福州三中高三培优班讲义(三角与向量)
- 格式:doc
- 大小:119.50 KB
- 文档页数:11
XX教育,让每个孩子更优秀!XX教育学科教师辅导讲义组长签字:一、导入目录1、必备基础知识2、不同类型典型例题及应用~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~二、课前自主学习梳理中学阶段学习的三角形的相关知识和定理~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~三、知识梳理+经典例题知识点一:三角形中各元素间的关系1、在直角△ABC中,C=90°,AB=c,AC=b,BC=a。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义)sinA =cosB =c a ,cosA =sinB =c b ,tanA =b a。
2、斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R C cB b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a2=b2+c2-2bccosA ; b2=c2+a2-2cacosB ; c2=a2+b2-2abcosC知识点二:三角形的面积公式(1)∆S =21aha =21bhb =21chc (ha 、hb 、hc 分别表示a 、b 、c 上的高); (2)∆S =21absinC =21bcsinA =21acsinB ;(3)三角形面积=abc/4R(其中R 是三角形外接圆半径) (4) S=√[p(p-a)(p-b)(p-c)]=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)] (其中(p=(a+b+c)/2) )知识点三:解三角形由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)(4)检验:检验上述所求是否符合实际意义。
第74讲存在性问题的探究知识梳理题型一:存在点使向量数量积为定值例1.(2024·甘肃天水·高二天水市第一中学校考期末)已知椭圆E 的中心在原点,焦点在x轴上,椭圆的左顶点坐标为(),离心率为e =()1求椭圆E 的方程;()2过点()1,0作直线l 交E 于P 、Q 两点,试问:在x 轴上是否存在一个定点M ,使MP MQ ⋅为定值?若存在,求出这个定点M 的坐标;若不存在,请说明理由.例2.(2024·山西大同·高二统考期末)已知椭圆22221(0)x y a b a b+=>>的一个焦点与抛物线2y =的焦点F 重合,且椭圆短轴的两个端点与F 构成正三角形.(1)求椭圆的方程;(2)若过点(1,0)的直线l 与椭圆交于不同两点P Q 、,试问在x 轴上是否存在定点(m,0)E ,使PE QE ⋅ 恒为定值?若存在,求出E 的坐标及定值;若不存在,请说明理由.例3.(2024·重庆渝北·高二重庆市松树桥中学校校考阶段练习)已知椭圆C 的中心在坐标原点,焦点在x 轴上,其左、右焦点分别为1F ,2F ,短轴长为点P 在椭圆C 上,且满足12PF F ∆的周长为6.(I )求椭圆C 的方程;(Ⅱ)过点(1,0)-的直线l 与椭圆C 相交于A ,B 两点,试问在x 轴上是否存在一定点M ,使得MA MB ⋅ 恒为定值?若存在,求出该点M 的坐标;若不存在,请说明理由.变式1.(2024·全国·高三专题练习)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,椭圆经过点1,2A ⎛- ⎝⎭.(1)求椭圆C 的方程;(2)过点(1,0)作直线l 交C 于,M N 两点,试问:在x 轴上是否存在一个定点P ,使PM PN⋅ 为定值?若存在,求出这个定点P 的坐标;若不存在,请说明理由.变式2.(2024·辽宁锦州·统考模拟预测)已知12F F 、为双曲线2222:1(0,0)x y E a b a b-=>>的左、右焦点,E M 为E 上一点,且212MF MF -=.(1)求E 的方程;(2)设点M 在坐标轴上,直线l 与E 交于异于M 的A B 、两点,且点M 在以线段AB 为直径的圆上,过M 作MC AB ⊥,垂足为C ,是否存在点D ,使得CD 为定值?若存在,求出点D 的坐标;若不存在,请说明理由.变式3.(2024·山西大同·统考模拟预测)已知椭圆()22122:10x y C a b a b +=>>的离心率为2,且直线y x b =+是抛物线22:4C y x =的一条切线.(1)求椭圆1C 的方程;(2)过点10,3S ⎛⎫- ⎪⎝⎭的动直线L 交椭圆1C 于,A B 两点,试问:在直角坐标平面上是否存在一个定点T ,使得以AB 为直径的圆恒过定点T ?若存在,求出T 的坐标;若不存在,请说明理由.变式4.(2024·江苏扬州·统考模拟预测)已知椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,过右焦点F 且平行于y 轴的弦3PQ AF ==.(1)求APQ △的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于,M N ,交PQ 于点R ,且满足MR ND MD RN ⋅=⋅ 若存在,求出该定点坐标,若不存在,请说明理由.题型二:存在点使斜率之和或之积为定值例4.(2024·山东泰安·统考模拟预测)已知为O 坐标原点,()()()()2,0,0,1,0,1,2,1A B C D -,,,01OE OA DF DA λλλ==<≤ ,CE 和BF 交点为P .(1)求点P 的轨迹G ;(2)直线(0)=+≠y x m m 和曲线G 交与M N ,两点,试判断是否存在定点Q 使14MQ NQ k k =?如果存在,求出Q 点坐标,不存在请说明理由.例5.(2024·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知点()2,0A -,()2,0B ,(),P x y 是异于A ,B 的动点,AP k ,BP k 分别是直线AP ,BP 的斜率,且满足34AP BP k k ⋅=-.(1)求动点P 的轨迹方程;(2)在线段AB 上是否存在定点E ,使得过点E 的直线交P 的轨迹于M ,N 两点,且对直线4x =上任意一点Q ,都有直线QM ,QE ,QN 的斜率成等差数列.若存在,求出定点E ,若不存在,请说明理由.例6.(2024·吉林·吉林省实验校考模拟预测)以双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F 为圆心作圆,与C 的一条渐近线相切于点4,33Q ⎛ ⎝⎭(1)求C 的方程.(2)在x 轴上是否存在定点M ,过点M 任意作一条不与坐标轴垂直的直线l ,当l 与C 交于,A B 两点时,直线,AF BF 的斜率之和为定值?若存在,求出M 点的坐标,若不存在,说明理由.变式5.(2024·湖北荆州·高二荆州中学校考阶段练习)已知圆C 方程为228(62)610(,0)x y mx m y m m R m +--+++=∈≠,椭圆中心在原点,焦点在x 轴上.(1)证明圆C 恒过一定点M ,并求此定点M 的坐标;(2)判断直线4330x y +-=与圆C 的位置关系,并证明你的结论;(3)当2m =时,圆C 与椭圆的左准线相切,且椭圆过(1)中的点M ,求此时椭圆方程;在x 轴上是否存在两定点A ,B 使得对椭圆上任意一点Q (异于长轴端点),直线QA ,QB 的斜率之积为定值?若存在,求出A ,B 坐标;若不存在,请说明理由.变式6.(2024·河北·高三校联考阶段练习)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,焦距为2,实轴长为4.(1)求椭圆C 的方程;(2)设过点1F 不与x 轴重合的直线l 与椭圆C 相交于E ,D 两点,试问在x 轴上是否存在一个点M ,使得直线ME ,MD 的斜率之积恒为定值?若存在,求出该定值及点M 的坐标;若不存在,请说明理由.变式7.(2024·吉林长春·高三长春外国语学校校考开学考试)已知椭圆()2222:10x y C a b a b+=>>的离心率为12,1F 、2F 分别是椭圆的左、右焦点,P 是椭圆上一点,且12PF F △的周长是6.(1)求椭圆C 的方程;(2)设直线l 经过椭圆的右焦点2F 且与C 交于不同的两点M ,N ,试问:在x 轴上是否存在点Q ,使得直线QM 与直线QN 的斜率的和为定值?若存在,请求出点Q 的坐标;若不存在,请说明理由.变式8.(2024·全国·高三专题练习)设椭圆222210)x y C a b a b +=:(>>的离心率是2,过点()0,1P 的动直线L 于椭圆相交于,A B 两点,当直线L 平行于x 轴时,直线L 被椭圆C 截得弦长为(Ⅰ)求E 的方程;(Ⅱ)在y 上是否存在与点P 不同的定点Q ,使得直线AQ 和BQ 的倾斜角互补?若存在,求Q 的坐标;若不存在,说明理由.题型三:存在点使两角度相等例7.(2024·新疆阿勒泰·统考三模)已知椭圆2212:1(1)x C y a a+=>的左右焦点分别为12F F 、,,A B 分别为椭圆1C 的上,下顶点,2F 到直线1AF (1)求椭圆1C 的方程;(2)直线0x x =与椭圆1C 交于不同的两点,C D ,直线,AC AD 分别交x 轴于,P Q 两点.问:y 轴上是否存在点R ,使得π2∠+∠=ORP ORQ ?若存在,求出点R 的坐标;若不存在,请说明理由.例8.(2024·全国·高三专题练习)已知椭圆:C ()222210x y a b a b+=>>经过点()2,0A -且两个焦点及短轴两顶点围成四边形的面积为4.(1)求椭圆C 的方程和离心率;(2)设P ,Q 为椭圆C 上不同的两个点,直线AP 与y 轴交于点E ,直线AQ 与y 轴交于点F ,且P 、O 、Q 三点共线.其中O 为坐标原点.问:x 轴上是否存在点M ,使得AME EFM ∠=∠?若存在,求点M 的坐标,若不存在,说明理由.例9.(2024·四川绵阳·模拟预测)已知点A 是圆()22:116C x y -+=上的任意一点,点()1,0F -,线段AF 的垂直平分线交AC 于点P .(1)求动点P 的轨迹E 的方程;(2)若过点()3,0G 且斜率不为O 的直线l 交(1)中轨迹E 于M 、N 两点,O 为坐标原点,点()2,0B .问:x 轴上是否存在定点T ,使得MTO NTB ∠=∠恒成立.若存在,请求出点T 的坐标,若不存在,请说明理由.变式9.(2024·陕西西安·陕西师大附中校考模拟预测)已知椭圆222:1(0)3x y C a a +=>经过点31,2-(,过点)T 的直线交该椭圆于P ,Q 两点.