1集合-1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案
- 格式:doc
- 大小:1.66 MB
- 文档页数:13
1981年~2019年全国高中数学联赛试题分类汇编平面向量与解三角形部分2019A 3、平面直角坐标系中,e 是单位向量,向量a 满足2a e ⋅=,且25a a te ≤+对任意实数t 恒成立,则a 的取值范围为 。
◆答案:★解析:不妨设()1,0e =,(),a x y =,由2a e ⋅=得2x =,25a a te ≤+等价于24y +≤245y y +≤,解得14y ≤≤,所以22a y =+。
2019A 9、在ABC ∆中,,,BC a CA b AB c ===,若b 是a 与c 的等比中项,且sin A 是()sin B A -与sin C 的等差中项,求cos B 的值.★解析:因为b 是a 与c 的等比中项,故存在0q >,使得2,b qa c q a ==①由sin A 是()sin B A -与sin C 的等差中项,得()2sin sin sin 2sin cos A B A C B A =-+=,结合正余弦定理得2222a b c a b bc+-=,即2222b c a ac +-=,将①代入得421q q =+,解得212q =,所以2224222111cos 222a cb q q B ac q q +-+-====。
2019B 2. 若平面向量()2,1m a =-与()121,2m m b +=-垂直,其中m 为实数,则a 的模为 .★解析:由条件得()()2211220mmm -+-⋅=,解得23m =,所以(23a =+=2019B 3. 设(),0,αβπ∈,cos ,cos αβ是方程25310x x --=的两根,则sin sin αβ的值为 .◆答案:5★解析:由已知得3cos cos 5αβ+=,1cos cos 5αβ=-,从而 ()()()222sin sin 1cos 1cos αβαβ=--()()221cos cos cos cos αβαβ=+-+ 224375525⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭2018A 7、设O 为ABC ∆的外心,若AC AB AO 2+=,则BAC ∠sin 的值为 ◆答案:410 ★解析:取AC 的中点D ,则AC OD ⊥。
1981年~2019年全国高中数学联赛二试试题分类汇编数论部分2019A 5、在1,2,3,,10中随机选出一个数a ,在1,2,3,,10----中随机选出一个数b ,则2a b +被3整除的概率为 .◆答案:37100★解析:首先数组(),a b 有1010100⨯= 种等概率的选法. 考虑其中使2a b +被3整除的选法数N .①若a 被 3 整除,则b 也被 3 整除.此时,a b 各有3种选法,这样的(),a b 有339⨯=组.若a 不被 3 整除,则()21mod3a ≡,从而()1mod3b ≡-.此时a 有7 种选法,b 有4种选法,这样的(),a b 有7428⨯=组. 因此92837N =+=.于是所求概率为37100。
2019A 三、(本题满分 50 分)设m 为整数,2m ≥.整数数列12,,a a 满足:12,a a 不全为零,且对任意正整数n ,均有21n n n a a ma ++=-.证明:若存在整数,r s , (2r s >≥ )使得1r s a a a ==,则r s m -≥.★解析:证明:不妨设12,a a 互素(否则,若()12,1a a d =>,则12,1a a d d ⎛⎫=⎪⎝⎭互素,并且用12,,a a d d代替12,,a a ,条件与结论均不改变).由数列递推关系知()234mod a a a m ≡≡≡. ①以下证明:对任意整数3n ≥,有()()2123mod n a a a n a m m ≡-+-⎡⎤⎣⎦. ② ………10 分 事实上,当3n =时②显然成立.假设n k =时②成立(其中k 为某个大于2的整数),注意到①,有()212mod k ma ma m -≡,结合归纳假设知()()()21122221232mod k k k a a ma a k a m ma a a k a m +-≡-≡+--=-+-⎡⎤⎡⎤⎣⎦⎣⎦,即1n k =+时②也成立.因此②对任意整数3n ≥均成立. ………………20 分注意,当12a a =时,②对2n =也成立. 设整数,r s , (2r s >≥ ),满足1r s a a a ==. 若12a a =,由②对2n ≥均成立,可知()()()221221233mod r s a a r a m a a a a s a m m -+-≡≡≡-+-⎡⎤⎡⎤⎣⎦⎣⎦即()()()121233mod a r a a s a m +-≡+-,即 ()()20mod r s a m -≡. ③ 若12a a ≠,则12r s a a a a ==≠故3r s >≥.此时由于②对3n ≥均成立, 故类似可知③仍成立. ………………30 分 我们证明2,a m 互素.事实上,假如2a 与m 存在一个公共素因子p ,则由①得p 为23,,a a 的公因子,而12,a a 互素,故/|p 1a ,这与1r s a a a ==矛盾.因此,由③得()0mod r s m -≡.又r s >,所以r s m -≥. ………………50分2018A 四、(本题满分50分)数列{}n a 定义如下:1a 是任意正整数,对整数1≥n ,1+n a 与∑=ni ia1互素,且不等于n a a a ,.,,21 的最小正整数,证明:每个正整数均在数列{}n a 中出现。
