高中数学第三章统计案例31感悟非线性回归问题素材北师大版2-3.
- 格式:doc
- 大小:104.00 KB
- 文档页数:3
【金学案】2015年春高中数学第三章统计案例(3课时)北师大版选修2-3知识点新课程标准的要求层次要求领域目标要求回归分析的基本思想及其初步应用通过典型案例的探究,进一步了解回归的基本思想、方法及初步应用在《数学》(必修3)概率统计的基础上,通过典型案例进一步介绍回归分析的基本思想、方法及其初步应用;通过典型案例介绍独立性检验的基本思想、方法及其初步应用,认识统计方法在决策中的作用独立性检验的基本思想及其初步应用在具体情境中,通过典型案例的探究,了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用1.在学习回归分析内容时,应首先回顾必修课程中的相关内容,复习如何画散点图,如何利用最小二乘法求线性回归方程,并关注本章内容和必修课程中相关内容的区别与联系.认识和体会进行相关性检验的必要性,了解如何求线性相关系数r,并能对两个随机变量进行回归分析.在此基础上,会将非线性回归问题转化为线性回归问题来解决.2.通过具体实例,了解独立性检验的基本思想,能够根据实际问题列出2×2列联表,求出χ2的值,并能根据求得的值判断两个变量是否相关.3.带着如下问题阅读教材:(1)为什么要引入线性相关系数?(2)如何将非线性回归模型转化为线性回归模型?(3)独立性检验的基本思想、方法是什么?(4)哪种类型的数据可以进行独立性检验,哪种类型的数据可进行回归分析?第1课时回归分析1.会对两个变量的相关关系进行分析、判断.2.了解回归分析的基本思想,会对两个变量的具体问题进行回归分析.3.掌握运用最小二乘法建立回归模型的基本步骤和方法.重点:熟练掌握回归分析,建立回归模型,求各相关指数的步骤.难点:如何求回归直线方程以及对相关系数r的理解和运用.我们每个人都有自己的身高和体重,那么如果把身高和体重分别作为变量,它们能够构成函数关系吗?问题1:散点图在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.问题2:相关关系与线性回归相关关系:对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系称为相关关系.相关关系分为线性相关和非线性相关.函数关系中的两个变量间是一种确定性关系,相关关系是一种非确定性关系.线性回归:对具有相关关系的两个变量进行统计分析的一种常用方法.问题3:线性相关系数r=称为两个变量数据(x i,y i)(i=1,2,…,n)的线性相关系数.r用来刻画两个变量的线性回归效果:当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关;r的绝对值越接近于0时,表明两个变量之间越不存在线性相关关系.问题4:线性回归分析的步骤对于一组具有线性相关关系的数据:(x1,y1),(x2,y2),…,(x n,y n).(1)画散点图:看散点图是否呈条状分布.(2)求回归直线方程(最小二乘法):b=, =x i,=y i,其中(,)为样本中心点,回归直线方程必经过样本中心点(,),得a= -b ;(3)得出相关结论:回归直线方程为y=a+bx ,利用回归直线方程进行预测.“一只蝴蝶在巴西扇动翅膀,有可能会在美国的德克萨斯州引起一场龙卷风.”这就是洛伦兹1979年12月在华盛顿的“美国科学促进会”上的一次演讲中提出的“蝴蝶效应”.这次演讲给人们留下了极其深刻的印象.从此以后,所谓“蝴蝶效应”之说就不胫而走,名声远扬.“蝴蝶效应”之所以令人着迷、令人激动、发人深省,不但在于其大胆的想象力和迷人的美学色彩,而且在于其深刻的科学内涵和内在的哲学魅力.1.下列关系不属于相关关系的是().A.父母的身高与子女的身高B.人的身高与体重C.居民的收入与消费D.正方体的表面积和体积【解析】相关关系是一种非确定性关系,而D项是确定的关系,为函数关系,故选D.【答案】D2.设两个变量x与y之间具有线性相关关系,相关系数是r,回归方程为y=a+bx,那么必有().A.b与r符号相同B.a与r符号相同C.b与r符号相反D.a与r符号相反【解析】因为b与r的分母均为正,且分子相同,所以b与r同号.【答案】A3.某医院用光电比色检验尿汞时,得到尿汞含量x(毫克/升)与消化系数y的一组数据如下表:尿汞含量x 2 4 6 8 10消化系数y64 138 205 285 260若x与y具有线性相关关系,则回归直线方程是.【解析】利用公式b==26.95,a=-b=28.7,从而回归直线方程为y=26.95x+28.7.【答案】y=26.95x+28.74.某10名同学的数学、物理、语文成绩如下表:数学136 125 122 87 108 113 111 70 94 74物理107 91 92 76 93 85 82 78 78 73语文86 114 104 109 100 106 112 104 95 99试分别研究他们的数学成绩与物理成绩的关系、数学成绩与语文成绩的关系,你能发现什么规律?【解析】可求出物理成绩与数学成绩的相关系数r≈0.87>0.75,从而认为物理成绩与数学成绩之间具有很强的线性相关关系.而由语文成绩与数学成绩的相关系数|r|≈0.092远小于0.75,说明语文成绩与数学成绩不具有线性相关关系.因此,数学成绩好的同学,一般来说物理成绩也较好,它们之间的联系较紧密,而数学成绩好的同学,语文成绩可能好也可能差,它们之间的关系不大.相关关系的判断与分析有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其断面直径与高度之间的关系;⑤学生与他(她)的学号之间的关系.其中有相关关系的是(填写你认为正确的序号).【方法指导】根据相关关系的概念进行判断.【解析】序号关系理由①相关关系人的年龄和他(她)的财富有一定的关系,一般中年人财富多,年轻人少,少儿基本没有②函数关曲线上的点与其坐标一一对应,是确定的系③相关关系气候能影响苹果的产量④相关关系同一种树木,其断面直径和高度之间有一定的关系,但不确定⑤对应关系确定的一一对应关系【答案】①③④【小结】相关关系是一种非确定性关系,是指两个变量之间有关系,但是两者之间的关系还受其他因素的影响,只是影响大小的问题.回归直线过样本中心点(,)的性质的应用观察两个相关变量的如下数据:x-1 -2 -3 -4 -5 5 4 3 2 1y-0.9 -2 -3.1 -3.9 -5.1 5 4.1 2.9 2.1 0.9则两个变量间的回归直线方程为().A.y=0.5x-1B.y=xC.y=2x+0.3D.y=x+1【方法指导】根据回归直线方程y=a+bx经过样本中心点(,)可计算出结果.【解析】∵=0,=0,回归直线方程经过样本中心点(,),代入所给选项中检验,可知,只有y=x符合条件.【答案】B先判定相关性,再求回归直线方程某种图书每册的成本费y(元)与印刷册数x(千册)有关,经统计得到数据如下:x 1 2 3 5 10 20 30 50 100 200y 10.155.524.082.852.111.621.411.31.211.15检验每册书的成本费y与印刷册数的倒数之间是否有线性相关关系?如果有,求出y对x的回归方程.【方法指导】本题是非线性回归分析问题,不妨设变量u=,题意要求对u与y作相关性检验,如果它们具有线性相关关系,就可以进一步求出y对u的回归直线方程,这时,再回代u=,就得到了y对x的回归曲线方程.【解析】将上表数据列表分析如下:i 1 2 3 4 5 6 7 8 9 10x i 1 2 3 5 10 20 30 50 100 200 421y i 10.155.52 4.08 2.852.111.621.411.31.21 1.15 31.4 1 4 9 25 100 400 9002501000400053939 103.0330.4716.658.124.452.621.991.691.46 1.32 171.8x i y i 10.1511.0412.2414.2521.132.442.365 121 230 559.48∴=42.1,=1772.41,=3.14,n=10,10=1321.94,可以求得r=0.9998,由r=0.9998>0.75,因此变量y与之间具有较强的线性相关关系.∵b====-0.02,∴a=-b=3.14-(-0.02)×42.1=3.98. ∴y 与x 的回归方程为y=3.98-0.02x.[问题]当x=1时,由回归方程得y=3.96,而实际上y=10.15,为什么有这么大的偏差?上述回归方程是y 与x 的回归方程吗?[结论]因为y 与之间具有较强的线性相关关系,而y 与x 之间没有明显的线性相关关系,故应先通过变量变换(即换元),令u=,并通过对u 与y 作相关性检验,求出y 对u 的回归直线方程,最后再回代u=,得到y 对x 的回归方程.于是正确解如下:首先作变量变换,令u=,则题目所给数据变成如下表所示的数据:u i 1 0.5 0.33 0.2 0.10.05 0.03 0.02 0.01 0.005y i 10.15 5.52 4.08 2.85 2.11 1.62 1.41 1.30 1.211.15可以求得r ≈0.9998>0.75,因此变量y 与u 之间具有较强的线性相关关系,并且b ≈8.973,a=-b ≈1.125,最后回代u=可得y=+1.125.因此y 与x 的回归方程为y=+1.125.【小结】本题中y 与x 之间不具有线性相关关系,因而是非线性回归分析问题,对此类回归分析问题,应先求线性相关系数r ,利用r 来判断两个变量之间是否具有线性相关关系.当|r|>0.75时,认为有很强的线性相关关系,可以求回归直线方程,并可用求得的回归直线方程来预测变量的取值;当|r|<0.75时,认为两个变量之间线性相关关系不显著,这时求回归直线方程没有多大的实际价值,要采用变量变换(即换元法)转化为线性回归问题求解.由施肥量x 与水稻产量y 试验数据的关系,画出散点图,并指明相关性.施化肥量x15 20 25 30 35 40 45水稻产量y330 345 365 405 445 450 455【解析】散点图为:通过图像可知是正相关.已知x 、y 的取值如表所示,若从散点图分析,y 与x 线性相关,且y=0.95x+a ,求a 的值.x 0 1 2 3 4 y 2.2 4.3 4.8 4.8 6.7【解析】由表中数据得=2,=4.56,由于线性回归方程一定经过样本中心点(,),即(2,4.56),在回归直线方程y=bx+a 中,代入点(2,4.56)得a=-b=4.56-0.95×2=2.66.10名同学在高一和高二的数学成绩如下表:x74 71 72 68 76 73 67 70 65 74y76 75 71 70 76 79 65 77 62 72其中x为高一数学成绩,y为高二数学成绩.(1)y与x是否具有相关关系;(2)如果y与x具有相关关系,求回归直线方程.【解析】(1)由已知表格中的数据,利用计算器进行计算得=71,=72.3,x i y i=51467,=50520,=52541.则r==≈0.78.由0.78>0.75认为x与y之间具有线性相关关系.(2)y与x具有线性相关关系,设回归直线方程为y=a+bx,则b==≈1.22,a=-b=72.3-1.22×71=-14.32,所以y关于x的回归直线方程为y=1.22x-14.32.1.对相关系数r,下列说法正确的是().A.r越大,两变量的线性相关程度越大B.r越小,两变量的线性相关程度越大C.|r|越大,两变量的线性相关程度越大;|r|越小,两变量的线性相关程度越小D.|r|≤1,且|r|越接近1,两变量的线性相关程度越大;|r|越接近0,两变量的线性相关程度越小【解析】由两个变量的相关系数公式r=可知,相关程度的强弱与|r|和1的接近程度有关,|r|越接近1,两变量的线性相关程度越大,|r|越接近0,两变量的线性相关程度越小.【答案】D2.工人月工资y(元)关于劳动生产率x(千元)的回归方程为y=650+80x,下列说法正确的个数是().①劳动生产率为1000元,工资约为730元;②劳动生产率提高1000元,则工资约提高80元;③劳动生产率提高1000元,则工资约提高730元;④当月工资为810元,劳动生产率约为2000元.A.1B.2C.3D.4【解析】①②④正确,注意单位的一致性,故选C.