(1)求OPQ △面积的最大值,并求此时直线PQ 的方程;(2)若直线PQ 与x 轴不垂直,在x 轴上是否存在点(),0S s 使得PST QST ∠=∠恒成立?若存在,求出s 的值;若不存在,说明理由.变式10.(2024·四川成都·高三四川省成都市新都一中校联考开学考试)已知椭圆()2222:10x y C a b a b +=>>过点1,2⎛⎫ ⎪ ⎪⎝⎭(1)求椭圆C 的方程;(2)若过点()3,0P 的直线l 交椭圆C 于,A B 两点,x 轴上是否存在点Q 使得πPQA PQB ∠+∠=,若存在,求出点Q 的坐标;若不存在,请说明理由.变式11.(2024·河南信阳·高三信阳高中校考阶段练习)在平面直角坐标系xOy 中,动点M到点()2,0D 的距离等于点M 到直线1x =倍,记动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知直线l :()122y x t t =+≥与曲线C 交于,A B 两点,问曲线C 上是否存在两点,P Q 满足90APB AQB ∠=∠=︒,若存在,请求出两点坐标,不存在,请说明理由.题型四:存在点使等式恒成立例10.(2024·福建漳州·统考模拟预测)已知R 是圆M :(228x y +=上的动点,点)N,直线NR 与圆M 的另一个交点为S ,点L 在直线MR 上,MS NL ∥,动点L 的轨迹为曲线C .(1)求曲线C 的方程;(2)若过点()2,0P -的直线l 与曲线C 相交于A ,B 两点,且A ,B 都在x 轴上方,问:在x 轴上是否存在定点Q ,使得QAB 的内心在一条定直线上?请你给出结论并证明.例11.(2024·全国·高三专题练习)已知椭圆2222:1(0)x y a b a bΓ+=>>的左、右焦点分别为12,F F ,过点()0,B b 且与直线2BF 垂直的直线交x 轴负半轴于D ,且12220F F F D += .(1)求椭圆Γ的离心率;(2)若过B 、D 、2F 三点的圆恰好与直线:60l x -=相切,求椭圆Γ的方程;(3)设2a =.过椭圆Γ右焦点2F 且不与坐标轴垂直的直线l 与椭圆Γ交于P 、Q 两点,点M 是点P 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得M 、Q 、N 三点共线?若存在,求出点N 的坐标;若不存在,说明理由.例12.(2024·福建福州·福州三中校考模拟预测)如图,双曲线的中心在原点,焦点到渐近A 、B .曲线C 是以双曲线的实轴为长轴,虚轴为短轴,且离心率为12的椭圆,设P 在第一象限且在双曲线上,直线BP 交椭圆于点M ,直线AP 与椭圆交于另一点N .(1)求椭圆及双曲线的标准方程;(2)设MN 与x 轴交于点T ,是否存在点P 使得4P T x x =(其中P x ,T x 为点P ,T 的横坐标),若存在,求出P 点的坐标,若不存在,请说明理由.变式12.(2024·福建福州·福州四中校考模拟预测)已知在平面直角坐标系xOy 中,椭圆22:143x y E +=的左顶点和右焦点分别为,A F ,动点P 满足2219||||22PA PF +=,记动点P 的轨迹为曲线C .(1)求C 的方程;(2)设点Q 在E 上,过Q 作C 的两条切线,分别与y 轴相交于,M N 两点.是否存在点Q ,使得MN 等于E 的短轴长?若存在,求点Q 的坐标;若不存在,请说明理由.变式13.(2024·甘肃定西·统考模拟预测)已知点M 到点30,2F ⎛⎫ ⎪⎝⎭的距离比它到直线l :=2y -的距离小12,记动点M 的轨迹为E .(1)求E 的方程;(2)若过点F 的直线交E 于()11,A x y ,()22,B x y 两点,则在x 轴的正半轴上是否存在点P ,使得PA ,PB 分别交E 于另外两点C ,D ,且3AB CD = ?若存在,请求出P 点坐标,若不存在,请说明理由.变式14.(2024·北京海淀·中关村中学校考三模)已知椭圆2222:1(0)x y E a b a b +=>>的焦距为2,长轴长为4.(1)求椭圆E 的方程及离心率;(2)过点()3,0M -且与x 轴不重合的直线l 与椭圆E 交于不同的两点B 、C ,点B 关于x 轴的对称点为B '.问:平面内是否存在定点P ,使得B '恒在直线PC 上?若存在,求出点P 的坐标;若不存在,说明理由.题型五:存在点使线段关系式为定值例13.(2024·全国·高三专题练习)椭圆E 经过两点2⎛⎫ ⎪ ⎪⎝⎭,22⎫⎪⎪⎝⎭,过点P 的动直线l 与椭圆相交于A ,B 两点.(1)求椭圆E 的方程;(2)若椭圆E 的右焦点是P ,其右准线与x 轴交于点Q ,直线AQ 的斜率为1k ,直线BQ 的斜率为2k ,求证:120k k +=;(3)设点(,0)P t 是椭圆E 的长轴上某一点(不为长轴顶点及坐标原点),是否存在与点P 不同的定点Q ,使得QA PAQB PB =恒成立?只需写出点Q 的坐标,无需证明.例14.(2024·福建宁德·校考模拟预测)已知双曲线C 与双曲线221123y x -=有相同的渐近线,且过点1)A -.(1)求双曲线C 的标准方程;(2)已知点(2,0)D ,E ,F 是双曲线C 上不同于D 的两点,且·0DE DF = ,DG EF ⊥于点G ,证明:存在定点H ,使GH 为定值.例15.(2024·四川成都·高三校考阶段练习)已知椭圆C :()222210x y a b a b+=>>的离心率为12,过椭圆右焦点F 的直线l 与椭圆交于A ,B 两点,当直线l 与x 轴垂直时,3AB =.(1)求椭圆C 的标准方程;(2)当直线l 的斜率为k ()0k ≠时,在x 轴上是否存在一点P (异于点F ),使x 轴上任意一点到直线PA 与到直线PB 的距离相等?若存在,求P 点坐标;若不存在,请说明理由.变式15.(2024·陕西安康·陕西省安康中学校考模拟预测)已知椭圆E 的中心为坐标原点,对称轴为坐标轴,且过点()2,0A ,2B ⎛⎫ ⎪ ⎪⎝⎭.直线x t =(不经过点B )与椭圆E 交于,M N 两点,()1,0Q ,直线MQ 与椭圆E 交于另一点C ,点P 满足0QP NC ⋅= ,且P 在直线NC 上.(1)求E 的方程;(2)证明:直线NC 过定点,且存在另一个定点R ,使PR 为定值.变式16.(2024·湖南衡阳·高三衡阳市八中校考阶段练习)已知双曲线()2222:10,0x y C a b a b-=>>的右焦点,右顶点分别为F ,A ,()0,B b ,1AF =,点M 在线段AB 上,且满足BM MA =,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP FQ EQ FP ⋅=⋅恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.变式17.(2024·河北秦皇岛·校联考模拟预测)如图,椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B .左、右焦点分别为1F ,2F ,离心率为2,点M 在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为1k ,直线BQ 的斜率为2k ,122k k =.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.变式18.(2024·四川遂宁·高三射洪中学校考阶段练习)在平面直角坐标系xOy 中,设点P 的轨迹为曲线C .①过点()1,0F 的动圆恒与y 轴相切,FP 为该圆的直径;②点P 到()1,0F 的距离比P 到y 轴的距离大1.在①和②中选择一个作为条件:(1)选择条件:求曲线C 的方程;(2)在x 轴正半轴上是否存在一点M ,当过点M 的直线l 与抛物线C 交于Q R ,两点时,11MQ MR+为定值?若存在,求出点M 的坐标,若不存在,请说明理由.变式19.(2024·四川成都·高三树德中学校考开学考试)已知椭圆()2222:10x y C a b a b+=>>的离心率为e =()1,e .P 为椭圆C 在第一象限内部分上的一点.(1)若(),0A a ,()0,B b ,求ABP 面积的最大值;(2)是否存在点P ,使得过点P 作圆()22:11M x y ++=的两条切线,分别交y 轴于D ,E 两点,且3DE =.若存在,点求出P 的坐标;若不存在,说明理由。
高三课程同步数学讲义“解三角形”讲义编号:本讲义目的在于让同学了解解三角形的思想,掌握不同的解三角形的方法,可以熟练使用正余弦定理及三角形相关的知识来成功完成解三角形的解题过程。
已知c b a 、、分别为△ABC 三个内角A ,B ,C 的对边,且。
(Ⅰ)求B ; (Ⅱ)若,求的值。
解:(Ⅰ)由余弦定理知得,∴,∴,又,∴。
(Ⅱ)∵,,∴,(∴.教学提示:(Ⅰ),像这样即含有边又含有角,可以把边化为角,也可把角化为边,本题两种方法都可以,若利用正弦定理,把边化为角,,再利用,利用两角和的正弦展开即可求出,从而求出角,若利用余弦定理,把角化为边,整理后得,再利用余弦定理得,从而的正弦,余弦值都能求出,由,展开即可.知识点一:解三角形思想的宏观认识。
知识点二:具体问题中利用正弦定理解三角形。
知识点三:具体问题中利用余弦定理解三角形。
知识点四:同时利用正余弦定理解三角形。
知识点五:解三角形与实际问题的结合。
1. 解三角形思想的宏观认识。
教学提示:此部分教学,在最开始的时候先为同学们理清解三角形的基本思想,然后再开始实际解题应用,这样更利于学生理解。
分以下四种情况:情况一:已知一边二角(a 、B 、C )——选用正弦定理。
一般解法为:由180=++C B A 求角A ,由正弦定理求出b 、c ,在有解时只有一解。
情况二:已知两边和夹角(a 、b 、C )——选用余弦定理。
一般解法为:由余弦定理求第三边,由正弦定理求出小边所对的角,再由180=++C B A 求出另一角,在有解时只有一解。
情况三:已知三边(a 、b 、c )——选用余弦定理。
一般解法为:由余弦定理求出角A 、B ,再结合180=++C B A 求出角C ,在有解时只有一解。
情况四:已知两边和其中一边的对角(a 、b 、A )——选用正弦定理。
一般解法为:由正弦定理求出角B ,由180=++C B A 求出角C ,再使用正弦定理求出c ,可有两解、一解或无解。