1981年~2019年全国高中数学联赛试题分类汇编不定方程部分2011B 一、(本题满分40分)求所有三元整数组(,,)x y z ,使其满足333320111515x y z xyz x y ⎧++-=⎪≥⎨⎪≥⎩★解析:由20113333=-++xyz z y x ,得()()()()[]4022222=-+-+-++x z z y y x z y x ①因220114022⨯=,且()()()0222≡-+-+-x z z y y x ()2m od ,所以①等价于()()()⎩⎨⎧=-+-+-=++40221222x z z y y x z y x ②或()()()⎩⎨⎧=-+-+-=++22011222x z z y y x z y x ③ 对方程组②,消去z 得()()()40221212222=-++-++-y x y x y x ,即67022=--++y x xy y x ④⑴若15=x ,15=y ,则67064522<=--++y x xy y x 与④矛盾;⑵若16≥x ,15≥y ,则670690434256))(1(2>=+≥+-+y x y x 与④矛盾;⑶若15≥x ,16≥y ,则670690434256))(1(2>=+≥+-+y x x y 与④矛盾;综上方程组②无解;对方程组③,由()()()2222=-+-+-x z z y y x 可得y x -,z y -,x z -中有两个为1,一个为0。
⑴若1=-y x ,1=-z y ,0=-x z ,则z x y ==+1或z x y ==-1,z x y ==+1代入③的第一个方程,无解;z x y ==-1代入③的第一个方程,解得671=y ,670==z x ⑵若1=-y x ,0=-z y ,1=-x z ,同理可得671=x ,670==z y ⑶若0=-y x ,1=-z y ,1=-x z ,同理可得671=z ,670==y x综上,满足条件的三元数组为()670,670,671,()670,671,670,()671,670,6702010AB 8、方程2010=++z y x 满足z y x ≤≤的正整数解),,(z y x 的个数是 ◆答案: 336675★解析:首先易知2010=++z y x 的正整数解的个数为 1004200922009⨯=C . 把2010=++z y x 满足z y x ≤≤的正整数解分为三类: (1)z y x ,,均相等的正整数解的个数显然为1;(2)z y x ,,中有且仅有2个相等的正整数解的个数,易知为1003; (3)设z y x ,,两两均不相等的正整数解为k . 易知 100420096100331⨯=+⨯+k , 所以110033*********-⨯-⨯=k 200410052006123200910052006-⨯=-⨯+-⨯=, 即3356713343351003=-⨯=k .从而满足z y x ≤≤的正整数解的个数为33667533567110031=++.2010B 二、(本题满分40分)设m 和n 是大于1的整数,求证:11111112(1)().1m m n m mm k k jj m m k j i n n C n C i m -+===⎧⎫+++=+-⎨⎬+⎩⎭∑∑∑ ★证明:1111)m m jj m j q Cq +++=+=∑由(得到1110(1),mm m j jm j q qC q +++=+-=∑ 1,2,,q n =分别将代入上式得:11021,m m jm j C ++=-=∑1110322,mm m j jm j C +++=-=∑1110(1)(1),mm m j jm j nn C n +++=--=-∑ 1110(1).mm m j j m j n nC n +++=+-=∑ n 将上面个等式两边分别相加得到: 111(1)1(),mnm jjm j i n Ci++==+-=∑∑ (20分)11111(1)(1)1(1),m nnmj j m m j i i n nn C i m i-+===++-=+++∑∑∑()11111112(1)().1m m nmmmk k j j m m k j i n n C n C i m -+===⎧⎫+++=+-⎨⎬+⎩⎭∑∑∑ (40分)2008A B5、方程组⎪⎩⎪⎨⎧=+++=+=++000y xz yz xy z xyz z y x 的有理数解),,(z y x 的个数为( ) A. 1 B. 2 C. 3 D. 4◆答案: B★解析:若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩, 若0z ≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②式代入0xy yz xz y +++=得220x y xy y ++-=. ③由①式得1x y=-,代入③式化简得3(1)(1)0y y y ---=.