探针分子内不存在互补区,存在互补区可导致“发卡”结构,抑制探针杂交.④避免在探针序列中连续出现一个碱基多次重复的现象,(其长度>4)如GGGGG 等.2.3 DNA 探针在电极表面的固定方法探针在电极上的固定是DNA 电化学传感器制备中的关键步骤,目前主要有吸附法、共价键合法、自组装膜法、聚合法、组合法等.1)吸附法吸附法分为直接涂/浸吸附法和在一定电位下富集吸附法.例如,庞代文等[19]和Fei Y an 等[20]分别用直接涂/浸吸附法把探针固定在金电极上.庞代文等将ssDNA 固定到经过抛光、活化、超声波清洗的玻碳电极[21]或金电极上[22];徐春等[23]把探针在TE 溶液中+0.5V 富集吸附于预处理过的石墨电极上,Wang 等[24]Palecek 等[25]也多次用恒电位吸附富集DNA 探针.吸附法的优点是简单,但电极上固定的DNA 在杂交过程中可能脱附,而且DNA 探针的物理结构易发生扭曲,使正确杂交变得困难.2)共价键合法共价键合法一般分2步进行.首先是电极的预处理,以引入活性键合基团并活化,然后进行有机合成,通过共价键合反应把探针DNA 分子修饰到电极表面.因为碳质电极表面易于处理形成活性键合中心,所以共价键合法多用碳质电极做基底电极.M illan 等[7,26]研究发现,在氧化的玻碳电极表面,以水溶性的乙基2(32二甲基丙基)碳二亚胺盐酸盐(E DC )和N 2烃基磺基琥珀酰亚胺(NHS )作偶联活化剂,变性的小牛胸腺DNA 和多聚脱氧鸟苷酸多聚核糖胞苷酸[poly (dG )poly (dC )]片段通过与活化的电极表面O 2酰基异脲形成磷酰胺键共价结合在电极表面.Y ang 等[27]将玻璃表面经氨丙基三乙氧基硅烷(APTES )处理,一方面其水解产物与玻璃表面的硅醇基形成牢固的硅氧烷键,同时也产生氨基功能化表面,再与双功能试剂如戊二醛(G A )或对硝基苯氯甲酸酯(NPC )及马来酐(M A )反应,通过分子两端的功能基团分别021四川兵工学报与基质和DNA末端的衍生基团作用,在室温下成功固定5′2NH22DNA及5′2SH2DNA.刘盛辉等[28]用混酸氧化清洗好的石墨电极,在室温下用四氢化锂铝的乙醚溶液还原,使石墨电极表面的含氧基团全部转化为羟基.接着把电极洗净置入32氨基丙基三乙氧基硅烷的甲苯溶液中进行硅烷化,以导入2NH2.最后将含有E DC和ssDNA的咪唑缓冲液滴在电极表面以固定之.孙星炎等[29]采用先在石墨电极表面导入2NH2基的方法在石墨电极表面导入DNA片段.彭图治[12]将浸蜡石墨电极浸入K2Cr2O7和H NO3溶液中恒电位氧化,清洗后浸入E DC和NHS的磷酸盐缓冲液中活化,最后将ssDNA的磷酸盐缓冲液滴到电极表面以固定探针.共价键合法制备的DNA修饰电极,修饰层稳定,易于分子杂交,但表面活性位点少,表面合成是异相反应,因而固定的DNA量少,响应信号较小.3)自组装膜法自组装膜法是在适当条件下,使分子在固体表面形成有序单分子层的方法,一般以金电极为基体电极,并在探针或金电极表面固定上2SH基团,利用2SH基团可对DNA 进行自组装.Maeda等[30]利用DNA的5′末端磷酸基与22羟乙基二硫化物的羟基反应生成磷酸酯键,再通过巯基将DNA修饰到金电极上去.而Bard等[31]则先将42巯基丁基膦酸(M BPA)在纯乙醇中固定到硅晶片的金膜上,然后再与Al3+反应,形成一层包含Al3+的膜,再通过Al3+与DNA间的静电作用固定ssDNA.T onya[32]利用巯基衍生物将单链DNA[5′2HS2(CH2)62ssDNA23′]固定到金电极表面,研究发现该DNA探针表面修饰层稳定,杂交反应完全可逆,并有特异性.赵元弟等[33]将处理过的金电极置于二巯基乙醇的溶液中6h,取出后用水冲洗,转入含碳二亚胺和DNA的22 (N2吗啡啉)乙磺酸(MES)缓冲溶液中浸泡,取出后用MES 缓冲液冲洗,在金电极表面固定DNA.K agan等[34]用水把氧化铝粉调成糊状涂于布上磨擦金电极,然后置金电极于0.05m ol/L H2S O4中,20.3~+1.5V(vs.Ag/AgCl)以100 mV/s扫至稳定.