【答案】C3.若预报体重y(kg)和身高x(cm)之间的线性回归方程为y=0.849x-85.712,如果要找到体重为41.638 kg的人,(填“一定”或“不一定”)在身高为150 cm的人群中.【解析】体重不仅受身高的影响,还受其他因素的影响.【答案】不一定4.某个体服装店经营某种服装,一周内获纯利润y(元)与该周每天销售这种服装的件数x之间的一组数据如下:x 3 4 5 6 7 8 9y66 69 73 81 89 90 91已知=280,=45309,x i y i=3487.(1)求,;(2)一周内获纯利润y与该周每天销售件数x之间是否线性相关?如果线性相关,求出回归直线方程.【解析】(1)=(3+4+5+6+7+8+9)=6,=(66+69+73+81+89+90+91)≈79.86.(2)根据已知=280,=45309,x i y i=3487,得相关系数r=≈0.973.由于0.973>0.75,所以纯利润y与每天销售件数x之间具有显著的线性相关关系.利用已知数据可求得回归直线方程为y=4.746x+51.386.(2013年·湖南卷)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且y=2.347x-6.423;②y与x负相关且y=-3.476x+5.648;③y与x正相关且y=5.437x+8.493;④y与x正相关且y=-4.326x-4.578.其中一定不正确的结论的序号是().A.①②B.②③C.③④D.①④【解析】由正相关、负相关的性质可知在①中,斜率为2.347>0,不可能负相关;在④中,斜率为-4.326<0,不可能正相关,故①④一定不正确.选D.【答案】D1.下列两个变量之间的关系是相关关系的是().A.圆的面积与半径B.球的体积与半径C.角度与它的正弦值D.一个考生的数学成绩与物理成绩【解析】由题意知A表示圆的面积与半径之间的关系S=πr2;B表示球的体积与半径之间的关系V=πr2;C表示角度与它的正弦值y=sin α,以上所说的都是确定的函数关系,相关关系不是确定性的关系,故选D.【答案】D2.在对两个变量x,y进行线性回归分析时有下列步骤:①对所求出的回归方程作出解释;②收集数据(x i,y i),其中i=1,2,…,n;③求线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图.如果根据可靠性要求能够作出变量x,y具有线性相关结论,那么在下列操作顺序中正确的是().A.①②⑤③④B.③②④⑤①C.②④③①⑤D.②⑤④③①【解析】根据线性回归分析思想可知,两个变量x,y进行线性回归分析时,应先收集数据(x i,y i),然后绘制散点图,再求相关系数和线性回归方程,最后对所求的回归方程作出解释,因此选D.【答案】D3.如图所示有5组数据,去掉后,剩下的4组数据的线性相关性更强.【解析】根据散点图判定两变量的线性相关性,样本数据点越集中在某一直线附近,这两变量的线性相关性越强,显然去掉D(3,10)后,其余各点更能集中在某一直线附近,即线性相关性更强.【答案】D(3,10)4.一个工厂在某年里每月产品的总成本y(万元)与该月产量x(万件)之间由如下一组数据:x 1.081.121.191.281.361.481.591.681.81.871.982.07y 2.252.372.42.552.642.752.923.033.143.263.363.5(1)画出散点图;(2)检验相关系数r的显著性水平;(3)求月总成本y与月产量x之间的回归直线方程.【解析】i 1 2 3 4 5 6 7 8 9 10 11 12x i1.08 1.121.191.281.361.481.591.681.81.871.982.07y i2.25 2.372.42.552.642.752.923.033.143.263.363.5x i y i 2.432.6542.8563.2643.5904.074.6435.0905.6526.0966.6537.245=,=,=29.808,=99.2081,x i y i=54.243(1)画出散点图,如图所示.(2)r==≈0.99>0.75,这说明每月产品的总成本y(万元)与该月产量x(万件)之间存在显著的线性相关关系.(3)设回归直线方程y=bx+a,利用计算a,b,得b≈1.215, a=-b≈0.974,即回归直线方程为y=1.215x+0.974.5.设一个回归方程为y=3-5x,当变量x增加一个单位时().A.y平均增加3个单位B.y平均减小5个单位C.y平均增加5个单位D.y平均减小3个单位【解析】-5是斜率的估计值,说明x每增加一个单位,y平均减少5个单位.【答案】B6.对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(x n,y n),其回归方程的截距为().A.a=y+bxB.a=+bC.a=y-bxD.a=-b【解析】回归直线方程中的截距即为a,由公式=b+a得a=-b,故选D.【答案】D7.许多因素都会影响贫穷,教育也许是其中之一,在研究这两个因素的关系时收集了美国50个州的成年人受过9年或更少教育的百分比(x)和收入低于官方规定的贫困线的人数占本州人数的百分比(y)的数据,建立的回归直线方程为y=0.8x+4.6,则成年人受过9年或更少教育的百分比(x)和收入低于官方的贫困线的人数占本州人数的百分比(y)之间的相关系数.(填“大于0”或“小于0”)【解析】一个地区受过9年或更少教育的百分比每增加1%,收入低于官方规定的贫困线的人数占本州人数的百分比将增加0.8%左右.【答案】大于08.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:使用年限x2 3 4 5 6维修费用y2.23.8 5.5 6.5 7.0若由资料知y对x呈线性相关关系.试求:(1)线性回归方程y=bx+a的回归系数a,b;(2)估计使用年限为10年时的维修费用.【解析】(1)制表如下:i 1 2 3 4 5 合计x i 2 3 4 5 6 20y i2.2 3.8 5.5 6.5 7.0 25x i y i4.4 11.4 22.0 32.5 42.0 112.34 9 16 25 36 90=4,=5,=90,x i y i=112.3于是b===1.23,a=-b=5-1.23×4=0.08.(2)由(1)知回归直线方程为y=1.23x+0.08,当x=10时,y=1.23×10+0.08=12.3+0.08=12.38,即估计使用10年时的维修费用是12.38万元.9.若y与x之间的一组数据如下:x0 1 2 3 4y 1 3 5 5 6则拟合这5对数据的回归直线一定经过的点是.【解析】根据回归直线y=bx+a一定过样本中心点(,),且==2,==4,知点(2,4)一定在回归直线上.【答案】(2,4)10.某工业部门进行一项研究,分析该部门的产量与生产费用之间的关系,从这个工业部门内随机抽选了10个企业作样本,有如下资料:产量x(千件) 费用y(千元)40 150 42 140 48 160 55 170 65 150产量x(千件) 费用y(千元)79 16288 185100 165120 190140 185完成下列要求:(1)计算x与y的相关系数;(2)这两个变量之间是否线性相关?若线性相关,求回归直线方程y=bx+a.【解析】(1)制表如下:i x i y i x i y i1 40 150 1600 22500 60002 42 140 1764 19600 58803 48 160 2304 25600 76804 55 170 3025 28900 93505 65 150 4225 22500 97506 79 162 6241 26244 127987 88 185 7744 34225 162808 100 165 10000 27225 165009 120 190 14400 36100 2280010 140 185 19600 34225 25900合计777 1657 70903 277119 132938==77.7,==165.7,=70903,=277119,x i y i=132938r=≈0.808.即x与y的相关系数r≈0.808.(2)因为r>0.75.所以x与y之间具有很强的线性相关关系.则b=≈0.398,a=165.7-×77.7b≈134.8,所以回归直线方程为y=0.398x+134.8.第2课时回归分析的应用1.根据线性回归方程,对相关结论进行预测.2.理解从散点图进行非线性回归分析的意义,掌握如何将非线性回归问题转化为线性回归问题的方法.3.了解在解决实际问题的过程中寻找更好的模型的方法.重点:根据线性回归方程,对相关结论进行预测,探究非线性模型通过变换转化为线性回归模型的方法.难点:了解常用函数的图像特点,选择不同的模型建模,并通过相关指数对不同的模型进行比较.有关法律规定:香烟盒上必须印上“吸烟有害健康”的警示语,那么吸烟和健康之间有因果关系吗?每一个吸烟者的健康问题都是由吸烟引起的吗?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?要回答这个问题,我们先来一起学习本节的知识吧!问题1: 刻画回归方程的拟合效果相关系数r=用来刻画数组(x i,y i)中两个变量的线性回归效果,当|r| >0.75时,我们认为数组(x i,y i) 中两个变量有很强的线性相关关系;当|r| <0.75时,则认为两个变量之间线性相关关系不显著.问题2:在回归分析中,通过模型计算预测变量的值时,应注意的问题.(1)回归方程只适用于我们所研究的样本的总体;(2)我们所建立的回归方程一般都有时间性;(3)样本取值的范围会影响回归方程的适用范围;(4)不能期望回归方程得到的预测值就是预测变量的精确值.问题3:几种能转化为线性回归模型的非线性回归模型(1)幂函数曲线y=ax b作变换u=ln y,v=ln x,c=ln a,得线性函数u=c+bv .(2)指数曲线y=a e bx作变换u=ln y,c=ln a,得线性函数u=c+bx .(3)倒指数曲线y=a作变换u=ln y,c=ln a,v=,得线性函数u=c+bv .(4)对数曲线y=a+b ln x作变换u=y,v=ln x,得线性函数u=a+bv .问题4:非线性回归问题进行回归分析的方法(1)若问题中已给出经验公式,这时可以将解释变量进行交换(换元),将变量的非线性关系转化为线性关系,将问题化为线性回归分析问题来解决.(2)若问题中没有给出经验公式,需要我们画出已知数据的散点图,通过与各种函数(如指数函数、对数函数、幂函数等)的图像作比较,选择一种与这些散点拟合得最好的函数,然后采用适当的变量交换,将问题化为线性回归分析问题来解决.从以下几个方面认识相关关系:(1)相关关系与函数关系不同.函数关系中的两个变量间是一种确定性关系;相关关系是一种非确定性关系.(2)函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.相关关系在现实生活中大量存在,从某种意义上讲,函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况.因此研究相关关系,不仅可以使我们处理更为广泛的数学应用问题,还可以使我们对函数关系的认识上升到一个新的高度.一般情况下,在尚未断定两个变量之间是否具有线性相关关系的情况下,应先进行相关性检验,在确认其具有线性相关关系后,再求其回归直线方程;由部分数据得到的回归直线,可以对两个变量间的线性相关关系进行估计,这实际上是将非确定性的相关关系问题转化成确定性的函数关系问题进行研究.由于回归直线将部分观测值所反映的规律性进行了延伸,它在情况预测、资料补充等方面有着广泛的应用.1.下列两个变量之间的关系不是函数关系的是().A.角度和它的余弦值B.正方形的边长和面积C.正n边形的边数和各内角度数之和D.人的年龄和身高【解析】函数关系就是一种变量之间的确定性的关系,A,B,C三项都是函数关系,它们的函数表达式分别为f(θ)=cos θ,g(a)=a2,h(n)=nπ-2π.D项不是函数关系,对于年龄确定的人群,仍可以有不同的身高,故选D.