易知310y y --=无有理数根,故1y =,由①式得1x =-,由②式得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩2008B 二、(本题满分50分)求满足下列关系式组2222,50,x y z z y z ⎧+=⎨<≤+⎩的正整数解组(,,)x y z 的个数.★解析:令r y z =-,由条件知050r <≤,方程化为222()2x z r z ++=,即2222x zr r z ++=. (1)因0y z r -=>,故22222z x y z x =+->,从而z x >.设0p z x =->.因此(1)化为22220zp p zr r -+++=.(2) 下分r 为奇偶讨论,(ⅰ)当r 为奇数时,由(2)知p 为奇数.令121r r =+,121p p =+,代入(2)得221111112()10p p zp zr r r +-++++=. (3)(3)式明显无整数解.故当r 为奇数时,原方程无正整数解.(ⅱ)当r 为偶数时,设12r r =,由方程(2)知p 也为偶数.从而可设12p p =,代入(2)化简得2211110p zp zr r -++=. (4)由(4)式有221111()0z p r p r -=+>,故11p r >,从而可设11p r a =+,则(4)可化为2211()0r a za r +-+=,2211220r ar za a +-+=. (5)因21122r z r a a=++为整数,故212a r ,又1122()z z x p r a >-==+,因此22111()2()r a r za r a a ++=>+,得2212a r <,即a <.因此,对给定的11,2,,25r =⋅⋅⋅,解的个数恰是满足条件1a 的212r 的正因数a 的个数1()N r .因212r 不是完全平方数,从而1()N r 为212r 的正因数的个数21(2)r σ的一半.即211()(2)/2N r r σ=.由题设条件,1125r ≤≤.而25以内有质数9个:2,3,5,7,11,13,17,19,23.将25以内的数分为以下八组:012341{2,2,2,2,2}A =,2{23,25,27,211}A =⨯⨯⨯⨯,223{23,25}A =⨯⨯,34{23}A =⨯,25{23}A =⨯,1{3,5,7,11,13,17,19,23}B =, 222{3,5}B =,3{35,37}B =⨯⨯,从而易知012341()(2)(2)(2)(2)(2)1234515N A N N N N N =++++=++++=,2()(23)46424N A N =⨯⨯=⨯=,3()9218N A =⨯=,4()12N A =,5()10N A =,1()3824N B =⨯=,2()5210N B =⨯=,3()9218N B =⨯=,将以上数相加,共131个.因此解的个数共131.2006*11、方程()()20052004422006200611x x x x x=+++++ 的实数解的个数为 ◆答案:1 ★解析:200520044220062006)1)(1(x x x x x=+++++24200420051()(1)2006x x x x x⇔+++++= 35200520052003200111112006x x x x x x xx⇔+++++++++= 32005320051112006210032006x x x x x x⇔=++++++≥=要使等号成立,必须 3200532005111,,,x x xx x x===,即1x =±。
a ,而此时对任意正整数 n ,a + a + + a = na + n (n - 1) d = a + ⎢(n - 1)(k - 2)+ ⎥ d ,确实为 {a n }中的2 2 ⎣ ⎦★证明:由条件可知 k ≥ 4 ,且 d - dn n dd - dn2 = 22 11981 年~2019 年全国高中数学联赛试题分类汇编数列部分2019B 8. 设等差数列{a n}的各项均为整数,首项 a 1= 2019 ,且对任意正整数 n ,总存在正整数 m ,使得 a + a +12◆答案: 5+ a = a .这样的数列{a }的个数为 .n m n★解析:设 {a n}的公差为 d .由条件知 a 1+ a = a ( k 是某个正整数), 2 k则 2a + d = a + (k -1)d ,即 (k - 2)d = a ,因此必有 k ≠ 2 ,且 d = 1 1 1 n - 1这样就有 a = a + (n - 1)d = a +k - 2 1n 1 1a1 k - 2.⎡ n (n - 1)⎤ 1 2n11一项.因此,仅需考虑使 (k - 2)| a 成立的正整数 k 的个数.注意到 2019 = 3 ⨯ 673 ,易知1k - 2 可取 -1,1,3,673,2019 这 5 个值,对应得到 5 个满足条件的等差数列.2019B 二、(本题满分 40 分)求满足以下条件的所有正整数 n :(1) n 至少有 4 个正约数;(2) 若 d < d << d 是 n 的所有正约数,则 d - d , d - d , ,d - d 1 2 k 2 1 3 2 kk -1 构成等比数列。