烷基硫醇溶于75∶25(v/v)乙醇:水溶液中(内含0.02m ol/L巯基丙酸)浸泡电极过夜,冲洗.再把该电极置入pH7.40的磷酸缓冲液中(含2mm ol/L E DC和5 mm ol/L NHS)1h,用缓冲液洗净,滴上20μL探针的丙酮缓冲液(pH4.80),风干,用此方法固定探针.关于自组装膜法还很多,如K obayashi等[35]、周家宏等[36]、周剑章等[37]、林祥钦等[14]、刘志红等[38]均有报道.自组装膜法和共价键合法结合,可使电极表面修饰物有序排列,且稳定性好,有利于杂交,但对巯基化合物修饰的DNA纯度要求高.纳米技术有可能对DNA传感器的灵敏度、稳定性及专一性发挥作用.4)聚合法该方法是利用导电化合物在电极表面的电聚合作用把DNA探针固定在电极表面.徐金瑞等[39]把处理好的玻碳电极烘干后放在氯化亚砜中,30min后取出,用N,N′2二甲基甲酰胺(DMF)洗涤,接着把电极置入聚乙烯醇(PVA)的DMF溶液中30min,最后用80℃热水洗去粘附的PVA,从而制得聚乙烯醇修饰电极.F.G amier等[40]以聚(32乙酸吡咯)/(32N2羟基邻苯二甲酰亚胺吡咯)为前体共聚物,将带有胺基且含有14个碱基的DNA或低聚核苷酸(ODA)嫁接到电极表面.5)组合法用化学修饰剂与电极材料混合制备电极的方法叫组合法.由于碳糊电极的可塑性,非常适用于这种方法.M illan 等[26]将182烷基胺、182烷基酸混入碳糊中,得到化学修饰的碳糊电极,然后在E DC存在的情况下,通过182烷基胺的氨基与ssDNA的5,末端的磷酸基形成磷酰胺键,把ssDNA 固定到电极上;或在E DC和NHS存在的情况下,通过182烷基酸与ssDNA的dG残基结合,将ssDNA固定到电极上.3 杂交的指示 在DNA电化学传感器中必须引入电活性识别物(杂交指示剂或复合指示体系),杂交指示剂是一类具有电活性的物质,起着DNA电化学传感器的信号传递作用,根据杂交指示剂与ssDNA和dsDNA结合方式和结合能力的差异,通过测定其氧化还原峰电流和峰电位可以识别和测定DNA分子.能够选择性的识别ssDNA和dsDNA而又不与DNA链发生不可逆的共价结合,同时又能给出电流或电势识别信号的杂交指示剂是该类电化学DNA生物传感器的重要特点.一般来讲,一个适合电化学DNA生物传感器的指示剂应该对dsDNA比对ssDNA具有更高的选择性结合能力.1)电化学活性的杂交指示剂作为识别物常用的电化学活性的杂交指示剂主要集中在以下几个方面:第一类为金属配合物类杂交指示剂.一些金属配合物因其中心离子的变价性而被用作杂交指示剂,并广泛用于DNA电化学传感器的分析应用中,较常用的此类金属离子有C o、Os、Fe、Ru、Pt等的离子形式,常用的配合物为:2,2′2联吡啶、1,102邻菲咯啉、咪唑并[4,52f]1,102邻菲咯啉、4,4′2二甲基22,2′2联吡啶、二氮杂芴酮缩聚苯二胺、吡啶[3,22f]并[1,7]邻菲咯啉等.C o金属配合物作为典型代表被广泛用做杂交指示剂,赵元第[33]采用电活性配合物C o(phen)2+3作为杂交指示剂,研究了电极表面的DNA杂交.结果杂交后的dsDNA2S AM/Au电极上C o(phen)2+3的峰电流较未杂交前的ssDNA修饰电极的的峰电流明显增大,式电位也由+123mV负移至+117mV.Wang等[41]用C o(phen)3+3为杂交指示剂,也发现相类似的结果.M illan等[7]将C o(phen)3+3及C o(bpy)3+3作为电活性杂交指示剂,证明C o(bpy)3+3作为杂交指示剂不仅能很好的区分ssDNA与dsDNA,而且可以区分特异性杂交和非特异性杂交,即可以用于特定序列DNA的检测.Pang等[42]详细研究了苄基24,4′2连吡啶盐(Benzyl Viologen,BV)与ssDNA2Au电极和dsDNA2Au电极的作用情况,发现BV的峰电流和峰电位在ssDNA2Au电极和dsDNA2Au电极上有显著的差异,并且在低的离子强度下它能很好的静电结合到DNA修饰电极上,同时又能迅速从电极上分离,可使DNA传感器具有很好的重复性.121谢灵珠,等:DNA电化学生物传感器的研究与应用第二类为染料类杂交指示剂.