【答案】D2.为了表示n个点与相应直线在整体上接近程度,我们常用()表示.A.(y i-y)B.(y i-)C.(y i-y)2D.(y i-)2【解析】由回归直线方程y=a+bx,可知y为一个量的估计量,而y i为它的实际值,在最小二乘法中[y i-(a+bx)]2,即(y i-y)2,故选C.【答案】C3.在一次实验中,测得(x,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则y与x之间的回归直线方程为.【解析】因为A,B,C,D四点都在直线y=x+1上,故填y=x+1.【答案】y=x+14.1907年一项关于16艘轮船的研究中,船的吨位区间位于192吨到3246吨,船员的人数从5人到32人,船员的人数关于船的吨位的回归分析得到如下结果:船员人数=9.1+0.006×吨位.(1)假定两艘轮船吨位相差1000吨,船员平均人数相差多少?(2)估计最小的船的船员数和最大的船的船员数.【解析】(1)船员平均人数之差=0.006×吨位之差=0.006×1000=6,即船员平均相差6人.(2)9.1+0.006×192=10.252,估计最小的船的船员数为10.9.1+0.006×3246=28.576,估计最大的船的船员数为28.利用公式,确定回归直线方程某5名学生的数学和化学成绩如下表:学生A B C D E学科数学成绩(x) 88 76 73 66 63化学成绩(y) 78 65 71 64 61(1)画出散点图;(2)求化学成绩(y)对数学成绩(x)的回归直线方程.【方法指导】熟记公式,根据表格计算公式中所需的各种数据.【解析】(1)散点图(略).(2)=73.2,=67.8,x i y i=25054,=27174,所以b==≈0.625.a=-b=67.8-0.625×73.2=22.05.所以y对x的回归直线方程为y=0.625x+22.05.【小结】利用公式求解时应注意以下几点:①求b时应先求出,,x i y i,,再由a=-b求a的值,并写出回归直线方程.②线性回归方程中的截距a和斜率b都是通过样本估计而来,存在着误差,这种误差可能导致预测结果的偏差.③回归直线方程y=a+bx中的b表示x增加1个单位时y的变化量为b,而a是不随x的变化而变化的量.④可以利用回归直线方程y=a+bx预测在x取某一个值时,y的估计值.根据回归直线方程,对结果进行分析或预测从某大学中随机选取 8 名女大学生,其身高和体重数据如下表:编号 1 2 3 4 5 6 7 8身高/cm 165 165 157 170 175 165 155 170体重/kg 48 57 50 54 64 61 43 59求根据女大学生的身高预测体重的回归方程,并预测一名身高为 172 cm 的女大学生的体重.【方法指导】可以计算出r≈0.798>0.75.这表明体重与身高有较强的线性相关关系,从而可以建立身高和体重的线性回归方程,根据身高和体重的线性回归方程,由身高预测体重.【解析】由于问题中要求根据身高预测体重,因此选取身高为自变量x ,体重为因变量y.作出散点图(如图).从图中可以看出,样本点呈条状分布,身高和体重有较强的线性相关关系,因此可以用线性回归方程来近似刻画它们之间的关系,根据公式,可以得到b≈0.848,a≈-85.712.于是得到回归方程y=0.848x-85.712.因此,对于身高172 cm 的女大学生,由回归方程可以预测其体重为y=0.848×172-85.712=60.144 kg.【小结】解析中b=0.848是斜率的估计值,说明身高x每增加1个单位时,体重y就增加0.848 kg,这表明体重与身高具有正的线性相关关系.尽管身高172 cm的女大学生的体重不一定是60.144 kg,但一般可以认为她的体重接近60.144 kg.可线性化的非线性回归问题一只红铃虫的产卵数y和温度x之间的7组观测数据列于下表:温度x/℃21 23 25 27 29 32 35产卵数y/7 11 21 24 66 115 325个试建立y与x之间的回归方程,并预测温度为28 ℃时产卵数目.【方法指导】作出散点图(或根据已知的散点图)分析欲采用较为恰当的拟合曲线,用换元法转化成线性关系再进行回归分析.【解析】选择变量,画散点图.在散点图中,根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y=c1的周围,其中c1和c2是待定参数.即问题变为如何估计待定参数c1和c2.我们可以通过对数变换把指数关系变为线性关系.令z=ln y,则变换后样本点应该分布在直线z=bx+a(a=ln c1 ,b=c2)的周围.这样,就可以利用线性回归模型来建立y 和x之间的非线性回归方程了.由已知表的数据可以得到变换后的样本数据表(下表):x21 23 25 27 29 32 35z1.946 3.398 3.045 3.178 4.190 4.745 5.784下图给出了表中数据的散点图.从图中可以看出,变换后的样本点分布在一条直线附近,因此可以用线性回归方程来拟合.由表中的数据得到线性回归方程z=0.242x-2.884.相关系数r≈0.953.因此红铃虫的产卵数对温度的非线性回归方程为y=e0.242x-2.884.当x=28 ℃时,y≈49.预测当气温为28 ℃时,产卵数为49个.综上所述,在本题中指数函数模型比一元线性模型、二次函数模型有更好的拟合效果.【小结】对于给定的样本点(x1,y1),(x2,y2),…,(x n,y n),其中a和b都是未知参数.应先根据散点图或利用相关系数r判断两变量间是否存在线性相关关系,若两变量线性相关性显著,采用例1的方法进行线性回归分析;若两变量线性相关性不显著,则可采用例2的方法和步骤进行拟合效果分析.在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:时间t(s) 5 10 15 20 30 40 50 60 70 90 120深度6 10 10 13 16 17 19 23 25 29 46y(μm)试求腐蚀深度y对时间t的回归直线方程.【解析】经计算可得相关系数r≈0.982>0.75,所以可以认为y与t之间有较强的线性相关关系.≈46.36,≈19.45,=36750,=5422,t i y i=13910.b==≈0.3.a=-b=19.45-0.3×46.36≈5.542.故所求的回归直线方程为y=0.3t+5.542.一机器可以按各种不同的速度运转,其生产物件有一些会有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用x表示转速(单位:转/秒),用y表示每小时生产的有缺点物件个数,现观测得到(x,y)的4组观测值为(8,5),(12,8),(14,9),(16,11).。
本章整合知识建构综合应用专题一确定回归直线方程的策略准确确定回归直线方程,有利于进一步加强数学应用意识,培养运用所学知识解决实际问题的能力,正确地求出回归直线方程是本节的重点,现介绍求回归直线方程的三种方法. 一、利用回归直线过定点确定回归直线方程回归直线方程y=a+bx 经过样本的中心(x,y)点,(x,y)称为样本点的中心,回归直线一定过此点.A.y=0.5x-1B.y=xC.y=2x+0.3D.y=x+1 答案:B二、利用公式求a,b ,确定回归直线方程 利用公式求回归直线方程时应注意以下几点:①求b 时利用公式b=2111)())((∑∑==---ni ini i x xy y x x,先求出x =n 1(x 1+x 2+x 3+…+x n ),y =n1(y 1+y 2+ y 3+…+y n ).再由a=y -b x 求a 的值,并写出回归直线方程.②线性回归方程中的截距a 和斜率b 都是通过样本估计而来,存在着误差,这种误差可能导致预报结果的偏差.③回归直线方程y=a+bx 中的b 表示x 每增加1个单位时y 的变化量,而a 表示y 不随x 的变化而变化的量.④可以利用回归直线方程y=a+bx 预报在x 取某一个值时y 的估计值.(2)求化学成绩y 对数学成绩x 的回归直线方程. 解:(1)散点图略. (2) x =51×(88+76+73+66+63)=73.2,y =51×(78+65+71+64+61)=67.8. 所以b=251151)())((∑∑==---i i i ix xy y x x≈0.625.a=y -b x =67.8-0.625×73.2=22.05.所以y 对x 的回归直线方程为y=0.625x+22.05.三、先判定相关性,再求回归直线方程利用样本相关系数r 来判断两个变量之间是否有线性相关关系时,可以依据若|r|>0.75,我们认为有很强的线性相关关系,可以求回归直线方程,并可用求得的回归直线方程来预报变量的取值;若|r|<0.75,则认为两个变量之间的线性相关关系并不强,这时求回归直线方程没有太大的实际价值.(1)y 与x 是否具有相关关系;(2)如果y 与x 具有线性相关关系,求回归直线方程. 解:(1)由已知表格中的数据,求得x =71,y =72.3,r=2101121011)()())((∑∑∑===----i i n i ii i y y x xy y x x≈0.78.由于0.78>0.75,所以y 与x 之间具有很强的线性相关关系. (2)y 与x 具有线性相关关系,设回归直线方程为: y=a+bx,则有b=∑∑==---1012101)())((i ii i ix xy y x x=1.22,a=y -b x =72.3-1.22×71=-14.32.所以y关于x的回归直线方程为y=1.22x-14.32.专题二可线性化的回归分析一、曲线线性化的意义曲线的线性化是曲线拟合的重要手段之一,对于某些非线性的资料可以通过简单的变量替换使之线性化,这样就可以按最小二乘法原理求出变换后变量的线性回归方程,在实际工作中常利用该线性回归方程绘制资料的标准工作曲线,同时根据需要可将此线性回归方程还原成曲线回归方程,实现对曲线的拟合.二、常用的非线性函数(一)指数函数y=ae bx (1)对(1)式的两边取对数,得lny=lna+bx当b>0时,y随着x的增大而增大;当b<0时,y随着x的增大而减小.当以lny和x绘制的散点图呈直线趋势时,可考虑采用指数函数来描述y与x间的非线性关系,lna和b分别为截距与斜率.更一般的指数函数是y=ae bx+k,式中的k为一常量,往往未知,应用时可试用不同的值.(二)对数函数y=a+blnx(x>0)当b>0时,y随着x的增大而增大,先快后慢;当b<0时,y随着x的增大而减小,先快后慢,当以y和lnx绘制的散点图呈直线趋势时,可考虑采用对数函数描述y与x间的非线性关系,式中a和b分别为截距与斜率.更一般的对数函数是y=a+bln(x+k),式中的k为一常量,往往未知.(三)幂函数y=ax b(a>0,x>0)(2)当b>0时,y随着x的增大而增大;b<0时,y随着x的增大而减小.对(2)式的两边取对数,得lny=lna+blnx,当以lny和lnx绘制的散点图呈直线趋势时,可考虑采用对数函数描述y与x间的非线性关系,式中lna和b分别为截距与斜率.更一般的幂函数是y=ax b+k,式中的k为一常量,往往未知.以上三种模型是我们在日常生活中常遇到的曲线模型,掌握这三种模型,有利于我们研究更多的曲线拟合与回归分析的问题.三、利用线性回归拟合曲线的一般步骤(一)绘制散点图一般根据资料性质结合专业知识便可确定资料的曲线类型,不能确定时,可在方格坐标纸上绘制散点图,根据散点的分布,选择接近的、合适的曲线类型.(二)进行变量替换y′=f(y),x′=g(x)使变换后的两个变量呈线性相关关系.(三)按最小二乘法原理求线性回归方程及进行方差分析.(四)将线性化方程转换为关于原始变量x,y的回归方程.【例1】经过调查得到8个厂家同种类型的产品年新增加投资额和年利润额的数据资料,如表(1)所示.表(1) 八个厂家年新增投资额与年利润额数据资料的增大Y也有明显的增加的趋势,因此两者之间存在着相关关系,但是这种相关关系与其用一条直线来描述倒不如用曲线描述更加合适,因此Y 与x 之间更加倾向于被认为是一种非线性关系.