d - d3 2 = k k -1 d - d d - d21k -1k -2……………10 分易得 d = 1,d = n , d 1kk -1 =d2, dk -2 n - n d - d d =,代入上式得 3 ,3 -d d2 3n即 (d - d32)2 = (d2- 1)2 d ,由此可知 d 是完全平方数.由于 d = p 是 n 的最小素因3 3 2子, d 是平方数,故只能 d = p 2 . ………………30 分3 3从而序列 d - d , d - d , 2 132d , d , , d12k,d - d kk -1为 p - 1, p 2 - p , p 3 - p 2 , ,p k -1 - p k -2 ,即为1, p , p 2 , , p k -1 ,而此时相应的 n 为 p k -1 .1下面用 t 表示 b , b , b 中 2 的项数。
1981年~2019年全国高中数学联赛二试试题分类汇编数论部分2019A 5、在1,2,3,,10 中随机选出一个数a ,在1,2,3,,10---- 中随机选出一个数b ,则2a b +被3整除的概率为 .◆答案:37100★解析:首先数组(),a b 有1010100⨯= 种等概率的选法. 考虑其中使2a b +被3整除的选法数N .①若a 被 3 整除,则b 也被 3 整除.此时,a b 各有3种选法,这样的(),a b 有339⨯=组.若a 不被 3 整除,则()21mod3a ≡,从而()1mod3b ≡-.此时a 有7 种选法,b 有4种选法,这样的(),a b 有7428⨯=组. 因此92837N =+=.于是所求概率为37100。
2019A 三、(本题满分 50 分)设m 为整数,2m ≥.整数数列12,,a a 满足:12,a a 不全为零,且对任意正整数n ,均有21n n n a a ma ++=-.证明:若存在整数,r s , (2r s >≥ )使得1r s a a a ==,则r s m -≥.★解析:证明:不妨设12,a a 互素(否则,若()12,1a a d =>,则12,1a a d d ⎛⎫=⎪⎝⎭互素,并且用12,,a a d d代替12,,a a ,条件与结论均不改变).由数列递推关系知()234mod a a a m ≡≡≡. ①以下证明:对任意整数3n ≥,有()()2123mod n a a a n a m m ≡-+-⎡⎤⎣⎦. ② ………10 分 事实上,当3n =时②显然成立.假设n k =时②成立(其中k 为某个大于2的整数),注意到①,有()212mod k ma ma m -≡,结合归纳假设知()()()21122221232mod k k k a a ma a k a m ma a a k a m +-≡-≡+--=-+-⎡⎤⎡⎤⎣⎦⎣⎦,即1n k =+时②也成立.因此②对任意整数3n ≥均成立. ………………20 分注意,当12a a =时,②对2n =也成立. 设整数,r s , (2r s >≥ ),满足1r s a a a ==. 若12a a =,由②对2n ≥均成立,可知()()()221221233mod r s a a r a m a a a a s a m m -+-≡≡≡-+-⎡⎤⎡⎤⎣⎦⎣⎦即()()()121233mod a r a a s a m +-≡+-,即 ()()20mod r s a m -≡. ③ 若12a a ≠,则12r s a a a a ==≠故3r s >≥.此时由于②对3n ≥均成立, 故类似可知③仍成立. ………………30 分 我们证明2,a m 互素.事实上,假如2a 与m 存在一个公共素因子p ,则由①得p 为23,,a a 的公因子,而12,a a 互素,故/|p 1a ,这与1r s a a a ==矛盾.因此,由③得()0mod r s m -≡.又r s >,所以r s m -≥. ………………50分2018A 四、(本题满分50分)数列{}n a 定义如下:1a 是任意正整数,对整数1≥n ,1+n a 与∑=ni ia1互素,且不等于n a a a ,.,,21 的最小正整数,证明:每个正整数均在数列{}n a 中出现。