因为许多染料具有与DNA作用的分子模型,近来研究表明:具有π2堆积特性的有机功能染料能在核酸分子表面进行长距组装.常用的染料类指示剂有双苯并咪唑类、亚甲基蓝、红四氮唑、乙锭类、中性红等.双苯并咪唑染料(如H oechst33258)是其中较为理想的一类,有较其他指示剂高得多的电流密度,大约为45μA/cm2[43].Hashim oto等[8]用染料H oechst33258作为电活性杂交指示剂,检测了pVM623的Part I片段上的致癌基因V2myc,同时发现H oechst33258的峰值电流在使用ss2 DNA和dsDNA修饰电极时分别为128nA和170nA,由此可见H oechst33258对dsDNA有比对ssDNA更好的选择性.Er2 dem等[44]K erman等[45]T ani等[46]人对亚甲基蓝(Methylene Blue,M B)进行研究后认为M B作为杂交指示剂的ssDNA探针具有特异的选择性,可用于特定序列靶基因的检测,故M B是较有潜力的一种新型电活性杂交指示剂.程琼等[12]人以红四氮唑作(TT C)为杂交指示剂,实验证明TT C对ds2 DNA具有较好的选择性,是合适的杂交指示剂.第三类为抗癌药物类杂交指示剂.因为许多抗癌药物是以DNA为作用靶点的,如:阿霉素和柔红霉素分子的芳基部分嵌入DNA碱基对之间,水合顺铂和DNA链上的鸟嘌呤碱基配位而使它们具有抗癌作用.研究它们与DNA的相互作用,不仅可作为杂交指示剂,还可以解释药物的药理学作用.道诺霉素(daunomycin)是蒽环类抗生素中较常用的一种杂交指示剂,Hashim oto等[15]对道诺霉素进行深入研究后认为道诺霉素是较合适的DNA电化学传感器的杂交指示剂.庞代文等[47]在抗癌药物与DNA电化学研究方面作了较多工作.方禹之等[48]将以盐酸阿霉素(DXH)为杂交指示剂,结果发现只有与互补序列杂交反应才出现DXH 的氧化还原峰,证明该方法可有效地识别DNA片段.2)寡聚核苷酸上修饰电化学活性官能团作为识别物此类型即是将具有电化学活性的小分子标记在ssDNA 片段上形成DNA探针.常用的标记物有二茂铁,溴化乙锭,聚吡咯,聚噻吩.徐春等[49]以乙基2(32二甲基丙基)炭化二亚胺盐酸盐为偶联活化剂,利用缩合反应分别将电化学活性物质氨基二茂铁和醛基二茂铁成功标记在变性小牛胸腺DNA片段上,制备成二茂铁标记DNA探针.他们[1]将指示剂氨基二茂铁(AFC)标记在含有256个碱基的已知序列ssDNA上形成探针,实验表明标记有电化学活性指示剂AFC的DNA探针可用于特定序列DNA的检测.他们[23]将电化学活性物质溴化乙锭(E B)成功的标记在ssDNA片段上,制成E B标记的DNA探针,Has fa等[50]将二茂铁和已知序列ssDNA探针键合到聚吡咯/铂电极上,以该修饰电极为工作电极,分别与互补序列ssDNA和非互补序列ssDNA 进行杂交反应,并用C V法对杂交结果进行分析,发现与互补序列ssDNA杂交后二茂铁基团的峰电流下降,峰电位正移,而与非互补序列ssDNA作用后二茂铁的峰信号未发生变化.3)利用酶的放大功能在DNA分子上标记酶作为识别物.当标记了酶的ssD2 NA与电极表面的互补ssDNA发生杂交发应后,相当于在电极表面修饰了一层酶,酶具有很强的催化功能,通过测定反应物的变化量可以间接测定DNA.Lumley2W oodear等[51]在待测DNA链端衍生辣根过氧化物酶,在杂交过程中,修饰电极便能催化过氧化氢的电还原.4)其他方法据报道还有无杂交指示剂和三明治法,电化学基因传感器也可以不用指示剂来检测DNA的杂交,因为电活性剂的加入使得电化学信号的本底加大,使得检测的分辨率降低.过去,检测不到DNA杂交的本征信号是由于探针上鸟嘌呤基的存在,因为它不能检测含有鸟嘌呤基的目标分子.解决这个问题的办法是在电极上固定不含鸟嘌呤基的次黄(嘌呤核)苷探针,当嘌呤核苷与目标胞核嘧啶形成基对时,它的氧化信号就能从鸟嘌呤的响应中很好地分离出来,这样DNA杂交的信号就能直接和方便地被检测出来.