回归方程也需要用一些非线性函数来刻画,比如图(2) 年新增加投资额与年利润额数据的散点图图3 经过对数变换后的散点图Y=β0·e β1·x ; ① 或者Y=β0+β1·x 2 ②等等.图(3)给出的是变量lnY 与变量x 的散点图,从中可以看出这些点基本上是围绕一条直线波动,说明变量lnY 与x 之间近似是一种线性关系,从而也印证了回归方程取①形式的合理性.同时,图(3)也提示我们一种求解回归方程①的思路,即通过求解变量lnY 对x 的线性回归方程即可得到相应的①式所表示的Y 和x 的回归方程,即在图(3)中的回归直线同图(2)中的曲线(Ⅱ)是一致的.具体来说,首先对样本数据(x i ,Y i ),i=1,2,…,n 作对数变换 Z i =lnY i ,i=1,2,…,n ; ③ 然后利用最小二乘法求出变量Z 对x 的回归方程 Z=a 0+a 1·x ; ④即图(3)中的直线方程,则相应的形如①式的Y 对x 的回归方程是 Y=e z =e a0·e a1x ; ⑤ 即β0=e a0,β1=a 1.利用表(1)中给出的数据,可以得到lnY 对x 的线性回归方程是 Z=1.314+0.100x由此可得Y 对x 的回归方程是 Y=3.720 5·e 0.100x; ⑥如果采用形如②式的抛物线型回归方程,容易看出,令ω=x 2,②式就是表示了变量Y 对ω的线性回归方程:Y=β0+β1·ω; ⑦ 所以,对样本数据做变换ωi =x i 2(i=1,2,…,n ),利用(ωi ,Y i )(i=1,2,…,n )求解出⑦中的系数估计值β0、β1代入②式即得到Y 对x 的回归方程. 对表(1)中的数据计算结果为Y=4.413+0.057x 2; ⑧ 专题三独立性检验的基本方法判断结论成立的可能性的一般步骤:(1)假设两个分类变量X 和Y 没有关系; (2)给定一个显著水平,查表给出临界值;(3)计算χ2=;))()()(()(2d b d c b a c a bc ad n ++++-(4)若χ2大于临界值,则认为x 与y 有关系,否则没有充分的理由说明这个结论不成立随机抽取189名员工进行调查,所得数据如下表所示:对于人力资源部的研究项目,根据上述数据能得出什么结论?分析:首先由已知条件确定a ,b ,c ,d ,n 的数值,再利用公式求出χ2的观测值,最后与临界值比较再下结论. 解:由题目中表的数据可知:a=54,b=40,c=32,d=63,a+b=94,c+d=95,a+c=86,b+d=103,n=189.代入公式得χ2=103869594)32406354(1892⨯⨯⨯⨯-+⨯≈10.759.因为10.759>6.635,所以有99%的把握认为员工“工作积极”与“积极支持企业改革”是有关的,可以认为企业的全体员工对待企业改革态度和工作积极性是有关的. 【例2】在一次恶劣气候的飞行航程中调查男女乘客晕机的情况如下表所示,根据此资料您是χ2=57323455)8312624(892⨯⨯⨯⨯-⨯⨯≈3.689.因为3.689>2.706,所以有90%的把握认为此次飞行中晕机与否跟男女性别有关. 几点注意:(1)在列联表中注意各项的对应及有关值的确定,避免混乱. (2)若要判断X 与Y 有关时,先假设X 与Y 无关.(3)把计算出的χ2的值与相关的临界值作比较,确定出“X 与Y 有关系”的把握.科海观潮 相关与相关系数一、什么是相关事物总是相互联系的,它们之间的关系多种多样,分析起来,大概有以下几种情况:(1)一种是因果关系,即一种现象是另一种现象的因,而另一种现象则是果.例如学习的努力程度是学习成绩好坏的因(至少是部分的因);在一定刺激强度范围内,刺激强度经常是反应强度的因等.(2)第二种是共变关系,即表面看来有联系的两种事物都与第三种现象有关,这时两种事物之间的关系,便是共变关系.例如春天出生的婴儿与春天栽种的小树,就其高度而言,表面上看来都在增长,好像有关,其实,这二者都是受时间因素影响在发生变化,在它们本身之间并没有直接的关系.(3)第三种是相关关系,即两类现象在发展变化的方向与大小方面存在一定的关系,但不能确定这两类现象之间哪个是因,哪个是果;也有理由认为这两者并不同时受第三因素的影响,即不存在共变关系.具有相关关系的两种现象之间,关系是复杂的,甚至可能包含有暂时尚未认识的因果关系及其共变关系在内.例如,同一组学生的语文成绩与数学成绩的关系,即属于相关关系.统计学中所讲的相关是指具有相关关系的不同现象之间的关系程度.相关的情况有以下三种:一是两列变量变动方向相同,即一列变量变动时,另一列变量亦同时发生或大或小与前一列变量同方向的变动,这称为正相关.如身高与体重的关系,一般讲身长越长体重就越重.第二种相关情况是负相关,这时两列变量中若有一列变量变动时,另一列变量呈或大或小,但与前一列变量指向相反的变动.例如初学打字时练习次数越多,出现错误的量就越少等.第三处相关情况是零相关,即两列变量之间无关系.这种情况下,一列变量变动时,另一列变量作无规律的变动.如学习成绩优劣与身高之间的关系,就属零相关,即无相关关系,二者都是独立的随机变量.二、相关系数相关系数是两列变量间相关程度的数字表现形式,或者说是表示相关程度的指标,作为样本间相互关系程度的统计特征数,常用r表示,作为总体参数,一般用ρ表示,并且是指线性相关而言.相关系数的取值介于-1.00至+1.00之间,常用小数形式表示.它只是一个比率,不代表相关的百分数,更不是相关量的相等单位的度量.相关系数的正负号,表示相关方向,正值表示正相关,负值表示负相关.相关系数取值的大小表示相关的程度.相关系数为0时,称零相关即毫无相关,为1.00时,表示完全正相关,相关系数为-1.00时,为完全负相关.这二者都是完全相关.如果相关系数的绝对值在1.00与0之间不同时,则表示关系程度不同.接近1.00端一般为相关程度密切,接近0端一般为关系不够密切.(注意:若是非线性相关关系,而且直线相关计算r 值可能很小,但不能说两变量关系不密切)关于这一点如何判定,尚需考虑计算相关系数时样本数目的多少.如果样本数目较少,受取样偶然因素的影响较大,很有可能本来无关的两类事物,却计算出较大的相关系数来.例如欲研究身高与学习有无关系,如果只选3、5个人,很可能遇到身材愈高学习愈好这一类偶然现象,这时虽然计算出的相关系数可能接近1.00,但实际上这两类现象之间并无关系.究竟如何综合考虑样本数目大小,相关系数取值大小而判定相关是否密切这一问题,一般要经过统计检验后方能确定.相关系数不是等距的度量值,因此在比较相关程度时,只能说绝对值大者比绝对值小者相关更密切一些,如只能说相关系数r=0.50的两列数值比相关系数r=0.25的两列数值之间的关系程度更密切,而绝不能说前二者的密切程度是后二者密切程度的两倍.也不能说相关系数从0.25到0.50与从0.50到0.75所提高的程度一样多.存在相关关系,即相关系数取值较大的两类事物之间,不一定存在因果关系,这一点要从事物的本质方面进行分析,绝不可简单化.计算相关系数一般要求成对的数据,即若干个体中每个个体要有两种不同的观测值.例如每个学生(智力相同者)的算术和语文成绩;每个人的视反应和听反应时;每个学生的智力分数与学习成绩等等.任意两个个体之间的观测值不能求相关.计算相关的成对数据的数目,一般以30以上为宜.。
高中数学第三章统计案例1.1 回归分析同步测控北师大版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章统计案例1.1 回归分析同步测控北师大版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章统计案例1.1 回归分析同步测控北师大版选修2-3的全部内容。
高中数学第三章统计案例 1.1 回归分析同步测控北师大版选修2—3我夯基,我达标1。
对有线性相关关系的两个变量建立的回归直线方程y=a+bx中,回归系数b()A。
可以小于0 B.大于0C。
能等于0 D。
只能小于0解析:b可能大于0,也可能小于0,但当b=0时,x、y不具有线性相关关系.答案:A2.设有一个回归方程为y=2—2。
5x,则变量x增加一个单位时,则()A。
y平均增加2.5个单位 B.y平均增加2个单位C。
y平均减少2.5个单位 D。
y平均减少2个单位解析:斜率的估计值为—2。
5,即x每增加1个单位时,y平均减少2。
5个单位.答案:C3。
工人月工资y(元)依劳动生产率x(千元)变化的回归方程y=50+80x,下列判断不正确的是( )①当劳动生产率为1 000元时,工资为130元②劳动生产率提高1 000元,则工资提高80元③劳动生产率提高1 000元,则工资提高130元④当月工资为210元时,劳动生产率为2 000元A.①B.② C。
③ D.④答案:C4.在一次实验中,测得(x,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则y与x之间的回归直线方程为( )A.y=x+1B.y=x+2 C。
y=2x+1 D.y=x-1解析:A、B、C、D四点共线,都在直线y=x+1上.答案:A5。
一、选择题1.以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,其变换后得到线性回归方程0.53z x =+,则c =( ) A .3B .3eC .0.5D .0.5e2.2019年10月18日-27日,第七届世界军人运动会在湖北武汉举办,中国代表团共获得133金64银42铜,共239枚奖牌.为了调查各国参赛人员对主办方的满意程度,研究人员随机抽取了500名参赛运动员进行调查,所得数据如下所示,现有如下说法:①在参与调查的500名运动员中任取1人,抽到对主办方表示满意的男性运动员的概率为12;②在犯错误的概率不超过1%的前提下可以认为“是否对主办方表示满意与运动员的性别有关”;③没有99.9%的把握认为“是否对主办方表示满意与运动员的性别有关”;则正确命题的个数为( )附:22()()()()()n ad bc K a b c d a c b d -=++++A .0B .1C .2D .33.下列关于回归分析与独立性检验的说法正确的是() A .回归分析和独立性检验没有什么区别;B .回归分析是对两个变量准确关系的分析,而独立性检验是分析两个变量之间的不确定性关系;C .独立性检验可以100%确定两个变量之间是否具有某种关系.D .回归分析研究两个变量之间的相关关系,独立性检验是对两个变量是否具有某种关系的一种检验;4.已知x 与y 之间的几组数据如下表:x 1 2 4 5 y 0 2 3 5假设根据上表数据所得线性回归直线方程y=bx+a,若某同学根据上表中的前两组数据(1,0)和(2,2),求得的直线方程为y=b'x+a',则以下结论正确的是( ) A .b>b',a>a' B .b<b',a<a' C .b>b',a<a'D .b<b',a>a'5.某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:附表:经计算2K 的观测值10k ,则下列选项正确的是( ) A .有99.5%的把握认为使用智能手机对学习有影响 B .有99.5%的把握认为使用智能手机对学习无影响 C .有99.9%的把握认为使用智能手机对学习有影响 D .有99.9%的把握认为使用智能手机对学习无影响6.某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示: 序号 12345678910 11 12 13 14 15 16 17 18 19 20数学成绩 95 75 80 94 92 65 67 84 987167 93 64 787790 57 83 72 83物理成绩90 63 72 87 917158 82 93 817782 48 85 69 91 61 84 78 86若数学成绩90分(含90分)以上为优秀,物理成绩85(含85分)以上为优秀,则有多少把握认为学生的数学成绩与物理成绩有关系( )A .95%B .97.5%C .99.5%D .99.9%7.下列判断错误的是A .若随机变量ξ服从正态分布()()21,,30.72N P σξ≤=,则()10.28P ξ≤-=;B .