1981年~2019年全国高中数学联赛试题分类汇编立体几何部分2019A7、如图,正方体ABCD EFGH -的一个截面经过顶点,A C 及棱EF 上一点K ,且将正方体分成体积比为3:1的两部分,则EKKF的值为 .★解析:作图延长,AK BF 交于点P ,连接CP 交FG 于点N ,则 截面为ACNK ,由于面//ABC 面KFN ,知ABC KFN -为棱台,则EK AEKF PF=. 不妨设正方体棱长为1,则正方体体积为1,结合条件知棱台ABC KFN -的体积为14, 设PF x =,则1KF NF PF xAB BC PB x ===+,由于 11113232ABC KFN V AB BC PB KF FN PF -⎛⎫⎛⎫=⨯⨯⨯⨯-⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭所以()()322113311146161x x x x x x ⎛⎫++⎛⎫=⋅+-= ⎪ ⎪ ⎪+⎝⎭+⎝⎭,解得3x =。
所以1EK AE KF PF x===2019B 4. 设三棱锥P ABC -满足3PA PB ==,2AB BC CA ===,则该三棱锥的体积的最大值为 .◆答案:3★解析:设三棱锥P ABC -的高为h .取M 为棱AB的中点,则h PM ≤==当平面PAB 垂直于平面ABC 时,h取到最大值P ABC -的体积取到最大值为11323⨯=。
2018A 2、设点P 到平面α的距离为3,点Q 在平面α上,使得直线PQ 与平面α所成角不小于030且不大于060,则这样的点Q 所构成的区域的面积为◆答案:π8★解析:设点P 在平面α上的射影为O ,由条件知⎥⎦⎤⎢⎣⎡∈=∠3,33tan OQ OP OQP ,即[]3,1∈OQ ,所以区域的面积为πππ81322=⨯-⨯。
2018B 2、已知圆锥的顶点为P ,底面半径长为2,高为1.在圆锥底面上取一点Q ,使得直线PQ 与底面所成角不大于045,则满足条件的点Q 所构成的区域的面积为 ◆答案: π3★解析:记圆锥的顶点P 在底面的投影为O ,则O 为底面中心,且1tan ≤=∠OQOPOQP ,即1≥OQ ,故所以区域的面积为πππ31222=⨯-⨯。
全国高中数学联赛试题分类汇编——立体几何(1981年~2019年)2019A7、如图,正方体ABCD EFGH -的一个截面经过顶点,A C 及棱EF 上一点K ,且将正方体分成体积比为3:1的两部分,则EKKF的值为 .解析:作图延长,AK BF 交于点P ,连接CP 交FG 于点N ,则 截面为ACNK ,由于面//ABC 面KFN ,知ABC KFN -为棱台,则EK AEKF PF=. 不妨设正方体棱长为1,则正方体体积为1,结合条件知棱台ABC KFN -的体积为14, 设PF x =,则1KF NF PF xAB BC PB x ===+,由于 11113232ABC KFN V AB BC PB KF FN PF -⎛⎫⎛⎫=⨯⨯⨯⨯-⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭所以()()322113311146161x x x x x x ⎛⎫++⎛⎫=⋅+-= ⎪ ⎪ ⎪+⎝⎭+⎝⎭,解得x =所以1EK AE KF PF x=== 2019B 4. 设三棱锥P ABC -满足3PA PB ==,2AB BC CA ===,则该三棱锥的体积的最大值为 .答案:3解析:设三棱锥P ABC -的高为h .取M 为棱AB 的中点,则h PM ≤==当平面PAB 垂直于平面ABC 时,h取到最大值P ABC -的体积取到最大值为1132⨯=2018A 2、设点P 到平面α的距离为3,点Q 在平面α上,使得直线PQ 与平面α所成角不小于030且不大于060,则这样的点Q 所构成的区域的面积为答案:π8解析:设点P 在平面α上的射影为O ,由条件知⎥⎦⎤⎢⎣⎡∈=∠3,33tan OQ OP OQP ,即[]3,1∈OQ ,所以区域的面积为πππ81322=⨯-⨯。
2018B 2、已知圆锥的顶点为P ,底面半径长为2,高为1.在圆锥底面上取一点Q ,使得直线PQ 与底面所成角不大于045,则满足条件的点Q 所构成的区域的面积为答案: π3解析:记圆锥的顶点P 在底面的投影为O ,则O 为底面中心,且1tan ≤=∠OQOPOQP ,即1≥OQ ,故所以区域的面积为πππ31222=⨯-⨯。
1981年~2019年全国高中数学联赛试题分类汇编函数与方程部分2019A1、已知正实数a 满足()89aa a a =,则()log 3a a 的值为 . ◆答案:916★解析:由条件知189a a =,故9163a a ==,所以()9log 316a a =。