福州三中2024-2025学年第一学期高三第二次质量检测数学试卷命题人:高三数学集备组 审卷人:高三数学集备组注意事项:1.答题前,考生务必将自己的班级、准考证号、姓名填写在答题卡上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效.第Ⅰ卷一、单选题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集{}6U x x =∈<N ,集合{}{}1,2,3,2,4,5A B ==,则()UA B ⋂=ð()A {}0 B. {}4,5 C. {}2,4,5 D. {}0,2,4,52. 设x ∈R ,则“sin 1x =”是“cos 0x =”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件3. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c,则C =A.π12B.π6C.π4D.π34. 已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是( )A. 2- B. 32-C. 43-D. 1-5. 函数()f x 在(,)-∞+∞单调递减,且为奇函数,若(1)1f =-,则满足1(2)1f x -≤-≤的x 的取值范围是.A. [2,2]- B. [1,1]- C. [0,4]D. [1,3]6. 在平面直角坐标系xOy 中,角α以Ox 为始边,终边在第三象限.则( )A. sin cos tan ααα-≤ B. sin cos tan ααα-≥C. sin cos tan ααα⋅< D. sin cos tan ααα⋅>.7. 在正四棱台1111ABCD A B C D -中,1114,2,===AB A B AA ,若球O 与上底面1111D C B A 以及棱,,,AB BC CD DA 均相切,则球O 的表面积为( )A 9πB. 16πC. 25πD. 36π8. 已知函数()2ln f x x =+,()g x =()y f x =,()y g x =图象均相切,则实数a 的取值范围为( )A. ()0,1 B. ()0,2 C. ()1,2 D. ()1,e 二、多选题:本大题共3小题,每小题6分,在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得6分,部分选对得部分分,有选错得0分.9. 已知各项均为正数的等差数列{}n a ,且1n n a a +>,则( )A. 3746a a a a +=+ B. 3746a a a a ⋅>⋅C. 数列{}21n a +是等差数列D. 数列{}2n a 是等比数列10. 如图,在正方体1111ABCD A B C D -中,M ,N ,P 分别为棱1BB ,11B C ,1CC 的中点,则下列结论正确的是( )A. 1A C ⊥平面1D MNB. 点P 与点D 到平面1D MN 的距离相等C. 平面1D MN 截正方体1111ABCD A B C D -所得截面图形为等腰梯形D. 平面1D MN 将正方体1111ABCD A B C D -分割成的上、下两部分的体积之比为7:1711. 已知奇函数()f x 的定义域为R ,()22f =,对于任意的正数12,x x ,都有.()()()12121f x x f x f x =+-,且12x >时,都有()0f x >,则( )A. 102f ⎛⎫=⎪⎝⎭B. 函数()f x 在(),-∞+∞内单调递增C. 对于任意0x <都有()12f x f x ⎛⎫+=- ⎪⎝⎭D. 不等式()ln 20f x -<⎡⎤⎣⎦的解集为()11,2,4816⎛⎫--⋃ ⎪⎝⎭第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分,把答案填在答题卡相应横线上.12. 已知单位向量12e e ⊥ ,向量122a e e λ=- ,122b e e =+ ,若a b ⊥,则实数λ=________.13. 直线2sin 0x y θ⋅+=被圆2220x y +-+=截得最大弦长为______.14. 对于正整数n ,设n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根.记12n n a x ⎡⎤=⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数,则1a =____________;设数列{}n a 的前n 项和为n S=___.四、解答题:本题共577分,解答应写出文字说明、证明过程或演算步骤.15. 已知数列{}n a 的前n 项和为11,2,2n n n S a S a +==-.(1)求数列{}n a 的通项公式;(2)令21log n n b a =+,求数列{}n n a b ⋅的前n 项和n T .16. 在ABC V 中,角,,A B C 的对边分别为,,,a b c ABC 的面积为S ,已知24cos cos tan Sa B ab A B=+.(1)求角B ;(2)若3,b ABC =△的周长为l ,求Sl的最大值.17. 已知椭圆C :()222210+=>>x y a b a b右焦点F 在直线210x y +-=上,A ,B 分别为C 的左、右顶点,且3AF BF =.(1)求C 的标准方程;的(2)是否存在过点()1,0G -的直线l 交C 于M ,N 两点,使得直线BM ,BN 的斜率之和等于-1?若存在,求出l 的方程;若不存在,请说明理由.18. 如图,在四棱锥P ABCD -中,60BAD CDA ∠∠== ,90ABC ∠= ,4=AD ,2CD =,3PB =,PA =,平面PDC ⊥平面ABCD .(1)求证:平面PAB ⊥平面ABCD .(2)求二面角P BC D --的余弦值.(3)G 为平面PBC 内一点,若DG ⊥平面PBC ,求BG 长.19. 设a ,b 实数,且1a >,函数()()2exf x a bx x =-+∈R .(1)若()()ln xg x f x a x =-+,讨论函数()g x 的单调性;(2)若对任意2e 2b >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当e a =时,对任意4e >b ,函数()f x 有两个不同的零点x 1,x 2,(x 2>x 1),证明:2212ln e 2e >+b b x x b.(注:e 2.71828=⋅⋅⋅是自然对数的底数)的为福州三中2024-2025学年第一学期高三第二次质量检测数学试卷命题人:高三数学集备组 审卷人:高三数学集备组注意事项:1.答题前,考生务必将自己的班级、准考证号、姓名填写在答题卡上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效.第Ⅰ卷一、单选题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集{}6U x x =∈<N ,集合{}{}1,2,3,2,4,5A B ==,则()UA B ⋂=ð()A. {}0B. {}4,5C. {}2,4,5D. {}0,2,4,5【答案】B 【解析】【分析】求出U A ð再求()U A B ⋂ð即可.【详解】由题知{}0,1,2,3,4,5U =,{}U 045,,=A ð,则(){}U 45,= B A ð.故选:B.2. 设x ∈R ,则“sin 1x =”是“cos 0x =”的( )A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】由三角函数的性质结合充分条件、必要条件的定义即可得解.【详解】因为22sin cos 1x x +=可得:当sin 1x =时,cos 0x =,充分性成立;当cos 0x =时,sin 1x =±,必要性不成立;所以当x ∈R ,sin 1x =是cos 0x =的充分不必要条件.故选:A.3. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c,则C =A.π12B.π6C.π4D.π3【答案】B 【解析】【详解】试题分析:根据诱导公式和两角和的正弦公式以及正弦定理计算即可详解:sinB=sin (A+C )=sinAcosC+cosAsinC ,∵sinB+sinA (sinC ﹣cosC )=0,∴sinAcosC+cosAsinC+sinAsinC ﹣sinAcosC=0,∴cosAsinC+sinAsinC=0,∵sinC≠0,∴cosA=﹣sinA ,∴tanA=﹣1,∵π2<A <π,∴A= 3π4,由正弦定理可得c sin sin aC A=,∵a=2,,∴sinC=sin c A a12,∵a >c ,∴C=π6,故选B .点睛:本题主要考查正弦定理及余弦定理的应用,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.4. 已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是( )A. 2- B. 32-C. 43-D. 1-【答案】B 【解析】【分析】根据条件建立坐标系,求出点坐标,利用坐标法结合向量数量积的公式进行计算即可.【详解】建立如图所示的坐标系,以BC 中点为坐标原点,则A ,(1,0)B -,(1,0)C ,设(,)P x y,则()PA x y =-- ,(1,)PB x y =--- ,(1,)PC x y =--,则22223()222[(4PA PB PC x y x y +=-+=+-- ∴当0x =,y =时,取得最小值332(42⨯-=-,故选:B .5. 函数()f x 在(,)-∞+∞单调递减,且为奇函数,若(1)1f =-,则满足1(2)1f x -≤-≤的x 的取值范围是.A. [2,2]- B. [1,1]- C. [0,4] D. [1,3]【答案】D 【解析】【详解】()f x 是奇函数,故()()111f f -=-= ;又()f x 是减函数,1(2)1f x -≤-≤,即()(1)2(1)f f x f ≤-≤- 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.的6. 在平面直角坐标系xOy 中,角α以Ox 为始边,终边在第三象限.则( )A. sin cos tan ααα-≤ B. sin cos tan ααα-≥C. sin cos tan ααα⋅< D. sin cos tan ααα⋅>【答案】C 【解析】【分析】对A 、B :举出反例即可得;对C 、D :借助三角函数的商数关系及其值域计算即可得.【详解】由题意可得sin 0α<、cos 0α<,tan 0α>,对A :当sin 0α-→时,cos 1α→-,则sin cos 1αα-→,tan 0α→,此时sin cos tan ααα->,故A 错误;对B :当5π4α=时,1sin cos sinc 5π5π5π0tan 44os 4αα-=-=<=,故B 错误;对C 、D :22sin sin cos cos cos tan cos ααααααα⋅=⋅=⋅,由1cos 0α-<<,故()2cos0,1α∈,则2cos tan tan ααα⋅<,即sin cos tan ααα⋅<,故C 正确,D 错误.