若n 组数据()()()1122,,,,...,,n n x y x y x y 的散点都在1y x =-+上,则相关系数1r =-;C .若随机变量ξ服从二项分布: 15,5B ξ⎛⎫~ ⎪⎝⎭, 则()1E ξ=; D .am bm >是a b >的充分不必要条件;8.某中学共有5000人,其中男生3500人,女生1500人,为了了解该校学生每周平均体育锻炼时间的情况以及该校学生每周平均体育锻炼时间是否与性别有关,现在用分层抽样的方法从中收集300位学生每周平均体育锻炼时间的样本数据(单位:小时),其频率分布直方图如下:附:22()=()()()()n ad bc K a c b d a d b c -++++,其中n a b c d =+++.20()P K k ≥0.100.050.01 0.0050k 2.7063.8416.6357.879已知在样本数据中,有60位女生的每周平均体育锻炼时间超过4小时,根据独立性检验原理,我们( )A .没有理由认为“该校学生每周平均体育锻炼时间与性别有关”B .有95%的把握认为“该校学生每周平均体育锻炼时间与性别有关”C .有95%的把握认为“该校学生每周平均体育锻炼时间与性别无关”D .有99.5%的把握认为“该校学生每周平均体育锻炼时间与性别有关”9.通过随机询问72名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:性别与读营养说明列联表女 男 合计读营养说明 16 28 44 不读营养说明 20 8 28 总计363672请问性别和读营养说明之间在多大程度上有关系 ( ) A .99%的可能性 B .99.75%的可能性 C .99.5%的可能性 D .97.5%的可能性10.下列命题中:①线性回归方程y bx a =+必过点(),x y ;②在回归方程35y x =-中,当变量增加一个单位时,y 平均增加5个单位; ③在回归分析中,相关指数2R 为0.80的模型比相关指数2R 为0.98的模型拟合的效果要好;④在回归直线0.58ˆyx =-中,变量2x =时,变量y 的值一定是-7. 其中假命题的个数是 ( ) A .1 B .2C .3D .411.某工厂为了调查工人文化程度与月收入的关系,随机抽取了部分工人,得到如下列表:由上表中数据计算得2K =()21051030204555503075⨯⨯-⨯⨯⨯⨯≈6.109,请根据下表,估计有多大把握认为“文化程度与月收入有关系”( )A .1%B .99%C .2.5%D .97.5%12.已知回归方程0.8585.7y x ∧=-,则该方程在样本()165,57 处的残差为( ) A .111.55B .54.5C .3.45D .2.45二、填空题13.如果根据性别与是否爱好运动的列联表得到K 2≈3.852>3.841,则判断性别与是否爱好运动有关,那么这种判断犯错的可能性不超过________. 14.若两个分类变量X 与Y 的列联表为:则“X 与Y 之间有关系”这个结论出错的可能性为________.15.新闻媒体为了了解观众对央视某节目的喜爱与性别是否有关,随机调查了观看该节目的观众110名,得到如下的2×2列联表:试根据样本估计总体的思想,估计约有________的把握认为“喜爱该节目与否和性别有关”. 参考附表:(参考公式:K 2=()()()()()2n ad bc a b c d a c b d -++++,其中n=a+b+c+d)16.如表是降耗技术改造后生产某产品过程中记录产量(吨)与相应的生产能耗(吨标准煤)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆˆ0.70.3yx =+,那么表中m 的值为__________.17.已知方程ˆ0.8582.71yx =-是根据女大学生的身高预报她的体重的回归方程,其中x 的单位是cm ,ˆy的单位是kg ,那么针对某个体(160,53)的残差是______________. 18.一个三位自然数百位,十位,个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若{},,1234a b c ∈,,,,且a ,b ,c互不相同,则这个三位数为”有缘数”的概率是__________. 19.给出下列结论:(1)在回归分析中,可用相关指数R 2的值判断模型的拟合效果,R 2越大,模型的拟合效果越好;(2)某工产加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量; (3)随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度,它们越小,则随机变量偏离于均值的平均程度越小;(4)若关于x 的不等式2x x a a -+-≥在R 上恒成立,则a 的最大值是1;(5)甲、乙两人向同一目标同时射击一次,事件A :“甲、乙中至少一人击中目标”与事件B :“甲,乙都没有击中目标”是相互独立事件.其中结论正确的是 .(把所有正确结论的序号填上)20.在2017年3月15日,某市物价部门对本市的5家商场的某种商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示: 价格x 9 9.5 10 10.5 11 销售量y1110865由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,其线性回归方程是:3.2y x a =-+,则a =__________.三、解答题21.某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间的方案,该农场选取了20间大棚(每间一亩)进行试点,得到各间大棚产量数据绘制成散点图.光照时长为x (单位:小时),大棚蔬菜产量为y (单位:千斤每亩),记ln w x =.(1)根据散点图判断,y a bx =+与ln y c d x =+⋅,哪一个适宜作为大棚蔬菜产量y 关于光照时长x 的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(结果保留小数点后两位)(3)根据实际种植情况,发现上述回归方程在光照时长位于6~14小时内拟合程度良好,利用(2)中所求方程估计当光照时长为2e 小时(自然对数的底 2.71828e ≈),大棚蔬菜亩产约为多少. 参数数据:参考公式:β关于α的线性回归方程m n βα=⋅+中,1221i ii nii n m n αβαβαα==-⋅=-∑∑,n m βα=-⋅22.在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状的这一阶段称为潜伏期.一研究团队统计了某地区200名患者的相关信息,得到如下表格:(1)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,根据上表数据将如下列联表补充完整,并根据列联表判断是否有99%的把握认为该传染病的潜伏期与患者年龄有关.(2)将200名患者的潜伏期超过6天的频率视为该地区每名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立.为了深入研究,该团队随机调查了该地区20名患者,其中潜伏期超过6天的人数为X ,求随机变量X 的期望和方差. 附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++. 23.新冠肺炎疫情防控时期,各级各类学校纷纷组织师生开展了“停课不停学”活动,为了解班级线上学习情况,某位班主任老师进行了有关调查研究.(1)从班级随机选出5名同学,对比研究了线上学习前后两次数学考试成绩,如下表:参考公式:在线性回归方程y bx a =+,()()()()1122211n niii ii i nniii i x x y y x y nx yb x x xn x====---==--∑∑∑∑,a y bx =-(2)针对全班45名同学(25名女生,20名男生)的线上学习满意度调查中,女姓满意率为80%,男生满意率为75%,填写下面列联表,判断能否在犯错误概率不超过0.01的前提下,认为线上学习满意度与学生性别有关?参考公式和数据:()()()()()2n ad bc x a b c d a c b d -=++++,()20.0500.0100.0013.8416.63510.828P x k k ≥24.为了了解某校高中生的身体质量情况,某调查机构进行了一次高一学生体重和身高的抽样调查,从中抽取了8名学生(编号为18)的身高(cm)x 和体重(kg)y 数据.如下表,某调查机构分析发现学生的身高和体重之间有较强的线性相关关系,在编号为6的体检数据丢失之前,调查员甲已进行相关的数据分析并计算出该组数据的线性回归方程为ˆˆ0.5ya x =+,且根据回归方程预估一名身高为180cm 的学生体重为71kg ,计算得到的其他数据如下:81170,89920i ii x x y===∑.(1)求a 的值及表格中8名学生体重的平均值y ;(2)在数据处理时,调查员乙发现编号为8的学生体重数据有误,应为63kg ,身高数据无误.请你根据调查员乙更正的数据重新计算线性回归方程,并据此预估一名身高为180cm 的学生的体重.附:回归直线方程ˆˆˆy a bx=+的斜率和截距的最小二乘法估计分别为:1221ˆni ii ni i x ynx ybx nx==-=-∑∑,ˆˆa y bx=-. 25.冠状病毒是一个大型病毒家族,今年出现的新型冠状病毒(nCoV )是以前从未在人体中发现的冠状病毒新毒株.(1)某科研团队为研究潜伏期与新冠肺炎患者年龄的关系,组织专家统计了该地区新冠肺炎患者新冠病毒潜伏期的相关信息,其中被统计的患者中60岁以下的人数与60岁以上的人数相同,60岁以下且潜伏期在7天以下的人数约占15,60岁以上且潜伏期在7天以下的人数约占35,若研究得到在犯错误概率不超过0.010的前提下,认为潜伏期与新冠肺炎患者年龄有关,现设被统计的60岁以上的人员人数为5x ,请完成下面2×2列联表并计算被统计的60岁以上的人员至少多少人?附1:()()()()()22n ad bc X a b c d a c b d -=++++,其中n a b c d =+++()20P X k ≥0.100 0.050 0.010 0.005 0.001 0k 2.7063.8416.6357.87910.828(2)某地区的新冠肺炎治愈人数y (人)与3月份的时间x (日)满足回归直线方程ˆˆˆybx a =+,统计数据如下: 3月日期(日) 2 3 4 5 6治愈人数(人)25304045t已知5=11405i i y y ==∑,52=190i i x =∑,5=1885i i i x y =∑,请利用所给数据求t 和回归直线方程ˆˆˆy bx a =+;附2:()1221ˆni ii ni i x y nx ybx n x ==-⋅=-∑∑,ˆˆa y bx=-. 26.某企业组织应聘该企业的100名应届毕业生参加专业能力测试(满分100分),这100名毕业生的成绩的频率分布直方图如图所示.(Ⅰ)该企业拟以成绩的中位数作为分数线来确定进入面试阶段的毕业生名单,根据频率分布直方图求进入该企业面试的分数线;(Ⅱ)若被测试的毕业生中有40名女生,进入面试的有15名女生,35名男生,填写下面列联表,并根据列联表判断是否有95%的把握认为成绩与性别有关.成绩<分数线成绩≥分数线 总计附:()()()()()22n ad bc K a b c d a c b d -=++++)2k【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据指对数互化求解即可. 【详解】解:因为0.53z x =+,ln z y =,所以0.53ln x y +=,所以0.5330.5x x y e e e +==⨯,故3c e =.故选:B. 【点睛】本题考查非线性回归问题的转化,是基础题.2.B解析:B 【分析】依次判断每个选项:计算概率为25得到①错误;计算2 5.952K ≈得到②错,③对得到答案. 