2019A 二、(本题满分 40 分)设整数122019,,,a a a L 满足122019199a a a =≤≤≤=L . 记()()22212201913243520172019f a a a a a a a a a a a =+++-++++L L ,求f 的最小值0f .并确定使0f f =成立的数组()122019,,,a a a L 的个数.★解析:由条件知()()2017222221220182019212i i i f a a aaa a +==++++-∑. ①由于12,a a 及2i i a a +-(1,2,2016i =L )均为非负整数,故有221122,a a a a ≥≥且()222i i i i a a a a ++-≥-.于是()()()201620162221221222017201811i i i i i i a a a a a a a a a a ++==++-≥++-=+∑∑②………………10 分由①、②得()2222017201820192017201820192f a a a a a a ≥++-++,结合20192019a =及201820170a a ≥>,可知()()2222201720172017201712999949740074002f a a a a ⎡⎤≥+-++=-+≥⎣⎦ .③ ………20 分另一方面,令1219201a a a ====L ,19202119202k k a a k +-+==(1,2,,49k =L ),201999a = 此时验证知上述所有不等式均取到等号,从而f 的最小值07400f =.………………30 分 以下考虑③的取等条件.此时2018201749a a ==,且②中的不等式均取等, 即121a a ==,{}20,1i i a a +-∈(1,2,2016i =L )。
1981年~2019年全国高中数学联赛试题分类汇编1、集合部分2019A 2、若实数集合{}1,2,3,x 的最大元素与最小元素之差等于该集合的所有元素之和,则x 的值为 .◆答案:32-★解析:假如0x ≥,则最大、最小元素之差不超过{}max 3,x ,而所有元素之和大于{}max 3,x ,不符合条件.故0x <,即x 为最小元素.于是36x x -=+,解得32x =-。
2019B1. 若实数集合{}1,2,3,x 的最大元素等于该集合的所有元素之和,则x 的值为 .◆答案:3-★解析:条件等价于1,2,3,x 中除最大数以外的另三个数之和为0 .显然0<,从而120x ++=,得3x =-.2018A1、设集合{}99,,3,2,1 =A ,集合{}A x x B ∈=|2,集合{}A x x C ∈=2|,则集合C B 的元素个数为 ◆答案:24★解析:由条件知,{}48,,6,4,2 =C B ,故C B 的元素个数为24。
2018B1、设集合{}8,1,0,2=A ,集合{}A a a B ∈=|2,则集合B A 的所有元素之和是 ◆答案: 31 ★解析:易知{}16,2,0,4=B ,所以{}16,8,4,2,1,0=B A ,元素之和为31.2018B 三、(本题满分50分)设集合{}n A ,,2,1 =,Y X ,均为A 的非空子集(允许Y X =).X中的最大元与Y 中的最小元分别记为Y X min ,max .求满足Y X min max >的有序集合对),(Y X 的数目。
★解析:先计算满足Y X min max ≤的有序集合对),(Y X 的数目.对给定的X m max =,集合X 是集合{}1,,2,1-m 的任意一个子集与{}m 的并,故共有12-m 种取法.又Y m min ≤,故Y 是{}n m m m ,,2,1, ++的任意一个非空子集,共有121--+m n 种取法.因此,满足Y X min max ≤的有序集合对),(Y X 的数目是:()[]()12122122111111+⋅-=-=-∑∑∑=-==-+-n nm m n m nnm mn m n由于有序集合对),(Y X 有()()()2121212-=--n n n 个,于是满足Y X min max >的有序集合对),(Y X 的数目是()()124122122+-=-+⋅--n n n n n n n2017B 二、(本题满分40分)给定正整数m ,证明:存在正整数k ,使得可将正整数集+N 分拆为k 个互不相交的子集k A A A ,,,21 ,每个子集i A 中均不存在4个数d c b a ,,,(可以相同),满足m cd ab =-.★证明:取1k m =+,令{(mod 1),}i A x x i m x N +=≡+∈,1,2,,1i m =+设,,,i a b c d A ∈,则0(mod 1)ab cd i i i i m -≡∙-∙=+,故1m ab cd +-,而1m m +,所以在i A 中不存在4个数,,,a b c d ,满足ab cd m -=2017B 四、(本题满分50分)。
1981年~2019年全国高中数学联赛试题分类汇编1、集合部分2019A 2、若实数集合{}1,2,3,x 的最大元素与最小元素之差等于该集合的所有元素之和,则x 的值为 .◆答案:32-★解析:假如0x ≥,则最大、最小元素之差不超过{}max 3,x ,而所有元素之和大于{}max 3,x ,不符合条件.故0x <,即x 为最小元素.于是36x x -=+,解得32x =-。