故选:C.7. 在正四棱台1111ABCD A B C D -中,1114,2,===AB A B AA ,若球O 与上底面1111D C B A 以及棱,,,AB BC CD DA 均相切,则球O 的表面积为( )A. 9πB. 16πC. 25πD. 36π【答案】C 【解析】【分析】根据勾股定理求解棱台的高1MN =,进而根据相切,由勾股定理求解球半径52R =,即可由表面积公式求解.【详解】设棱台上下底面的中心为,N M ,连接11,D B DB ,则11D B DB ==所以棱台的高1MN ===,设球半径为R ,根据正四棱台的结构特征可知:球O 与上底面1111D C B A 相切于N ,与棱,,,AB BC CD DA 均相切于各边中点处,设BC 中点为E ,连接,,OE OM ME ,所以22222212OE OM ME R R =+⇒=-+,解得52R =,所以球O 的表面积为24π25πR =,故选:C8. 已知函数()2ln f x x =+,()g x =()y f x =,()y g x =图象均相切,则实数a 的取值范围为( )A. ()0,1 B. ()0,2 C. ()1,2 D. ()1,e 【答案】B 【解析】【分析】设函数()y f x =,()y g x =的切点坐标分别为()11,2ln x x +,(2,x ,根据导数几何意义可得2114ln 4x a x +=,1>0x ,即该方程有两个不同的实根,则设()4ln 4,0x h x x x+=>,求导确定其单调性与取值情况,即可得实数a .【详解】解:设函数()2ln f x x =+上的切点坐标为()11,2ln x x +,且1>0x ,函数()g x =上的切点坐标为(2,x ,且20x ≥,又()()1,f x g x x ''==,则公切线的斜率11k x ==0a >,所以22214a x x =,则公切线方程为()()11112ln y x x x x -+=-,即111ln 1y x x x =++,代入(2,x得:2111ln 1x x x =++,则22211111ln 124a a x x x x =⋅++,整理得2114ln 4x a x +=,若总存在两条不同的直线与函数()y f x =,()y g x =图象均相切,则方程2114ln 4x a x +=有两个不同的实根,设()4ln 4,0x h x x x+=>,则()()244ln 44ln x x x x h x x x⋅-+-==',令()0h x '=得1x =,当()0,1x ∈时,()0h x '>,()h x 单调递增,()1,x ∈+∞时,()0h x '<,()h x 单调递减,又()0h x =可得1ex =,则0x →时,()h x →-∞;x →+∞时,()0h x →,则函数()h x 的大致图象如下:所以2004a a >⎧⎨<<⎩,解得02a <<,故实数a 的取值范围为()0,2.故选:B.【点睛】本题考查了函数的公切线、函数方程与导数的综合应用,难度较大.解决本题的关键是,根据公切线的几何意义,设切点坐标分别为()11,2ln x x +,且1>0x,(2,x ,且20x ≥,可得11k x ==22214a x x =,得公切线方程为111ln 1y x x x =++,代入切点(2,x将双变量方程2111ln 1x x x =++转化为单变量方程22211111ln 124a a x x x x =⋅++,根据含参方程进行“参变分离”得2114ln 4x a x +=,转化为一曲一直问题,即可得实数a 的取值范围.二、多选题:本大题共3小题,每小题6分,在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得6分,部分选对得部分分,有选错得0分.9. 已知各项均为正数的等差数列{}n a ,且1n n a a +>,则( )A. 3746a a a a +=+ B. 3746a a a a ⋅>⋅C. 数列{}21n a +是等差数列 D. 数列{}2n a 是等比数列【答案】AC 【解析】【分析】根据等差数列性质可以判断A 正确;利用等差数列通项公式可以判断B 错误;根据等差数列的概念可判断C ,根据特例可判断D.【详解】设等差数列{}n a 的公差为()0d d >,对A ,因为{}n a 是等差数列,且3746+=+,则由等差数列性质可得3746a a a a +=+,故A 正确;对B ,246371111(3)(5)(2)(6)30a a a a a d a d a d a d d ⋅-⋅=+⋅+-+⋅+=>,则3746a a a a ⋅<⋅,故B 错误;对C ,因为21212n n a a d +-=-,则数列{}21n a +是等差数列,故C 正确;对D ,如数列{}n a 为1,2,3,4,5,6 ,显然数列{}2n a 不是等比数列,故D 错误;故选:AC.10. 如图,在正方体1111ABCD A B C D -中,M ,N ,P 分别为棱1BB ,11B C ,1CC 的中点,则下列结论正确的是( )A. 1A C ⊥平面1D MNB. 点P 与点D 到平面1D MN 的距离相等C. 平面1D MN 截正方体1111ABCD A B C D -所得截面图形为等腰梯形D. 平面1D MN 将正方体1111ABCD A B C D -分割成的上、下两部分的体积之比为7:17【答案】BCD 【解析】【分析】假设1A C ⊥平面1D MN ,证得111D N A C ⊥,显然不成立,即得A 错误;证明1,,,A M N D 四点共面,即得截面四边形,再结合平行关系和长度关系即判断C 正确;利用线面平行的判定定理证明//DP 平面1D MN ,即证B 正确;计算分割的上面部分棱台的体积和正方体体积,即得下面部分体积,证得D 正确.【详解】正方体1111ABCD A B C D -中,不妨设棱长为2.假设1A C ⊥平面1D MN ,则11A C D N ⊥,而1C C ⊥底面1111D C B A ,则11C C D N ⊥,1AC 与1C C 相交于平面1AC C 内,所以1D N ⊥平面1AC C ,则111D N A C ⊥,显然不成立,即选项A 错误;连接1AD ,AM ,由11////MN BC AD 知,1,,,A M N D 四点共面,即为平面1D MN 截正方体1111ABCD A B C D -所得截面图形,而1MN AD ≠,1D N AM ==,故截面图形为等腰梯形,C 正确;由//AD MP ,=AD MP 知四边形ADPM 是平行四边形,所以//DP AM ,且DP ⊄平面1D MN ,AM ⊂平面1D MN ,故//DP 平面1D MN ,所以点P 与点D 到平面1D MN 的距离相等,选项B 正确;平面1D MN 将正方体1111ABCD A B D -分割的上面部分是棱台111B MN A AD -,上底面面积为12S '=,下底面面积为2S =,高112h A B ==,所以体积()111171223323V S S h ⎛⎫=+=++⨯= ⎪⎝⎭,而正方体体积为8V =,所以分割的下面部分体积2717833V =-=,所以12717V V =,即选项D 正确.故选:BCD.11. 已知奇函数()f x 的定义域为R ,()22f =,对于任意的正数12,x x ,都有()()()12121f x x f x f x =+-,且12x >时,都有()0f x >,则( )A. 102f ⎛⎫=⎪⎝⎭B. 函数()f x 在(),-∞+∞内单调递增C. 对于任意0x <都有()12f x f x ⎛⎫+=-⎪⎝⎭D. 不等式()ln 20f x -<⎡⎤⎣⎦的解集为()11,2,4816⎛⎫--⋃ ⎪⎝⎭【答案】ACD 【解析】【分析】根据已知应用赋值法判断A 选项,结合奇函数判断C 选项,根据单调性定义判断B 选项,结合单调性解不等式判断D 选项.【详解】已知()()()12121f x x f x f x =+-,令121,1,x x ==可得()()()1111,f f f =+-()11f =,令1212,,2x x ==可得()()112112f f f ⎛⎫=+-= ⎪⎝⎭,得()22f =,102f ⎛⎫= ⎪⎝⎭,A 选项正确;奇函数()f x 的定义域为R ,()()f x f x -=-,所以()00f =,又知102f ⎛⎫= ⎪⎝⎭,所以函数()f x 在(),-∞+∞内不是单调递增,B 选项错误;对于任意的正数12,x x ,都有()()()12121f x x f x f x =+-,对于任意0x <都有0x ->,()()111f f x f x ⎛⎫=-+-- ⎪⎝⎭,()12f x f x ⎛⎫-+-= ⎪⎝⎭,又因为函数()f x 为奇函数,可得()12f x f x ⎛⎫+=-⎪⎝⎭,C 选项正确;对于任意的正数()1221,0,,,x x x x ∈+∞>,都有()()()()1112211f x f x f f x =+-=-,()()()()212121f x f x f x f x -=-+,又因为0x >()12f x f x ⎛⎫+= ⎪⎝⎭,所以()111222f x f x ⎛⎫+= ⎪⎝⎭,所以()()()()2212211111211222x f x f x f x f f x f f x x x ⎛⎫⎛⎫⎛⎫⎛⎫-=--+=+-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,又因为21,x x >211,x x >211,22x x >所以2102x f x ⎛⎫> ⎪⎝⎭,所以()()210f x f x ->,所以函数()f x 在()0,∞+内是单调递增, 又因为函数()f x 为奇函数,所以函数()f x 在(),0-∞内是单调递增,不等式()ln 20f x -<⎡⎤⎣⎦,()021f x <-<,()23f x <<已知()()()12121f x x f x f x =+-,令,122,2,x x == 因为()22f =可得()()()42213f f f =+-=,函数()f x 在()0,∞+内是单调递增, 所以24x <<,已知()()()12121f x x f x f x =+-,令,1211,,22x x == 因为102f ⎛⎫= ⎪⎝⎭,得可11111422f f f ⎛⎫⎛⎫⎛⎫=+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,理同11112842f f f ⎛⎫⎛⎫⎛⎫=+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,111131644f f f ⎛⎫⎛⎫⎛⎫=+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为函数()f x 为奇函数,1316f ⎛⎫-= ⎪⎝⎭,128f ⎛⎫-= ⎪⎝⎭,又因为函数()f x 在(),0-∞内是单调递增, 所以11816x -<<-不等式()ln 20f x -<⎡⎤⎣⎦的解集为()11,2,4816⎛⎫--⋃ ⎪⎝⎭, D 选项正确;故选:ACD.