【详解】任取1名参赛人员,抽到对主办方表示满意的男性运动员的概率为20025005=,故①错误;22(2003050220)5005.95225025042080K ⨯-⨯⨯=≈⨯⨯⨯,故②错,③对故选:B . 【点睛】本题考查了概率的计算和独立性检验,意在考查学生的综合应用能力.3.D解析:D 【分析】根据题意可知,利用回归分析和独立性检验的定义,排除错误选项,即可求解出答案. 【详解】回归分析是指将具有相关关系的两个变量之间的数量关系进行测定,通过建立数学表达式进行统计估计和预测的统计研究方法.独立性检验是对两个变量之间是否具有某种关系的分析,并且可以分析这两个变量在多大程度上具有这种关系,但不能100%肯定这种关系.根据以上定义,可知A 、B 、C 均错误,故答案选D . 【点睛】本题主要考查了回归分析与独立性检验的定义的区别.4.D解析:D 【解析】 【分析】先根据()()1,0,2,2求得直线y b x a ='+'的方程.然后计算出回归直线方程y bx a =+,由此比较大小,得出正确的结论. 【详解】由于直线y b x a ='+'过()()1,0,2,2,将两点坐标代入直线方程得022b a b a +=⎧⎨+=''''⎩,解得2,2b a ''==-.124534x +++==,02352.54y +++==,1122334414122542x y x y x y x y +++=+++=.2222123414162546x x x x +++=+++=,故24243 2.54230121.24643463610b -⨯⨯-====-⨯-, 2.5 1.23 2.5 3.6 1.1a =-⨯=-=-.所以,a a b b >'<',故选D.【点睛】本小题主要考查利用直线上的两点坐标求直线方程的方法,考查回归直线方程的计算,属于中档题.5.A解析:A 【解析】 【分析】由题意结合2K 的观测值k 由独立性检验的数学思想给出正确的结论即可. 【详解】由于2K 的观测值10k =7.879>,其对应的值0.0050.5%=,据此结合独立性检验的思想可知:有99.5%的把握认为使用智能手机对学习有影响. 本题选择A 选项. 【点睛】独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.6.C解析:C 【解析】分析:根据题意,列出22⨯列联表,求出观测值2K ,根据观测值对应的数值得出结论. 详解:根据题意,列出22⨯列联表,如下;则220(51212)8.80177.879671413K ⨯⨯-⨯==>⨯⨯⨯,因为观测值对应的数值为0.005,所以有99.5%的把握认为学生的数学成绩与物理成绩之间有关系.故选C.点睛:本题考查了独立性检验的应用,属于基础题.考查利用数学知识研究实际问题的能力以及相应的运算能力.7.D解析:D 【解析】分析:根据正态分布的对称性求出()1P ξ≤-的值,判断A 正确; 根据线性相关关系与相关系数的定义,判断B 正确; 根据二项分布的均值计算公式求出()E ξ的值,判断C 正确; 判断充分性和必要性是否成立,得出D 错误.详解:对于A ,随机变量ξ服从正态分布()21,N σ,∴曲线关于1ξ=对称,131310.720.28PP P ξξξ∴≤-=≥=-≤=-=()()(),A 正确;对于B ,若n 组数据()()()1122,,,,...,,n n x y x y x y 的散点都在1y x =-+上, 则x y ,成负相关,且相关关系最强,此时相关系数1r =-,B 正确;对于C ,若随机变量ξ服从二项分布: 15,5B ξ⎛⎫~ ⎪⎝⎭,则1515E(),ξ=⨯= C 正确;对于D ,am >bm 时,a >b 不一定成立,即充分性不成立,a b am bm >时,> 不一定成立,即必要性不成立,是既不充分也不必要条件,D 错误. 故选:D .点睛:本题考查了命题真假的判断问题,是综合题.8.B解析:B 【解析】分析:根据题设收集的数据,得到男生学生的人数,进而得出22⨯的列联表,利用计算公式,求解2K 的值,即可作出判断.详解:由题意得,从5000人中,其中男生3500人,女生1500人,抽取一个容量为300人的样本,其中男女各抽取的人数为35003002105000⨯=人,1500300905000⨯=人, 又由频率分布直方图可知,每周体育锻炼时间超过4小时的人数的频率为0.75,所以在300人中每周体育锻炼时间超过4小时的人数为3000.75225⨯=人, 又在每周体育锻炼时间超过4小时的人数中,女生有60人,所以男生有22560165-=人,可得如下的22⨯的列联表:结合列联表可算得22300(456016530) 4.762 3.8412109075225K ⨯⨯-⨯=≈>⨯⨯⨯,所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”, 故选B.点睛:本题主要考查了独立性检验的基础知识的应用,其中根据题设条件得到男女生的人数,得出22⨯的列联表,利用公式准确计算是解答的关键,着重考查了分析问题和解答问题的能力.9.C解析:C 【详解】由题意可知16,28,20,8a b c d ====,44,28,36,36a b c d a c c d +=+=+=+=,72n a b c d =+++=,代入公式()()()()()22n ad bc K a b c d a c b d -=++++得()227216828208.4244283636K ⨯⨯-⨯=≈⨯⨯⨯,由于28.427.879K ≈>,我们就有0099.5的把握认为性别和读营养说明之间有关系,即性别和读营养说明之间有0099.5的可能是有关系的,故选C .10.C解析:C 【解析】对于①,线性回归方程 ˆˆˆybx a =+必过点)x y (,,满足回归直线的性质,所以①正确;对于②,在回归方程ˆ35y x =-中,当变量x 增加一个单位时,y 平均减少5个单位,不是增加5个单位;所以②不正确;对于③,在回归分析中,相关指数2R 为0.80的模型比相关指数2R 为0.98的模型拟合的效果要好,该判断恰好相反;所以③不正确;对于④,在回归直线0.58ˆy x =-中,变量2x =时,变量y 的值一定是-7.不是一定为7,而是可能是7,也可能在7附近,所以④不正确;故选C.11.D解析:D 【解析】 试题由题根据二列联表得出;2K=()21051030204555503075⨯⨯-⨯⨯⨯⨯≈6.109,对应参考值得 2 5.024K >,则有10.0250.975-=,即有97.5%的把握认为文化程度与月收入有关系。
一、选择题1.已知两个统计案例如下:①为了探究患肺炎与吸烟的关系,调查了339名50岁以上的人,调查结果如下表:②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:则对这些数据的处理所应用的统计方法是()A.①回归分析,②取平均值B.①独立性检验,②回归分析C.①回归分析,②独立性检验D.①独立性检验,②取平均值2.某中学采取分层抽样的方法从高二学生中按照性别抽出20名学生,其选报文科、理科的情况如下表所示,参考公式和数据:22()()()()()n ad bcKa cb d a bc d-=++++,其中n a b c d=+++.则以下判断正确的是A.至少有97.5%的把握认为学生选报文理科与性别有关B.至多有97.5%的把握认为学生选报文理科与性别有关C.至少有95%的把握认为学生选报文理科与性别有关D.至多有95%的把握认为学生选报文理科与性别有关3.某班主任对全班50名学生进行了作业量的调查,数据如表:若推断“学生的性别与认为作业量大有关”,则这种推断犯错误的概率不超过()附:()()()()()22n ad bcKa b c d a c b d-=++++A.0.01 B.0.025 C.0.10 D.0.054.为了考查两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是( )A.l1和l2有交点(s,t)B.l1与l2相交,但交点不一定是(s,t)C.l1与l2必定平行D.l1与l2必定重合5.某市政府调查市民收入与旅游欲望时,采用独立性检验法抽取3 000人,计算发现k2=6.023,则根据这一数据查阅下表,市政府断言市民收入增减与旅游欲望有关系的把握是()P(K2≥k)…0.250.150.100.0250.0100.005…k…1.3232.0722.7065.0246.6357.879…A.90% B.95% C.97.5% D.99.5%6.以下四个命题中:①在回归分析中,可用相关指数R2的值判断拟合的效果,R2越大,模型的拟合效果越好;②两个随机变量的线性相关性越强,相关系数的绝对值越接近1; ③若数据x 1,x 2,x 3,…,x n 的方差为1,则2x 1,2x 2,2x 3,…,2x n 的方差为2;④对分类变量x 与y 的随机变量K 2的观测值k 来说,k 越小,判断“x 与y 有关系”的把握程度越大.其中真命题的个数为( ) A .1 B .2 C .3 D .47.在调查中发现480名男人中有38名患有色盲,520名女人中有6名患有色盲.下列说法正确的是( )A .男、女人患色盲的频率分别为0.038,0.006B .男、女人患色盲的概率分别为,C .男人中患色盲的比例比女人中患色盲的比例大,患色盲与性别是有关的D .调查人数太少,不能说明色盲与性别有关8.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力( ) A .平均数与方差 B .回归分析 C .独立性检验 D .概率 9.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,变量x 增加一个单位时,y 平均增加5个单位; ③线性回归方程^^^y b x a =+必过(),x y ;④在一个22⨯列联表中,由计算得213.079K =,则有99%以上的把握认为这两个变量间有关系.其中错误..的个数是( ) A .0 B .1 C .2D .310.若在区间[-5,5]内任取一个实数a ,则使直线x +y +a =0与圆(x -1)2+(y +2)2=2有公共点的概率为( ) A .25B .25C .35D .321011.由某个22⨯列联表数据计算得随机变量2K 的观测值k 6.879=,则下列说法正确的是 ( )0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0.7081.3232.0722.7063.8415.0246.6357.87910.828A .两个分类变量之间有很强的相关关系B .有99%的把握认为两个分类变量没有关系C .在犯错误的概率不超过1.0%的前提下认为这两个变量间有关系D .在犯错误的概率不超过0.5%的前提下认为这两个变量间有关系 12.某商场为了解毛衣的月销售量y (件)与月平均气温()x C 之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: )C(件)由表中数据算出线性回归方程ˆybx a =+中的2b =-,气象部门預测下个月的平均气温约为6C ,据此估计该商场下个月毛衣销售量约为( )件. A .46B .40C .38D .58二、填空题13.针对时下的“韩剧热”,某校团委对“学生性别和喜欢韩剧是否有关”作了一次调查,其中女生人数是男生人数的13,男生喜欢韩剧的人数占男生人数的16,女生喜欢韩剧的人数占女生人数的23.若有95%的把握认为是否喜欢韩剧和性别有关,求男生至少有______人.14.以下结论正确..的序号有_________ (1)根据22⨯列联表中的数据计算得出2K ≥6.635, 而P (2K ≥6.635)≈0.01,则有99% 的把握认为两个分类变量有关系.(2)在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关.(3)在线性回归分析中,相关系数为r ,r 越接近于1,相关程度越大;r 越小,相关程度越小.(4)在回归直线0.585y x =-中,变量200x =时,变量y 的值一定是15.15.