2019B1. 若实数集合{}1,2,3,x 的最大元素等于该集合的所有元素之和,则x 的值为 . ◆答案:3-★解析:条件等价于1,2,3,x 中除最大数以外的另三个数之和为0 .显然0<,从而120x ++=,得3x =-.2018A1、设集合{}99,,3,2,1 =A ,集合{}A x x B ∈=|2,集合{}A x x C ∈=2|,则集合C B 的元素个数为 ◆答案:24★解析:由条件知,{}48,,6,4,2 =C B ,故C B 的元素个数为24。
2018B1、设集合{}8,1,0,2=A ,集合{}A a a B ∈=|2,则集合B A 的所有元素之和是 ◆答案: 31★解析:易知{}16,2,0,4=B ,所以{}16,8,4,2,1,0=B A ,元素之和为31.2018B 三、(本题满分50分)设集合{}n A ,,2,1 =,Y X ,均为A 的非空子集(允许Y X =).X中的最大元与Y 中的最小元分别记为Y X min ,max .求满足Y X min max >的有序集合对),(Y X 的数目。
★解析:先计算满足Y X min max ≤的有序集合对),(Y X 的数目.对给定的X m max =,集合X 是集合{}1,,2,1-m 的任意一个子集与{}m 的并,故共有12-m 种取法.又Y m min ≤,故Y 是{}n m m m ,,2,1, ++的任意一个非空子集,共有121--+m n 种取法.因此,满足Y X min max ≤的有序集合对),(Y X 的数目是:()[]()12122122111111+⋅-=-=-∑∑∑=-==-+-n nm m n m nnm mn m n由于有序集合对),(Y X 有()()()2121212-=--n n n 个,于是满足Y X min max >的有序集合对),(Y X 的数目是()()124122122+-=-+⋅--n n n n n n n2017B 二、(本题满分40分)给定正整数m ,证明:存在正整数k ,使得可将正整数集+N 分拆为k 个互不相交的子集k A A A ,,,21 ,每个子集i A 中均不存在4个数d c b a ,,,(可以相同),满足m cd ab =-.★证明:取1k m =+,令{(mod 1),}i A x x i m x N +=≡+∈,1,2,,1i m =+设,,,i a b c d A ∈,则0(mod 1)ab cd i i i i m -≡•-•=+,故1m ab cd +-,而1m m +,所以在i A 中不存在4个数,,,a b c d ,满足ab cd m -=2017B 四、(本题满分50分)。
设{}5,4,3,2,1,,,2021∈a a a ,{}10,,3,2,1,,,2021 ∈b b b ,集合{}0))((,201|),(<--≤<≤=j i j i b b a a j i j i X ,求X 的元素个数的最大值。
★解析:考虑一组满足条件的正整数12201220(,,,,,,,)a a a b b b对1,2,,5k =,设120,,a a 中取值为k 的数有k t 个,根据X 的定义,当i j a a =时,(,)i j X ∉,因此至少有521kt k C=∑个(,)i j 不在X 中,注意到5120kk t==∑,则柯西不等式,我们有5555522211111111120()(())20(1)3022525kt k k k kk k k k k C t t t t ======•-≥•-=••-=∑∑∑∑∑ 从而X 的元素个数不超过2203019030160C -=-=另一方面,取4342414k k k k a a a a k ---====(1,2,,5k =),6i i b a =-(1,2,,20i =), 则对任意,i j (120i j ≤<≤),有2()()()((6)(6))()0i j i j i j i j i j a a b b a a a a a a --=----=--≤等号成立当且仅当i j a a =,这恰好发生24530C =次,此时X 的元素个数达到22030160C -=综上所述,X 的元素个数的最大值为160.2016B 四、(本题满分50分)设A 是任意一个11元实数集合.令集合{}v u A v u uv B ≠∈=,,|求B 的元素个数的最小值.★解析:记{}1121,,,a a a A =,不妨设1121a a a <<<①若0≥i a ()111≤≤i 恒成立;由于1110113112423221a a a a a a a a a a a a <<<<<<< , 这里显然可以发现有18个数在B 中,即18≥B②若1111210a a a a a a k k k <<<≤<<<<++ ,其中5≤k 时,由于1111121121111121a a a a a a a a a a a a a a k k k k k k k >>>>>>>>--++ 有10个非负数;又11101141131124232a a a a a a a a a a a a k k k k k k k <<<<<<<+++++++ 有k 217-个正数, 故此时,1722721710≥-=-+≥k k B ,当5=k 时,17min =B ,如{}4322,2,2,2,1,0±±±±±=A ,{}87654322,2,2,2,2,2,2,2,1,0-±±±±±±±-=B 满足; ③若1111210a a a a a a k k k <<<≤<<<<++ ,其中6≥k 时,由于1111121121111121a a a a a a a a a a a a a a k k k k k k k >>>>>>>>--++ 有10个非负数;又0621<<<<a a a ,则1213141525354565a a a a a a a a a a a a a a a a <<<<<<<有8个正数,故此时,18810=+≥B④若0<i a ()111≤≤i 恒成立;同①显然可以发现有18个数在B 中,即18≥B ; 综上。
B 的元素个数的最小值为17.2015AB10、(本题满分20分)设4321,,,a a a a 是4个有理数,使得{}⎭⎬⎫⎩⎨⎧----=≤<≤3,1,81,23,2,2441|j i aa ji ,求4321a a a a +++的值。
★解析:由条件可知,(14)i j a a i j ≤<≤是6个互不相同的数,且其中没有两个为相反数,由此知,4321,,,a a a a 的绝对值互不相等,不妨设||||||||4321a a a a <<<,则||||(14)i j a a i j ≤<≤中最小的与次小的两个数分别是12||||a a 及13||||a a ,最大与次大的两个数分别是34||||a a 及24||||a a ,从而必须有121324341,81,3,24,a a a a a a a a ⎧=-⎪⎪⎪=⎨⎪=⎪=-⎪⎩ 10 分于是2341112113,,248a a a a a a a =-===-. 故2231412113{,}{,24}{2,}82a a a a a a =--=--,15分结合1a Q ∈,只可能114a =±.由此易知,123411,,4,642a a a a ==-==-或者123411,,4,642a a a a =-==-=.检验知这两组解均满足问题的条件. 故123494a a a a +++=±. 20 分2015A 二、(本题满分40分)设{}n A A A S ,,,21 =,其中n A A A ,,,21 是n 个互不相同的有限集合(2≥n ),满足对任意的S A A j i ∈,,均有S A A j i = ,若2min 1≥=≤≤i ni A k .证明:存在 ni iAx 1=∈,使得x 属于n A A A ,,,21 中至少kn个集合(这里X 表示有限集合X 的元素个数)。
★证明:不妨设1||A k =.设在12,,,n A A A 中与1A 不相交的集合有s 个,重新记为12,,,s B B B ,设包含1A 的集合有t 个,重新记为12,,,t C C C .由已知条件,1()i B A S ∈,即112(){,,,}i t B A C C C ∈,这样我们得到一个映射12121:{,,,}{,,,},()s t i i f B B B C C C f B B A →=.显然f 是单映射,于是,s t ≤. 10 分 设112{,,,}k A a a a =.在n A A A ,,,21⋅⋅⋅中除去12,,,s B B B ,12,,,t C C C 后,在剩下的n s t --个集合中,设包含i a 的集合有i x 个(1i k ≤≤),由于剩下的n s t --个集合中每个集合与从的交非空,即包含某个i a ,从而12k x x x n s t +++≥--. 20 分不妨设11max i i kx x ≤≤=,则由上式知i n s tx k--≥,即在剩下的n s t --个集合中,包含1a 的集合至少有n s tk--个.又由于),,2,1(1t i C A i ⋅⋅⋅=⊆,故12,,,t C C C 都包含1a ,因此包含1a 的集合个数至少为(1)n s t n s k t n s t t k k k---+---+=≥(利用2k ≥) nk≥(利用s t ≤). 40 分2015B 6、设k 为实数,在平面直角坐标系中有两个点集{})(2),(22y x y x y x A +=+=和{}03),(≥++-=k y kx y x B ,若B A 是单元集,则k 的值为◆答案: 2-★解析:点集A 是圆周22:(1)(1)2x y Γ-+-=,点集B 是恒过点)3,1(-P 的直线:3(1)l y k x -=+及下方(包括边界).作出这两个点集知,当A 自B 是单元集时,直线l 是过点P 的圆Γ的一条切线.故圆Γ的圆心 M (1, l )到直线l ,=2k =--2014A 2、设集合⎭⎬⎫⎩⎨⎧≤≤≤+21|3b a b a 中最大元素与最小元素分别为N M ,,则N M -的值为 ◆答案: 325-★解析:由21≤≤≤b a 知,52133=+≤+b a ,当1=a ,2=b 时,得最大元素5=M ,又3233≥+≥+a ab a ,当3==b a 时,得最小元素32=m 。