第Ⅱ卷三、填空题:本题共35分,共15分,把答案填在答题卡相应横线上.12. 已知单位向量12e e ⊥ ,向量122a e e λ=- ,122b e e =+ ,若a b ⊥,则实数λ=________.【答案】1【解析】【分析】利用向量垂直的性质即可求解.【详解】因为a b ⊥,所以()()()221212112222242220a b e e e e e e e e λλλλ⋅=-⋅+=+-⋅-=-= 故1λ=.故答案为:113. 直线2sin 0x y θ⋅+=被圆2220x y +-+=截得最大弦长为______.【答案】【解析】【分析】先求出圆心到直线的距离,再利用垂径定理与勾股定理建立关系即可得到答案.【详解】由已知,圆的标准方程为22(3x y +=,圆心为,半径r =圆心到直线2sin 0x y θ⋅+=的距离d =<,解得21sin 6θ>,所以弦长为=,因为254sin 153θ<+≤,所以25134sin 1θ≤<+,所以弦长=,当24sin 15θ+=即2sin 1θ=时,弦长有最大值.故答案为:.14. 对于正整数n ,设n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根.记12n n a x ⎡⎤=⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数,则1a =____________;设数列{}n a 的前n 项和为n S=___.【答案】 ①. 0②. 1010【解析】【分析】(1)当1n =时,化简方程,通过构造函数的方法,找到函数零点的范围,进而求出结果.(2)令12=n nt x ,化简方程,通过构造函数的方法,找到零点的范围,即n t 得范围,分类讨论n 为奇数和偶数时n a ,求得结果.【详解】(1)当1n =时,221log 4-=x x,设221()log 4=--f x x x 单调递减,1(1>02=f ,(1)30f =-<,所以1112<<x ,111122<<x 111[]02x a ==(2)令12=n nt x ,则方程化为:22+1(2)log 23+=+n n n t n t n n 令22+1()(2)log 23=+--n f x x n x n n ,则()f x 在(0,+∞)单调递增+1()log 302=-<n nf n n n ;+1(1>02=n f 由零点存在定理可得:1(,22+∃∈n n x ,()0f x =,当21()n k k +=-∈N ,21(,)2-∈n k t k ,[]1==-n n a t k 当2()n k k +=∈N ,21(2,+∈n k t k ,[]==n n a t k 所以当101010102202011(1)1010===-+=∑∑k k S k k ,1010=故答案为:①0;②1010【点睛】本题考查了函数的性质、零点存在定理,数列求和等基本知识,考查了运算求解能力和逻辑推理能力,转化和分类讨论的数学思想,属于难题.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15. 已知数列{}n a 的前n 项和为11,2,2n n n S a S a +==-.(1)求数列{}n a 的通项公式;(2)令21log n n b a =+,求数列{}n n a b ⋅的前n 项和n T .【答案】(1)2n n a = (2)12n n T n +=⋅【解析】【分析】(1)由,n n S a 的关系分n 是否等于1进行讨论即可求解;(2)首先得()12nn n n c a b n =⋅=+⋅,进一步结合错位相减法以及等比数列求和公式即可得解.【小问1详解】112,2n n a S a +==-当1n =时12221,2,4,2a a a a a =-∴==,当2n ≥时,12n n S a -=-,两式相减得()122n n a a n +=≥,()*12N n n a a n +∴=∈()*1120,2N n na a n a +=≠∴=∈ ,∴数列{}n a 是以2为首项,2为公比等比数列,2nn a ∴=【小问2详解】由(1)可知21log 1n n b a n =+=+,记()12nn n n c a b n =⋅=+⋅,()12322324212n n T n ∴=⋅+⋅+⋅+++⋅ ,()2341222324212n n T n +=⋅+⋅+⋅+++⋅ ,两式相减得()()()2123111212422212412212n nn n n n T n n n -+++--=++++-+⋅=+-+⋅=-⋅- 12n n T n +∴=⋅.16. 在ABC V 中,角,,A B C 的对边分别为,,,a b c ABC 的面积为S ,已知24cos cos tan Sa B ab A B=+.(1)求角B ;(2)若3,b ABC =△的周长为l ,求Sl的最大值.【答案】(1)π3(2【解析】【分析】(1)利用正弦定理及三角恒等变换即可求解;(2)由余弦定理及三角形的面积公式得()3S a c l =+-,再由基本不等式进行求解即可.【小问1详解】因为24cos cos tan Sa B ab A B=+,所以214si n cos 2cos cos si n ac B Ba B ab AB⨯=+,即2cos cos cos c B a B b A =+,的由正弦定理,得()2sin cos sin cos sin cos sin C B A B B A A B =+=+,因为A B C π+=-,所以2sin cos sin C B C =,因为()0,C π∈,所以sin 0C ≠,所以1cos 2B =,又()0,B π∈,所以3B π=.【小问2详解】由余弦定理,得2222cos b a c ac B =+-,即229a c ac =+-,所以()293a c ac =+-,即()2193ac a c ⎡⎤=+-⎢⎥⎣⎦,因为1sin 2S ac B ==,3l a c =++,所以S l ==,所以()3S a c l =+-,又()24a c ac +≤(当且仅当a c =时取等号),所以()()22934a c a c ac +=+-≥(当且仅当3a c ==时取等号),所以6a c +≤(当且仅当3a c ==时取等号),所以()()363S a c l =+-≤⨯-=(当且仅当3a c ==时取等号),即S l17. 已知椭圆C :()222210+=>>x y a b a b的右焦点F 在直线210x y +-=上,A ,B 分别为C 的左、右顶点,且3AF BF =.(1)求C 的标准方程;(2)是否存在过点()1,0G -的直线l 交C 于M ,N 两点,使得直线BM ,BN 的斜率之和等于-1?若存在,求出l 的方程;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,10x y -+=.【解析】【分析】(1)先求出点F 的坐标,得出椭圆中的1c =,结合椭圆的几何性质可出答案.(2)设直线l 的方程为:1x my =-,M (x 1,y 1),N (x 2,y 2),将直线方程与椭圆方程联立,得出韦达定理,由题意1PM PN k k +=-,将韦达定理代入可出答案.【小问1详解】设右焦点F (c,0),直线210x y +-=与x 轴的交点为(1,0),所以椭圆C 右焦点F 的坐标为(1,0),故在椭圆C 中1c =,由题意()33AF a c BF a c =+==-,结合1c =,则2a =,222413b a c =-=-=,所以椭圆C 的方程为:22143x y +=;【小问2详解】当直线l 的斜率为0时,显然不满足条件1PM PN k k +=-,当直线l 的倾斜角不为0︒时,设直线l 的方程为:1x my =-,M (x 1,y 1),N (x 2,y 2),由2213412x my x y =-⎧⎨+=⎩,可得()2234690m y my +--=,由题意Δ=36m 2−4×(3m 2+4)×(−9)=144m 2+144>0,则122634m y y m +=+,122934y y m =-+,由()()1212121221212121223223339PM PNmy y y y y y y y k k x x my my m y y m y y -++=+=+=-----++222229623343496393434mm m m m mm m m m -⨯-⨯++==--⨯-⨯+++,由1PM PN k k +=-,即1m =,故存在满足条件的直线,直线l 的方程为:10x y -+=.18. 如图,在四棱锥P ABCD -中,60BAD CDA ∠∠== ,90ABC ∠= ,4=AD ,2CD =,3PB =,PA =,平面PDC ⊥平面ABCD .(1)求证:平面PAB ⊥平面ABCD .(2)求二面角P BC D --的余弦值.(3)G 为平面PBC 内一点,若DG ⊥平面PBC ,求BG 的长.【答案】(1)证明见解析 (2)13-(3【解析】【分析】(1)利用余弦定理先证AC CD ⊥,由面面垂直的性质得出AC PC ⊥,结合勾股定理及线面垂直的判定证明⊥BC 平面PAB 即可;(2)法一、利用二面角的定义结合第一问得出二面角的一个平面角,再由余弦定理计算即可;法二、以B 为中心建立合适的空间直角坐标系,利用空间向量计算面面角即可;(3)法一、利用线线垂直、线面垂直的性质与判定作出DG⊥平面PBC ,解三角形即可;法二、利用(2)的坐标系,设BG坐标结合空间向量基本定理及空间向量数量积计算求G 点坐标即可.【小问1详解】连接AC ,在ACD 中,4,2,60AD CD CDA ==∠=o ,2222242242cos 12AC CDA AD CD ∴=+-⨯⨯∠==-,则90ACD ∠=,AC =30CAD ∠= ,平面PCD ⊥平面ABCD ,AC CD ⊥,平面PCD 平面ABCD CD =,AC ∴⊥平面PCD ,CP ⊂平面PCD ,所以AC CP ⊥,∴在PAC中,PC ==又60,90BAD ABC ∠=∠= ,∴30,3BAC BC AB ∠=== ,在PBC △中:222PB BC PC +=,∴BC PB ⊥,又BC AB ⊥,AB PB B ⋂=,AB PB ⊂平面PAB ,BC ∴⊥平面PAB ,且⊂BC 平面ABCD ,∴平面PAB ⊥平面ABCD .