如Wang等[25]用肌苷代替DNA探针中的鸟嘌呤来消除探针中鸟嘌呤的氧化峰,利用杂交反应后出现的鸟嘌呤的氧化峰进行检测.Ihara[52]先将待测的长链DNA与固定化的短链DNA探针杂交,然后再让长链DNA上未杂交部分与修饰有电活性标记物的短链DNA杂交,进而进行电化学检测,此法即三明治法.4 DNA电化学生物传感器的应用展望 DNA电化学传感器因其简单、快速、灵敏等优点,已经应用或有望应用于:①军事上.在军事上的应用是目前重视的研究项目.由于基因工程的研究成果为生物武器的研究开辟了新的领域—基因武器,便携、快速、灵敏的基因传感器可以发挥重要作用.澳大利亚AM BRI有限公司悉尼实验室的专家研制出的一种手持式纳米DNA传感器2模拟离子通道[53]开关的生物传感器,可以探测空气中的病原体,如炭疽热病菌等,非常适合生物武器的现场检测.②基因探伤和突变检测,Zhou等[54-55]人用Ru(bpy)3+3和C o (bpy)3+3(bpy=2,2′2bipyridine)与DNA的相互作用,采用方波极谱法测定受损DNA,可检测到0.1%的受损碱基;③基因疾病诊断,如Hashim oto等[8]用于致癌基因v2myc序列检测的电化学传感器;Wang等[56-57]制备了用于检测抑癌基因P53和人类免疫缺陷病毒的DNA传感器.④体外药物分析和筛选,庞代文等[47]研究了道诺霉素在DNA修饰石墨微电极上的电化学行为,并建立了测定人尿中痕量道诺霉素的方法;⑤环境检测.Wang[58]报道了用DNA电化学杂交生物传感器对饮用水和污水样本中的病原微生物进行的检测.5 结束语 DNA电化学生物传感器提供了一种简单的、可靠的和价廉的DNA杂交测试方法,凭借其独特的优势,已成为电化学领域的研究热点,它开辟了电化学与分子生物学交叉学科的新领域,为生命科学的研究提供了一种崭新的方法.它具有较高的灵敏度,可探测出微克级的双链DNA分221四川兵工学报子,可以制作成微电极形式.同时,它与目前的DNA生物芯片技术兼容.其不足之处是不能完全定量检测,因为电极制备的每一个过程并非定量进行.电化学基因传感器的研究与发展方向是微型化、阵列化、快速、实时检测技术,甚至将此项技术原理应用于其他生物领域[58].我国在这方面的研究工作起步较晚,但已初具规模,主要集中在各种DNA固定方法的深入研究、研究DNA与小分子的作用以筛选适合高灵敏度检验的杂交指示剂以及探索此类传感器在各个领域的应用等等.目前DNA电化学传感器的稳定性、重现性和灵敏度还有待提高,在测定过程中杂交假象(DNA与其他物质结合)、碱基错配现象必须尽量避免和减少,以及使此类传感器微型化操作简单以推动其真正商品化.随着研究的不断深入,这些问题必将得到解决,DNA电化学生物传感器必将在各领域中占有一席之地.参考文献:[1] Xu Chun,Cai H ong,He Pinggang.E lectrochemical detectionof sequence specific DNA using a DNA Probe labeled withamino ferrocene and chitosan m odified electrode imm obilizedwith ssDNA[J].Analyst,2001,126:62-65.[2] Drumm ond T G,Hill M G,Barton J K.E lectrochemical DNAsens or[J].Nature biotechnology,2003,21(10):1192-1199.[3] 杨丽菊,彭图治.特定序列的脱氧核糖核酸电化学生物传感器进展[J].分析化学,2001,29(3):355-360. [4] Paleceek E.From polarography of DNA to microanalysis withnucleic acid m odified electrodes[J].E lectronanalysis,1996,8(1):7-14.[5] 杜晓燕,陈文华,常东.电化学生物传感器及其在环境和医学检验中的应用[J].传感技术学报,2002,12(4):347-352.