某高校《统计初步》课程的教师随机调查了选该课的一些学生的情况,具体数据如下表: 专业 性别非统计专业统计专业男生1310女生720为了检验主修统计专业是否与性别有关系,根据表中的数据得到随机变量K 2的观测值为.因为k >3.841,所以确认“主修统计专业与性别有关系”,这种判断出现错误的可能性为________.16.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温.由表中数据得线性方程=+x 中=﹣2,据此预测当气温为5℃时,用电量的度数约为_____.17.以下四个命题中:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;③某项测量结果ξ服从正态分布()21,σN ,()50.81ξP ≤=,则()30.19ξP ≤-=;④对于两个分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越大.以上命题中其中真命题的个数为___________.18.从某高校在校大学生中随机选取5名女大学生,由她们身高和体重的数据得到的回归直线方程为ˆ0.7973.56yx =-,数据列表是:则其中的数据a =__________.19.以下4个命题中,正确命题的序号为_________.①“两个分类变量的独立性检验”是指利用随机变量2K 来确定是否能以给定的把握认为“两个分类变量有关系”的统计方法;②将参数方程cos sin x y θθ=⎧⎨=⎩(θ是参数,[]0,θπ∈)化为普通方程,即为221x y +=;③极坐标系中,22,3A π⎛⎫⎪⎝⎭与()3,0B 的距离是19; ④推理:“因为所有边长相等的凸多边形都是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形”,推理错误在于“大前提”错误. 20.下列说法:①线性回归方程y bx a =+必过(),x y ;②命题“21,34x x ∀≥+≥”的否定是“21,34x x ∃<+<” ③相关系数r 越小,表明两个变量相关性越弱;④在一个22⨯列联表中,由计算得28.079K =,则有99%的把握认为这两个变量间有关系;其中正确..的说法是__________.(把你认为正确的结论都写在横线上) 本题可参考独立性检验临界值表:三、解答题21.网购是当前人们购物的新方式,某公司为了改进营销方式,随机调查了100名市民,统计了不同年龄的人群网购的人数如下表: 年龄段(岁) ()0,20[)20,40[)40,60[)60100,网购人数 2632348 男性人数1510 105(1)若把年龄在[2060,的人称为“网购迷”,否则称为“非网购迷”,请完成下面的22⨯列联表,并判断能否在犯错误的概率不超过1%的前提下,认为网购与性别有关?网购迷 非网购迷 总计男性 女性 总计附:()()()()()22n ad bc K a b c d a c b d -=++++. ()20P K k ≥0.10 0.05 0.01 0.001两人年龄都小于20岁的概率.22.为了解使用手机是否对学生的学习有影响,某校随机抽取50名学生,对学习成绩和使用手机情况进行了调查,统计数据如表所示(不完整):与使用手机有关;(2)现从上表不使用手机的学生中按学习成绩是否优秀分层抽样选出9人,再从这9人中随机抽取3人,记这3人中“学习成绩优秀”的人数为X,试求X的分布列与数学期望.参考公式:()()()()()22n ad bca b c d a c b dχ-=++++,其中n a b c d=+++.参考数据:23.第十八届中国国际农产品交易会于11月27日在重庆国际博览中心开幕,我市全面推广“遂宁红薯”及“遂宁鲜”农产品区域公用品牌,并组织了100家企业、1000个产品进行展示展销,扩大优质特色农产品市场的占有率和影响力,提升遂宁特色农产品的社会认知度和美誉度,让来自世界各地的与会者和消费者更深入了解遂宁,某记者对本次农交会进行了跟踪报道和实际调查,对某特产的最满意度()%x和对应的销售额y(万元)进行了调查得到以下数据:关系数r的绝对值在0.95以上(含0.95)是线性相关性较强;否则,线性相关性较弱.请你对线性相关性强弱作出判断,并给出理由;(2)如果没有达到较强线性相关,则采取“末位淘汰”制(即销售额最少的那一天不作为计算数据),并求在剔除“末位淘汰”的那一天后的销量额y 关于最满意度x 的线性回归方程(系数精确到0.1). 参考数据:24x =,81y =,52215146ii xx =-=∑, 52215176i i y y =-=∑,515151i ii x y xy =-=∑13.27≈≈.附:对于一组数据()()()1122,,,,,,n n x y x y x y ⋅⋅⋅.其回归直线方程 ˆˆˆy bx a =+的斜率和截距的最小二乘法估计公式分别为:1221ˆ·ni ii n ii x y nx y bxnx ==-=-∑∑,ˆa y bx=-,线性相关系数·ni ix y nx y r -=∑24.某实验学校为提高学习效率,开展学习方式创新活动,提出了完成某项学习任务的两种新的学习方式.为比较两种学习方式的效率,选取40名学生,将他们随机分成两组,每组20人,第一组学生用第一种学习方式,第二组学生用第二种学习方式.40名学生完成学习任务所需时间的中位数40min m =,并将完成学习任务所需时间超过min m 和不超过min m 的学生人数得到下面的列联表:(Ⅰ)估计第一种学习方式且不超过m 的概率、第二种学习方式且不超过m 的概率; (Ⅱ)能否有99%的把握认为两种学习方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,25.为了响应国家号召,某校组织部分学生参与了“垃圾分类,从我做起”的知识问卷作答,并将学生的作答结果分为“合格”与“不合格”两类与“问卷的结果”有关?(1)是否有90%以上的把握认为“性别”与“问卷的结果”有关?(2)在成绩合格的学生中,利用性别进行分层抽样,共选取9人进行座谈,再从这9人中随机抽取5人发送奖品,记拿到奖品的男生人数为X,求X的分布列及数学期望()E X.附:22()()()()()n ad bcKa b c d a c b d-=++++26.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.050 0.010 0.001k 3.841 6.63510.828【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据独立性检验和回归分析的概念,即可作出判定,得到答案.【详解】由题意,独立性检验通常是研究两个分类变量之间是否有关系,所以①采用独立性检验,回归分析通常是研究两个具有相关关系的变量的相关程度,②采用回归分析,综上可知①是独立性检验,②是回归分析,故选B.【点睛】本题主要考查了独立性检验和回归分析的概念及其判定,其中解答中熟记独立性检验和回归分析的概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2.C解析:C【解析】由题易得22⨯列联表如下:则2K的观测值为()220235104.432 3.841128713k⨯⨯-⨯=≈>⨯⨯⨯,所以至少有95%的把握认为学生选报文理科与性别有关,故选:C.【解题必备】(1)独立性检验是对两个分类变量有关系的可信程度的判断,而不是对其是否有关系的判断.独立性检验的结论只能是有多大的把握认为两个分类变量有关系,而不能是两个分类变量一定有关系或没有关系.(2)列联表中的数据是样本数据,它只是总体的代表,具有随机性,因此,需要用独立性检验的方法确认所得结论在多大程度上适用于总体.即独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释. (3)独立性检验的具体做法:①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α, 然后查下表确定临界值0k ; ②利用公式()()()()()22n ad bc K a c b d a b c d -=++++,计算随机变量2K 的观测值k ;③如果0k k ≥,就推断“X 与Y 有关系”,这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X 与Y 有关系”,或者在样本数据中没有发现足够证据支持结论“X 与Y 有关系”.说明:通常认为 2.706k ≤时,样本数据就没有充分的证据显示“X 与Y 有关系”.3.B解析:B 【解析】分析:根据表格中所给数据,代入公式()()()()()22n ad bc K a b c d a c b d -=++++,求出观测值,把所求的观测值同临界值进行比较,从而可得结果. 详解:根据表中数据得到()2250181589 5.059 5.024********K ⨯⨯-⨯=≈>⨯⨯⨯,所以,若推断“学生的性别与认为作业量大有关”, 则这种推断犯错误的概率不超过0.025,故选B.点睛:本题主要考查独立性检验的应用,解题的关键是正确求出这组数据的观测值,计算过程一定要细心,避免出现计算错误,属于基础题.4.A解析:A 【解析】回归直线方程过样本中心点,过A 选项正确.5.C解析:C 【详解】∵2 6.023 5.024K=>∴可断言市民收入增减与旅游欲望有关的把握为97.5%.故选C.点睛:本题主要考查独立性检验的实际应用.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式22()()()()()n ad bcKa b c d a c b d-=++++,计算出2K的值;(3)查表比较2K与临界值的大小关系,作统计判断.6.B解析:B【解析】由题意得,若数据x1,x2,x3,…,x n的方差为1,则2x1,2x2,2x3,…,2x n的方差为4,所以③不正确;对分类变量x与y的随机变量K2的观测值k来说,k越小,判断“x与y 有关系”的把握程度越小,所以④不正确.其中①、②是正确的,故选B.7.C解析:C【解析】男人中患色盲的比例为,要比女人中患色盲的比例大,其差值为,差值较大,所以认为患色盲与性别是有关的.考点:独立性检验.8.C解析:C【解析】判断两个分类变量是否有关的最有效方法是进行独立性检验,故选C.考点:独立性检验的意义.9.B解析:B【解析】一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是反映数据的波动程度的量),①正确;回归方程中x的系数具备直线斜率的功能,对于回归方程y35x=-,当x增加一个单位时,y平均减少5个单位,②错误;由线性回归方程的定义知,线性回归方程y= b x+a必过点(),x y,③正确;因为213.079 6.635K=>,故有0099以上的把握认为这两个变量间有关系,④正确,即错误的个数为1,故选B. 10.B解析:B【解析】∵直线0x y a ++=与圆()()22122x y -+=+有公共点,∴≤13a -≤≤,∴在区间[55]-,内任取一个实数a ,使直线0x y a ++=与圆()()22122x y -+=+有公共点的概率为312555+=+,故选B. 点睛:本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题;利用圆心到直线的距离小于等于半径可得到直线与圆有公共点,可求出满足条件的a ,最后根据几何概型的概率公式可求出所求.11.C解析:C 【解析】由22⨯列联表数据计算得随机变量2K 的观测值是 6.879 6.635k =>,通过对照表中数据得,在犯错误的概率不超过1.0%的前提下,认为这两个变量间有关系,故选C.12.A解析:A 【解析】试题分析:根据题意,样本中心点的坐标为()10,38,所以38210,58a a =-⨯+∴=,因此回归直线方程为2ˆ58yx =-+,所以当6x =时,估计该商场下个月毛衣销售量约为26ˆ5846y=-⨯+=,故选A. 考点:回归直线方程.二、填空题13.