【小问2详解】法一、由上可知:,BC AB BC PB ⊥⊥,则二面角P BC D --的一个平面角为PBA ∠,∴在PBA △中,由余弦定理知2221cos 23PB AB PA PBA PB AB +-∠===-⋅;法二、如图建系:设z 轴与PA 交于M ,过P 作PE BM ⊥与E ,设PM x =,则AM x =,∴()222915BM xx =-=+-,229cos 6x BMAPB x+-⇒∠==,解之得x BM ==,易知13PE EM PM AB MB MA ===,所以1,PE EB EM MB ==+==则()()(0,0,0,,1,0,B C P -,设(),,n x y z =r 为平面PBC的一个法向量,则:00x =-+=⎪⎩,令1z =,则0xy ==,所以()n =,易知()10,0,1n =是平面ABCD 一个法向量,设二面角P BC D --的一个平面角为θ,则1111cos ,3n n n n n n ⋅==⋅,由图形可知该二面角为钝角,所以1cos 3θ=-;小问3详解】法一:过D 作DN BC ⊥,垂足为N ,过N 作//l PB ,在PDC △中,过D 作DQ PC ⊥,过Q 作,QG PC QG l G ⊥= ,因为,,QG DQ Q QG DQ =⊂ 平面DGQ ,所以PC ⊥平面DGQ ,又DG ⊂平面DGQ ,所以PC DG ⊥,而,,PC l PC l ⊂ 平面PBC ,所以DG ⊥平面PBC ,即G 为所求.分别延长ABDC 、交于R ,连接PR ,的【过D 作l AB '⊥,由(1)易知,PR AC PR l '⊥⊥,,,AC l AC l ''⊂ 平面ABCD ,PR ∴⊥平面ABCD ,∴PR PD ==CQ x '=,QD =∴(22424x x '-++=,则x '=,设PQ HG W = ,在平面PBC内,由几何关系知81,33WQ WG WG NG WN WC ==⇒==,所以BG ==;法二:取(2)的坐标系,则()D ,()(3,0,0,1,0,BA BP ==-,()BC =,设(),BG BC BP λμμ=+=-,所以(),G μ-,又:20180136009DG BP DG BC λμμλμ=⎧⎧⋅=++=⎧⎪⎪⇒⇒⎨⎨⎨-==-⋅=⎩⎪⎪⎩⎩,即1,9G ⎛ ⎝,BG ∴==.19. 设a ,b 为实数,且1a >,函数()()2e xf x a bx x =-+∈R .(1)若()()ln xg x f x a x =-+,讨论函数()g x 的单调性;(2)若对任意2e 2b >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当e a =时,对任意4e >b ,函数()f x 有两个不同的零点()1221,,x x x x >,证明:2212ln e 2e >+b b x x b.(注:e 2.71828=⋅⋅⋅是自然对数的底数)【答案】(1)答案见解析(2)(21,e ⎤⎦.(3)证明见解析【解析】【分析】(1)根据已知条件求出()()ln xg x f x a x =-+,对函数求导,分0b ≤和0b >两种情况讨论函数的单调性即可;(2)原问题等价于2ln 0x a e bx e -+=有2个不同的解,然后构造函数,二次求导,利用导数判断函数的单调性,分析即可确定实数a 的取值范围;(3)结合(2)的结论,对问题进行等价变形,适当放缩,利用分析法即可证明结论.【小问1详解】因为()()2exf x a bx x =-+∈R ,()()ln xg x f x a x =-+,所以()2ln eg x x bx =-+()0x >,()1g x b x'=-()0x >,①若0b ≤,则g ′(x )=1x −b >0,所以()g x 在R 上单调递增;②若0b >,当10,x b ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增,当1,x b ∞⎛⎫∈+ ⎪⎝⎭时,()0g x '<,()g x 单调递减.综上,0b ≤时,()g x 在(0,+∞)上单调递增;0b >时,()g x 在10,x b ⎛⎫∈ ⎪⎝⎭上单调递增,在1,x b ∞⎛⎫∈+ ⎪⎝⎭上单调递减.【小问2详解】()f x 有2个不同零点2e 0x a bx ⇔-+=有2个不同解,等价于ln 2e e 0x a bx -+=有2个不同的解,令ln t x a =,则22e e e e 0ln ln t tbt b a a t+-+=⇒=,0t >,记()2e e t g t t +=,()()2222e e e e (1)e t t t t t g t t t⋅-+--='=,记2()e (1)e t h t t =--,ℎ′(t )=e t (t−1)+e t ⋅1=e t ⋅t >0,所以()h t 定义域上单调递增,又(2)0h =,所以(0,2)t ∈时,()0h t <,()2,t ∞∈+时,()0h t >,则()g t 在(0,2)单调递减,()2,∞+单调递增,∴2(2)e ln b g a >=,故2ln eba <,∵2e 2b >,∴22eb>,∴ln a ≤2a >1⇒1<a ≤e 2.即实数a 的取值范围是(21,e ⎤⎦.【小问3详解】[方法一]【最优解】:e a =,()2e e xf x bx =-+有2个不同零点,则2e e x bx +=,故函数的零点一定为正数.由于函数有2个不同零点,21x x >,1222412e e e e e x x b x x ++==>,由(2)知函数2e e x y x+=在区间(0,2)上单调递减,区间()2,∞+上单调递增,在故122x x <<,又由524e e e 5+<知25x >,1222111e 2e 2e e x b x x x b+=<⇒<,要证2212ln e 2e >+b b x x b ,只需22e ln x b b>+,22222e e 2e x x b x x +=<且关于b 的函数()2e ln g b b b=+在4e >b 上单调递增,所以只需证x 2>ln2e x 2x 2+e 2x 22e x 2(x 2>5),只需证2222222e l e ln 02e e n x x x x x -->,只需证2ln ln 202ee x xx -->,∵2e 42<,只需证()4ln ln 2e x x h x x =--在5x >时为正,由于ℎ′(x )=1x +4x e −x −4e −x =1x +4e −x (x−1)>0,故函数ℎ(x )单调递增,又55(5)ln 5l 20n 2ln 02e h =--=->,故()4ln ln 2e x xh x x =--在5x >时为正,从而题中的不等式得证.[方法二]:分析+放缩法e a =,()2e e xf x bx =-+有2个不同零点1x ,2x ,12x x <,由()e x f x b '=-得12ln x b x <<(其中ln 4b >).且()1211e e 0xf x bx =-+=,()2222e e 0xf x bx =-+=.要证2212ln e 2e >+b b x x b,只需证2212ln e 2e b b bx bx ->,即证212ln e2e x b bbx >,只需证x 2>1.又22c222e e e 0b f b ⎛⎫=-< ⎪⎝⎭,所以212e x b <,即1212e bx <.所以只需证x 2>ln(b ln b ),而ln 4b >,所以ln b b b >,又ln(b ln b )>ln b ,只需证()()ln ln 0f b b <.所以()()()2242ln ln ln ln ln e ln ln e e ln 4e 0f b b b b b b b b b =-+=-+<-+<,原命题得证.[方法三]:若e a =且4e >b ,则满足21e a <≤且2e 2b >,由(2)知()f x 有两个零点()1212,x x x x <且120ln x b x <<<.又()222e 20f b =-<,故进一步有1202ln x b x <<<<.由()()120f x f x ==可得121e e xbx +=且222e e x bx =-,从而x 2>b ln b 2e2x 1+e2b⇔b x 2−e 2>b ln b 2e2b x 1⇔e x 2>b ln b 2e 2(e x 1+e 2).因为102x <<,所以122e e 21e x +<,只需证22222e e ln e ln ln x b b bx b b x b b>⇔->⇔>+.又因为()f x 在区间()ln ,b ∞+内单调递增,故只需证()22e ln 0f b f x b ⎛⎫+<= ⎪⎝⎭,即2e e ln 0bb b ⎛⎫-< ⎪ ⎪⎝⎭,注意4e >b 时有2e e e 4ln bb<<<,故不等式成立.【点睛】关键点点睛:(1)利用导数求函数的单调区间,判断单调性,对于导数中含有参数的,往往需要分类讨论;(2)一次求导无法判断单调性的题目,可以二次求导;(3)运用导数结合函数的单调性证明不等式成立.。
福州三中高三培优班讲义——三角与向量题型一 三角函数平移与向量平移的综合三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标.【例1】 把函数y =sin2x 的图象按向量→a =(-π6,-3)平移后,得到函数y =Asin(ωx +ϕ)(A >0,ω>0,|ϕ|=π2)的图象,则ϕ和B 的值依次为( )A .π12,-3B .π3,3C .π3,-3D .-π12,3【分析】 根据向量的坐标确定平行公式为⎩⎨⎧ x =x '+π6y =y '+3,再代入已知解析式可得.还可以由向量的坐标得图象的两个平移过程,由此确定平移后的函数解析式,经对照即可作出选择.【解析1】 由平移向量知向量平移公式⎩⎨⎧ x '=x -π6y '=y -3,即⎩⎨⎧ x =x '+π6y =y '+3,代入y =sin2x 得y '+3=sin2(x '+π6),即到y =sin(2x +π3)-3,由此知ϕ=π3,B =-3,故选C.【解析2】 由向量→a =(-π6,-3),知图象平移的两个过程,即将原函数的图象整体向左平移π6个单位,再向下平移3个单位,由此可得函数的图象为y =sin2(x +π6)-3,即y =sin(2x +π3)-3,由此知ϕ=π3,B =-3,故选C.【点评】 此类题型将三角函数平移与向量平移有机地结合在一起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的思想及转化的思想.本题解答的关键,也是易出错的地方是确定平移的方向及平移的大小.