[6] Cai X,Rivas G,Shiraishi H.E lectrochemical analysis of for2mation of polynucletide com plexes in s olution and at elec2 trode sur faces[J].Anal Chim.Acta,1997,344:65-76. [7] M illan K M,M ikkelsen S R.Sequence2selective biosens orfor DNA based on electroactive hybridization indicators[J].Anal.Chem,1993,65(17):2317-2323.[8] Hashim oto K,I to K,Ishim ori Y.Sequence2specific gene de2tection with a g old electrode m odified with DNA probes andelectrochemically active dye[J].Anal.Chem,1994,66(21):3830-3833.[9] Hiroy oshi M,K enichi Y,Masayuki.E lectrochemical analysisof single nucleotide polym orphisms of p53gene[J].T alan2 ta,2002,56:829-835.[10]Wang J,Femandes J R,K abota L T.P olishable and renew2able DNA hybridization biosens ors[J].Anal.Chem.,1998,70(17):3699-3702.[11]Marrazza G,Chianella I,Mascini M.A disposable DNA elec2trochemical biosens or for hybridization detection[J].Biosens.Bioelectron,1999,14:43-51.[12]程琼,彭图治.红四氮唑作为电化学嵌合剂的核酸杂交生物传感器[J].高等学校化学学报,2002,23(9):1680-1683.[13]郑赛晶,林祥钦,尹屹梅.石墨电极固载DNA的一种新修饰方法[J].化学学报,2002,60(10):1828-1833.[14]缪谦,金葆康,林祥钦.ssDNA在纳米金上固载和杂化的电化学传感研究[J].高等学校化学学报,2000,21(1):27-30.[15]Hashim oto K,I to K,Ishim ori Y.N ovel DNA sens or electro2chemical gene detection[J].Anal.Chim.Acta,1994,286:219-224.[16]Chun Xu,H ong Cai,Qun Xu,Pingang He,Y uzhi Fang.Characterization of single2stranded DNA on chitosan2m odi2 fied electrode and its application to the sequence2speciticDNA detection[J].Fresenius J.Aual.Chem.,2001,369:428-432.[17]Napier M E,Thorp H H.E lectrocatalytic oxidation of nucleicacid at electrodes m odified with nylon and nitrocellulosemembranes[J].J.Fluoresc.,1999,9(3):181-186. [18]静国忠.基因工程及其分子生物学基础[M].北京:北京大学出版社,1999,175-177.[19]庞代文,陆琪,赵元弟.DNA修饰电极的研究(Ⅷ)1,10-菲咯啉存在时钴离子在ssDNA修饰金电极上的电化学行为及痕量钴的检测[J].化学学报,2000,58(5):524-528.