【分析】设男生人数为依题意填写列联表计算观测值列出不等式求出的取值范围再根据题意求出男生的人数【详解】设男生人数为由题意可得列联表如下: 喜欢韩剧 不喜欢韩剧 总计 男生 女生 总 解析:18【分析】设男生人数为x ,依题意填写列联表,计算观测值,列出不等式求出x 的取值范围,再根据题意求出男生的人数. 【详解】设男生人数为x ,由题意可得列联表如下:则 3.841k>,即2452()3636969 3.84171711931818x x x x xxkx x xx⋅-⋅==>⋅⋅⋅,解得12.697x>.因为各部分人数均为整数,所以若有95%的把握认为是否喜欢韩剧和性别有关,则男生至少有18人.故答案为:18.【点睛】本题考查独立性检验的应用,解题关键是列出列联表,然后进行计算,属于常考题. 14.(1)(3)【解析】分析:根据独立性检验残差图相关系数回归分析的定义及性质逐一分析四个答案的真假即可详解:对于(1)根据2×2列联表中的数据计算得出≥6635而P(≥6635)≈001则有99的把握解析:(1)(3).【解析】分析:根据独立性检验、残差图、相关系数、回归分析的定义及性质,逐一分析四个答案的真假即可.详解:对于(1),根据2×2列联表中的数据计算得出2K≥6.635, 而P(2K≥6.635)≈0.01,则有99%的把握认为两个分类变量有关系,故(1)正确.对于(2),根据残差图的意义可得,当带状区域的宽度较小时,说明选用的模型比价合适,而当带状区域的宽度较大时,说明选用的模型不合适,故(2)不正确.对于(3),在线性回归分析中,相关系数为r,|r|越接近于1,则相关程度越大;|r|越接近于0,则相关程度越小.故(3)正确.对于(4),在回归直线y=0.5x−85中,当x=200时,y=15,但实际观测值可能不是15,故(4)不正确.综上可得(1)(3)正确.点睛:本题考查回归分析和独立性检验的基本知识,属于基础类题目,解题的关键是熟记相关的的概念和性质.15.5【解析】因为随机变量K2的观测值k>3841所以在犯错误的概率不超过005的前提下认为主修统计专业与性别有关系故这种判断出现错误的可能性为5考点:独立性检验思想解析:5% 【解析】因为随机变量K 2的观测值k >3.841,所以在犯错误的概率不超过0.05的前提下认为“主修统计专业与性别有关系”.故这种判断出现错误的可能性为5%. 考点:独立性检验思想.16.40【解析】试题分析:根据所给的表格做出本组数据的样本中心点根据样本中心点在线性回归直线上利用待定系数法做出a 的值现在方程是一个确定的方程根据所给的x 的值代入线性回归方程预报要销售的件数解:由表格得解析:40 【解析】试题分析:根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出a 的值,现在方程是一个确定的方程,根据所给的x 的值,代入线性回归方程,预报要销售的件数.解:由表格得=(14+12+8+6)÷4=10,=(22+26+34+38)÷4=30 即样本中心点的坐标为:(10,40), 又∵样本中心点(10,40)在回归方程 上且b=﹣2∴30=10×(﹣2)+a , 解得:a=50, ∴当x=5时,y=﹣2×(5)+50=40. 故答案为40.考点:回归分析的初步应用.17.【解析】试题分析:对于①从匀速传递的新产品生产流水线上质检员每20分钟抽取一件新产品进行某项指标检测这样的抽样是系统抽样而不是分层抽样故①错;对于②两个随机变量的相关性知识可知②正确;对于③变量所以 解析:2【解析】试题分析:对于①,从匀速传递的新产品生产流水线上,质检员每20分钟抽取一件新产品进行某项指标检测,这样的抽样是系统抽样,而不是分层抽样,故①错;对于②,两个随机变量的相关性知识可知②正确;对于③变量2(1,)N ξσ~,所以()()30.191510.810.19ξξP ≤-==-P ≤=-=,故③正确;对于④,随机变量2K 观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大,故④错,所以真命题有2个. 考点:1. 回归分析的基本思想及其应用初步;2.统计与概率.18.163【解析】由根据回归直线经过样本中心即得由得故答案为解析:163 【解析】由4953565864565y ++++==,根据回归直线经过样本中心(),x y ,即560.7973.56x =⨯-,得164x =,由1551611671741645a x ++++==,得163a =,故答案为163.19.①③④【解析】①是独立性检验的应用①对②中由于所以显然是半个圆②错③中由极坐标中两点距离公式=③对④中所有边长相等的凸多边形都是正多边形为大前提是错误的因为只需要正多边形挤压变形使之仍为凸多边形即可解析:①③④ 【解析】①是独立性检验的应用,①对.②中由于[]0,θπ∈,所以01y ≤≤,显然是半个圆,②错.③中,由极坐标中两点距离公式2221212212cos()AB ρρρρθθ=+--=14912()19,2+-⨯-=AB ③对.④中“所有边长相等的凸多边形都是正多边形”为大前提,是错误的,因为只需要正多边形挤压变形,使之仍为凸多边形即可.④对.所以填①③④.20.①④【解析】分析:根据性回归方程独立性检验相关关系以及命题的否定等知识选出正确的得到结果详解:线性回归方程必过样本中心点故①正确命题的否定是故②错误③相关系数r 绝对值越小表明两个变量相关性越弱故不正解析:①④ 【解析】分析:根据性回归方程,独立性检验,相关关系,以及命题的否定等知识,选出正确的,得到结果.详解:线性回归方程ˆˆˆy bx a =+必过样本中心点(),x y ,故①正确.命题“21,34x x ∀≥+≥”的否定是“21,34x x ∃≥+<” 故②错误 ③相关系数r 绝对值越小,表明两个变量相关性越弱,故不正确;④在一个22⨯列联表中,由计算得28.079K =,则有99%的把握认为这两个变量间有关系,正确. 故答案为①④.点睛:本题以命题真假的判断为载体,着重考查了相关系数、命题的否定、独立性检验、回归直线方程等知识点,属于中档题.三、解答题21.(1)列联表答案见解析,能在犯错误的概率不超过1%的前提下,认为网购与性别有关;(2)310.【分析】(1)根据表格中的数据可题中信息可完善22⨯列联表,计算出2K 的观测值,结合临界值表可得出结论;(2)计算得出年龄段()0,20应抽取3人,分别记为1、2、3;年龄段[)20,40应抽取2人,分别记为a 、b ,列举出所有的基本事件,并确定事件“所抽的两人年龄都小于20岁”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率. 【详解】(1)由题中信息可完善22⨯列联表如下表所示:计算得()2100201446207.605 6.63566344060K ⨯⨯-⨯=≈>⨯⨯⨯,故能在犯错误的概率不超过1%的前提下,认为网购与性别有关;(2)年龄在()0,20、[)20,40网购男性分别有15人、10人.按分层抽样的方法随机抽取5人,年龄段()0,20应抽取3人,分别记为1、2、3;年龄段[)20,40应抽取2人,分别记为a 、b .从中随机抽取2人的一切可能结果所组成的基本事件共10个:()1,2、()1,3、()1,a 、()1,b 、()2,3、()2,a 、()2,b 、()3,a 、()3,b 、(),a b .用A 表示“两人年龄都小于20岁”这一事件,则事件A 由3个基本事件组成:()1,2、()1,3、()2,3.故事件A 的概率为()310P A =. 【点睛】方法点睛:求解古典概型的概率方法如下: (1)列举法; (2)列表法; (3)树状图法; (4)排列、组合数的应用.22.(1)没有99.9%的把握认为学生的学习成绩与使用手机有关;(2)分布列见解析,()2E X =.【分析】(1)根据表格中数据和题中信息可完善22⨯列联表,计算出2χ的观测值,结合临界值表可得出结论;(2)由题意可知,随机变量X 的可能取值有0、1、2、3,计算出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,进而可求得随机变量X 的数学期望值. 【详解】(1)22⨯列联表如下表所示:()22505102015258.33310.828203025253χ⨯⨯-⨯==≈<⨯⨯⨯,所以,没有99.9%的把握认为学生的学习成绩与使用手机有关;(2)9人中学习成绩优秀的人有209630⨯=人,学习成绩一般的有109330⨯=人, X 可能的取值有0、1、2、3,()3911084P X C ===,()1263393114C C P X C ===,()21633915228C C P X C ===,()363953?21C P X C ===.所以,随机变量X 的分布列为()1232142821E X =⨯+⨯+⨯=. 【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.23.(1)0.94r ≈,线性相关性较弱;(2) +77.3ˆyx =。
3.1 感悟非线性回归问题
两个变量不呈线性关系,不能直接利用线性回归方程建立两个变量的关系,可以通过变换的方法转化为线性回归模型。
一般地,建立回归模型的基本步骤为:
1.确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量;
2.画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等);
3.由经验确定回归方程的类型(如观察到的数据呈线性关系,则选用线性回归方程
y bx a =+);
4.按一定规则估计回归方程中的参数(如最小二乘法);
5.得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性等等),若存在异常,则检查数据是否有误,或模型是否合适等。
例1 在彩色显影中,由经验可知:形成染料光学密度y 与析出银的光学密度x 由公式()0b x
y Ae
b =<表示,现测得试验数据如下:
分析:该例是一个非线性回归分析问题,由于题目中已给定了要求的曲线为b x
y Ae =类型,我们只要通过所给的11对样本数据,求出A 和b 即可确定x 与y 的相关关系的曲线方程。
解析:由题意可知,对于给定的公式()0b
x
y Ae
b =<两边取自然对数,得
ln ln b y A x
=+。
与线性回归方程对照可以看出,只要取1
u x
=
,ln ,ln v y a A ==,就有v a bu =+,这是v u 对的线性回归直线方程,对此我们再套用相关性检验,求回归系数b 和a 。
题目中所给数据由变量置换1
u x
=
,ln v y =变为如下所示的数据:
由于0.9980.75r =>,可知u 与v 具有很强的线性相关关系。
再求得0.14,0.548b a =-=,
∴ˆ0.5480.146v
u =-,把u 和v 置换回来可得0.146
ˆln 0.548y x
=-, ∴0.146
0.1460.1460.5480.548
ˆ 1.73x
x
x
y
e e
e
e
-
-
-
==⋅=,
∴回归曲线方程为0.146
ˆ 1.73x
y
e -
=。
评注:解决本题的思路是通过适当的变量置换把非线性回归方程转化为线性回归方程,然后再套用线性回归分析的解题步骤。
例2 某种书每册的成本费y (元)与印刷册数x (千册)有关,经统计得到数据如下:
检验每册书的成本费y 与与印刷册数的倒数x
之间是否具有线性相关关系,如有,求出y 对x 的回归方程。
分析:非线性回归问题有时并不给出经验公式,此时我们可以由已知的数据画出散点图,并把散点图与已经学过的各种函数(如幂函数、指数函数、对数函数、二次函数等)作比较,挑选出跟这些散点拟合最好的函数,然后再采用变量置换,把问题转化为线性回归分析问题。
解析:把
1x 置换为z ,则有1
z x
=,从而z 与y 的数据为
∴0.99980.75r =>,∴z 对y 具有很强的线性相关关系。
∴8.976, 1.120b a ≈≈。
∴所求的z 与y 的回归方程为ˆ8.976 1.120y
z =+。
又1z x =
,∴8.976
ˆ 1.120y x
=+。
评注:在没有回归曲线模型的问题中,应注意利用散点图合理拟合相应的样本点的类型,并与有关的已知函数图象相比较,寻找最佳的拟合效果。