题型二 三角函数与平面向量平行(共线)的综合此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查.【例2】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量.(Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B 2的最大值.【分析】 首先利用向量共线的充要条件建立三角函数等式,由于可求得A 角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A 、B 、C 三个角的关系,结合三角民恒等变换公式将函数转化为关于角B 的表达式,再根据B 的范围求最值.【解】 (Ⅰ)∵→p 、→q 共线,∴(2-2sinA)(1+sinA)=(cosA +sinA)(cosA -sinA),则sin 2A =34,又A 为锐角,所以sinA =32,则A =π3.(Ⅱ)y =2sin 2B +cos C -3B2=2sin 2B +cos (π-π3-B)-3B2=2sin 2B +cos(π3-2B)=1-cos2B +12cos2B +32sin2B=32sin2B -12cos2B +1=sin(2B -π6)+1.∵B ∈(0,π2),∴2B -π6∈(-π6,5π6),∴2B -π6=π2,解得B =π3,y max =2.【点评】 本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;(2)根据条件确定B 角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.题型三 三角函数与平面向量垂直的综合 此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.【例3】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sin α-4cosα),α∈(3π2,2π),且→a ⊥→b . (Ⅰ)求tanα的值; (Ⅱ)求cos(α2+π3)的值.【分析】 第(Ⅰ)小题从向量垂直条件入手,建立关于α的三角方程,再利用同角三角函数的基本关系可求得tanα的值;第(Ⅱ)小题根据所求得的tanα的结果,利用二倍角公式求得tan α2的值,再利用两角和与差的三角公式求得最后的结果.【解】 (Ⅰ)∵→a ⊥→b ,∴→a ·→b =0.而→a =(3sinα,cosα),→b =(2sinα, 5sinα-4cosα),故→a ·→b =6sin 2α+5sinαcosα-4cos 2α=0. 由于cosα≠0,∴6tan 2α+5tanα-4=0.解之,得tanα=-43,或tanα=12. ∵α∈(3π2,2π),tanα<0,故tanα=12(舍去).∴tanα=-43. (Ⅱ)∵α∈(3π2,2π),∴α2∈(3π4,π).由tanα=-43,求得tan α2=-12,tan α2=2(舍去).∴sin α2=55,cos α2=-255,∴cos(α2+π3)=cos α2cos π3-sin α2sin π3=-255×12-55×32=-25+1510【点评】 本题主要考查向量垂直的充要条件、同角三角函数的基本关系、二倍角公式及两角和与差的三角函数.同时本题两个小题的解答都涉及到角的范围的确定,再一次说明了在解答三角函数问题中确定角的范围的重要性.同时还可以看到第(Ⅰ)小题的解答中用到“弦化切”的思想方法,这是解决在一道试题中同时出现“切函数与弦函数”关系问题常用方法.题型四 三角函数与平面向量的模的综合此类题型主要是利用向量模的性质|→a |2=→a 2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=25 5.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-π2<β<0<α<π2,且sinβ=-513,求sinα的值.【分析】 利用向量的模的计算与数量积的坐标运算可解决第(Ⅰ)小题;而第(Ⅱ)小题则可变角α=(α-β)+β,然后就须求sin(α-β)与cos β即可.【解】 (Ⅰ)∵|→a -→b |=255,∴→a 2-2→a ·→b +→b 2=45, 将向量→a =(cosα,sinα),→b =(cosβ,sinβ)代入上式得 12-2(cos αcos β+sin αsin β)+12=45,∴cos(α-β)=-35. (Ⅱ)∵-π2<β<0<α<π2,∴0<α-β<π, 由cos(α-β)=-35,得sin(α-β)=45, 又sin β=-513,∴cos β=1213,∴sin α=sin [(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=3365.点评:本题主要考查向量的模、数量积的坐标运算、和角公式、同角三角函数的基本关系.本题解答中要注意两点:(1)化|→a -→b |为向量运算|→a -→b |2=(→a -→b )2;(2)注意解α-β的范围.整个解答过程体现方程的思想及转化的思想. 题型五 三角函数与平面向量数量积的综合此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;(2)利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时也主要是利用向量首先进行转化,再利用三角函数知识求解.【例5】 设函数f(x)=→a ·→b.其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.分析:利用向量内积公式的坐标形式,将题设条件中所涉及的向量内积转化为三角函数中的“数量关系”,从而,建立函数f(x)关系式,第(Ⅰ)小题直接利用条件f(π2)=2可以求得,而第(Ⅱ)小题利用三角函数函数的有界性就可以求解.解:(Ⅰ)f(x)=→a ·→b =m(1+sinx)+cosx , 由f(π2)=2,得m(1+sin π2)+cos π2=2,解得m =1. (Ⅱ)由(Ⅰ)得f(x)=sinx +cosx +1=2sin(x +π4)+1, 当sin(x +π4)=-1时,f(x)的最小值为1- 2.点评:平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,其解法都差不多,首先都是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.六、解斜三角形与向量的综合在三角形的正弦定理与余弦定理在教材中是利用向量知识来推导的,说明正弦定理、余弦定理与向量有着密切的联系.解斜三角形与向量的综合主要体现为以三角形的角对应的三角函数值为向量的坐标,要求根据向量的关系解答相关的问题.【例6】 已知角A 、B 、C 为△ABC 的三个内角,其对边分别为a 、b 、c ,若→m =(-cos A2,sin A 2),→n =(cos A 2,sin A 2),a =23,且→m·→n =12.(Ⅰ)若△ABC 的面积S =3,求b +c 的值. (Ⅱ)求b +c 的取值范围. 【分析】 第(Ⅰ)小题利用数量积公式建立关于角A 的三角函数方程,再利用二倍角公式求得A 角,然后通过三角形的面积公式及余弦定理建立关于b 、c 的方程组求取b +c 的值;第(Ⅱ)小题正弦定理及三角形内角和定理建立关于B 的三角函数式,进而求得b +c 的范围.【解】 (Ⅰ)∵→m =(-cos A 2,sin A 2),→n =(cos A 2,sin A 2),且→m·→n =12,∴-cos 2A 2+sin 2A 2=12,即-cosA =12,又A ∈(0,π),∴A =2π3.又由S △ABC =12bcsinA =3,所以bc =4,由余弦定理得:a 2=b 2+c 2-2bc·cos 2π3=b 2+c 2+bc ,∴16=(b +c)2,故b +c =4.(Ⅱ)由正弦定理得:b sinB =c sinC =a sinA =23sin 2π3=4,又B +C =π-A =π3,∴b +c =4sinB +4sinC =4sinB +4sin(π3-B)=4sin(B +π3),∵0<B <π3,则π3<B +π3<2π3,则32<sin(B +π3)≤1,即b +c 的取值范围是(23,4].[点评] 本题解答主要考查平面向量的数量积、三角恒等变换及三角形中的正弦定理、余弦定理、面积公式、三角形内角和定理等.解答本题主要有两处要注意:第(Ⅰ)小题中求b +c 没有利用分别求出b 、c 的值为解,而是利用整体的思想,使问题得到简捷的解答;(2)第(Ⅱ)小题的求解中特别要注意确定角B 的范围.【专题训练】 一、选择题1.已知→a =(cos40︒,sin40︒),→b =(cos20︒,sin20︒),则→a ·→b =( )A .1B .32C .12D .222.将函数y =2sin2x -π2的图象按向量(π2,π2)平移后得到图象对应的解析式是( )A .2cos2xB .-2cos2xC .2sin2xD .-2sin2x 3.已知△ABC 中,AB →=a →,AC →=b →,若a →·b →<0,则△ABC 是( )A .钝角三角形B .直角三角形C .锐角三角形D .任意三角形 4.设→a =(32,sin α),→b =(cos α,13),且→a ∥→b ,则锐角α为( )A .30︒B .45︒C .60︒D .75︒5.已知→a =(sin θ,1+cosθ),→b =(1,1-cosθ),其中θ∈(π,3π2),则一定有 ( )A .→a ∥→bB .→a ⊥→bC .→a 与→b 夹角为45°D .|→a |=|→b | 6.已知向量a →=(6,-4),b →=(0,2),c →=a →+λb →,若C 点在函数y =sin π12x 的图象上,实数λ= ( )A .52B .32C .-52D .-327.由向量把函数y =sin(x +5π6)的图象按向量→a =(m ,0)(m >0)平移所得的图象关于y 轴对称,则m 的最小值为 ( )A .π6B .π3C .2π3D .5π68.设0≤θ≤2π时,已知两个向量OP 1→=(cos θ,sin θ),OP 2→=(2+sin θ,2-cos θ),则向量P 1P 2→长度的最大值是( )A . 2B . 3C .3 2D .2 3 9.若向量→a =(cos α,sin α),→b =(cos β,sin β),则→a 与→b 一定满足( ) A .→a 与→b 的夹角等于α-βB .→a ⊥→bC .→a ∥→bD .(→a +→b )⊥(→a -→b )10.已知向量→a =(cos25︒,sin25︒),→b =(sin20︒,cos20︒),若t 是实数,且→u =→a +t →b ,则|→u |的最小值为 ( )A . 