[20]Fei Y an,Arzum Erdem,Burcu Meric,et al.E lectrochemicalDNA biosens or for the detection of specific gene related tomicrocystis species[J].E lectrochemistry C ommunications,2001,3:224-228.[21]Pang Daiwen,Zhang M in,Wang Z onglin,et al.M odificationof glassy carbon and g old electrodes with DNA[J].J.E lec2 troanal Chem.,1996,403:183-188.[22]Pang Daiwen,Abruna H D.M icromethod for the investigationof the interactions between DNA and redox2active m olecules[J].Anal Chem.,1998,70:3162-3169.[23]徐春,何品刚,方禹之.溴化乙锭标记DNA电化学探针的研究[J].高等学校化学学报,2000,21(8):1187-1190.[24]Wang J,Cai X,Rivas G,et al.S tripping potentiometric tran2scluction of DNA hybridization processes[J].Anal.chim.Acta,1993,344:111-118.[25]Wang J,Palecek E,Nielsen P E.Peptide nucleic acid probesfor sequence2specific DNA biosens or[J].J.Am.Chem.S oc.,1996,118:7667-7670.[26]M illan K M,Aaraullo A,M ikkelsen S R.V oltammetric DNAbiosens or for cystic fibrosis based on a m odified carbon paste electrode[J].Anal.Chem.,1994,66:2943-2948.[27]Y ang M,K ong R Y C,K azmi N,et al.C ovalent imm obiliz2tion of olig onucleotides on m odified glass/silicon sur faces fors olid2phase DNA hybridization and am plification[J].Chem.Lett.,1998:257-258.[28]刘盛辉,孙长林,何品刚等.单链核糖核酸在石墨电极321谢灵珠,等:DNA电化学生物传感器的研究与应用。
aptes氨基化氧化铝原理
APTES(氨丙基三乙氧基硅烷)氨基化氧化铝是一种常用的化学
修饰方法,用于在氧化铝表面引入氨基官能团。
这种修饰方法的原
理涉及到APTES分子的结构和化学反应。
首先,APTES分子的结构是含有氨基(NH2)和硅烷(Si(OR)3)官能团的有机硅化合物。
当APTES分子与氧化铝表面接触时,硅烷
官能团会与氧化铝表面发生化学反应,形成氧化铝表面与APTES分
子的共价键结合。
这个过程通常是在溶剂中进行的,其中氢氧化铵
或氢氧化钠等碱性条件下进行反应。
其次,APTES分子中的氨基官能团在氧化铝表面形成后,可以
通过氨基与其他分子或化合物发生化学反应,从而实现对氧化铝表
面的功能化修饰。
例如,氨基可以与羧基反应形成酰胺键,从而引
入更多的官能团,实现对氧化铝表面的化学修饰。
总的来说,APTES氨基化氧化铝的原理是利用APTES分子的结
构和化学反应性,通过与氧化铝表面发生化学反应,引入氨基官能团,从而实现对氧化铝表面的修饰和功能化。
这种修饰方法在材料
科学、表面化学和生物医学领域有着广泛的应用,可以用于制备功能性涂层、生物传感器、分子分离材料等方面。