2B .1C .22D .1211.O 是平面上一定点,A 、B 、C 是该平面上不共线的3个点,一动点P 满足:→OP=→OA +λ(→AB +→AC),λ∈(0,+∞),则直线AP 一定通过△ABC 的 ( )A .外心B .内心C .重心D .垂心12.对于非零向量→a 我们可以用它与直角坐标轴的夹角α,β(0≤α≤π,0≤β≤π)来表示它的方向,称α,β为非零向量→a 的方向角,称cos α,cos β为向量→a 的方向余弦,则cos 2α+cos 2β=( ) A .1 B .32C .12D .0二、填空题13.已知向量→m =(sin θ,2cos θ),→n =(3,-12).若→m ∥→n ,则sin2θ的值为____________.14.已知在△OAB(O 为原点)中,→OA=(2cos α,2sin α),→OB =(5cos β,5sin β),若→OA·→OB =-5,则S △AOB 的值为_____________.15.将函数f (x )=tan(2x +π3)+1按向量a 平移得到奇函数g(x ),要使|a |最小,则a =____________.16.已知向量→m =(1,1)向量→n 与向量→m 夹角为3π4,且→m ·→n =-1.则向量→n =__________. 三、解答题17.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若→AB·→AC =→BA·→BC =k(k ∈R).(Ⅰ)判断△ABC 的形状; (Ⅱ)若c =2,求k 的值.18.已知向量→m =(sinA,cosA),→n =(3,-1),→m·→n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数f(x)=cos2x +4cosAsinx(x ∈R)的值域.19.在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量→m =(1,2sinA),→n =(sinA ,1+cosA),满足→m ∥→n ,b +c =3a.(Ⅰ)求A 的大小;(Ⅱ)求sin(B +π6)的值.20.已知A 、B 、C 的坐标分别为A (4,0),B (0,4),C (3cosα,3sinα).(Ⅰ)若α∈(-π,0),且|→AC|=|→BC|,求角α的大小; (Ⅱ)若→AC ⊥→BC ,求2sin 2α+sin2α1+tanα的值.21.△ABC 的角A 、B 、C 的对边分别为a 、b 、c ,→m =(2b -c ,a),→n =(cosA ,-cosC),且→m⊥→n .(Ⅰ)求角A 的大小;(Ⅱ)当y =2sin 2B +sin(2B +π6)取最大值时,求角B 的大小.22.已知→a =(cosx +sinx ,sinx),→b =(cosx -sinx ,2cosx),(Ⅰ)求证:向量→a 与向量→b 不可能平行;(Ⅱ)若f(x)=→a ·→b ,且x ∈[-π4,π4]时,求函数f(x)的最大值及最小值.【专题训练】参考答案 一、选择题1.B 解析:由数量积的坐标表示知→a ·→b =cos40︒sin20︒+sin40︒cos20︒=sin60︒=32. 2.D 【解析】y =2sin2x -π2→y =2sin2(x +π2)-π2+π2,即y =-2sin2x. 3.A 【解析】因为cos ∠BAC =AB →·AC →|AB →|·|AC →|=a →·b→|a →|·|b →|<0,∴∠BAC 为钝角.4.B 【解析】由平行的充要条件得32×13-sin αcos α=0,sin2α=1,2α=90︒,α=45︒. 5.B 【解析】→a ·→b =sin θ+|sin θ|,∵θ∈(π,3π2),∴|sin θ|=-sin θ,∴→a ·→b =0,∴→a ⊥→b . 6.A 【解析】c →=a →+λb →=(6,-4+2λ),代入y =sin π12x 得,-4+2λ=sin π2=1,解得λ =52.7.B 【解析】考虑把函数y =sin(x +5π6)的图象变换为y =cosx 的图象,而y =sin(x +5π6)=cos(x +π3),即把y =cos(x +π3)的图象变换为y =cosx 的图象,只须向右平行π3个单位,所以m =π3,故选B.8.C 【解析】|P 1P 2→|=(2+sin θ-cos θ)2+(2-cos θ-sin θ)2=10-8cosθ≤3 2. 9.D 【解析】→a +→b =(cos α+cos β,sin α+sin β),→a -→b =(cos α+cos β,sin α-sin β),∴(→a +→b )·(→a -→b )=cos 2α-cos 2β+sin 2α-sin 2β=0,∴(→a +→b )⊥(→a -→b ). 10.C 【解析】|→u |2=|→a |2+t 2|→b |2+2t →a ·→b =1+t 2+2t(sin20︒cos25︒+cos20︒sin25︒)=t 2+2t +1=(t +22)2+12,|→u |2 min =12,∴|→u |min =22.11.C 【解析】设BC 的中点为D ,则→AB+→AC =2→AD ,又由→OP =→OA +λ(→AB +→AC),→AP =2λ→AD ,所以→AP 与→AD 共线,即有直线AP 与直线AD 重合,即直线AP 一定通过△ABC 的重心.12.A 【解析】设→a =(x,y),x 轴、y 轴、z 轴方向的单位向量分别为→i =(1,0),→j =(0,1),由向量知识得cos α=→i ·→a |→i |·|→a |=x x 2+y 2,cos β=→j ·→a |→j |·|→a |=yx 2+y 2,则cos 2α+cos 2β=1.二、填空题13.-8349 【解析】由→m ∥→n ,得-12sin θ=23cos θ,∴tan θ=-43,∴sin2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=-8349. 14.532 【解析】→OA·→OB =-5⇒10cos αco βs +10sin αsin β=-5⇒10cos(α-β)=-5⇒cos(α-β)=-12,∴sin ∠AOB =32,又|→OA|=2,|→OB|=5,∴S △AOB =12×2×5×32=532. 15.(π6,-1) 【解析】要经过平移得到奇函数g(x),应将函数f(x)=tan(2x +π3)+1的图象向下平移1个单位,再向右平移-kπ2+π6(k ∈Z)个单位.即应按照向量→a =(-kπ2+π6,-1) (k ∈Z)进行平移.要使|a|最小,16.(-1,0)或(0,-1) 【解析】设→n =(x ,y),由→m·→n =-1,有x +y =-1 ①,由→m 与→n 夹角为3π4,有→m·→n =|→m |·|→n |cos 3π4,∴|→n |=1,则x 2+y 2=1 ②,由①②解得⎩⎨⎧ x=﹣1y=0或⎩⎨⎧ x =0y =-1 ∴即→n =(-1,0)或→n =(0,-1) . 三、解答题17.【解】(Ⅰ)∵→AB·→AC =bccosA ,→BA·→BC =cacosB , 又→AB·→AC =→BA·→BC ,∴bccosA =cacosB ,∴由正弦定理,得sinBcosA =sinAcosB ,即sinAcosB -sinBcosA =0,∴sin(A -B)=0 ∵-π<A -B <π,∴A -B =0,即A =B ,∴△ABC 为等腰三角形.(Ⅱ)由(Ⅰ)知b a =,∴→AB·→AC =bccosA =bc·b 2+c 2-a 22bc =c 22, ∵c =2,∴k =1.18.【解】(Ⅰ)由题意得→m·→n =3sinA -cosA =1,2sin(A -π6)=1,sin(A -π6)=12,由A 为锐角得A -π6=π6,A =π3.(Ⅱ)由(Ⅰ)知cosA =12,所以f(x)=cos2x +2sinx =1-2sin 2x +2sinx =-2(sinx -12)2+32, 因为x ∈R ,所以sinx ∈[-1,1],因此,当sinx =12时,f (x )有最大值32. 当sinx =-1时,f(x)有最小值-3,所以所求函数f(x)的值域是[-3,32].19.【解】(Ⅰ)由→m ∥→n ,得2sin 2A -1-cosA =0,即2cos 2A +cosA -1=0,∴cosA =12或cosA =-1.∵A 是△ABC 内角,cosA =-1舍去,∴A =π3.(Ⅱ)∵b +c =3a ,由正弦定理,sinB +sinC =3sinA =32, ∵B +C =2π3,sinB +sin(2π3-B)=32, ∴32cosB +32sinB =32,即sin(B +π6)=32.20.【解】(Ⅰ)由已知得:(3cosα-4)2+9sin 2α=9cos 2α+(3sinα-4) 2,则sinα=cosα,因为α∈(-π,0),∴α=-3π4. (Ⅱ)由(3cosα-4)·3cosα+3sinα·(3sinα-4)=0,得sinα+cosα=34,平方,得sin2α=-716. 而2sin 2α+sin2α1+tanα=2sin 2αcosα+2sinαcos 2αsinα+cosα=2sinαcosα=sin2α=-716.21.【解】(Ⅰ)由→m ⊥→n ,得→m·→n =0,从而(2b -c)cosA -acosC =0,由正弦定理得2sinBcosA -sinCcosA -sinAcosC =0∴2sinBcosA -sin(A +C)=0,2sinBcosA -sinB =0,∵A 、B ∈(0,π),∴sinB≠0,cosA =12,故A =π3.(Ⅱ)y =2sin 2B +2sin(2B +π6)=(1-cos2B)+sin2Bcos π6+cos2Bsin π6=1+32sin2B -12 cos2B =1+sin(2B -π6).由(Ⅰ)得,0<B <2π3,-π6<2B -π6<7π6,∴当2B -π6=π2,即B =π3时,y 取最大值2.22.【解】(Ⅰ)假设→a ∥→b ,则2cosx(cosx +sinx)-sinx(cosx -sinx)=0,∴2cos 2x +sinxcosx +sin 2x =0,2·1+cos2x 2+12sin2x +1-cos2x 2=0,即sin2x +cos2x =-3, ∴2(sin2x +π4)=-3,与|2(sin2x +π4)|≤2矛盾,故向量→a 与向量→b 不可能平行.(Ⅱ)∵f(x)=→a ·→b =(cosx +sinx)·(cosx -sinx)+sinx·2cosx=cos 2x -sin 2x +2sinxcosx =cos2x +sin2x =2(22cos2x +22sin2x)=2(sin2x +π4),∵-π4≤x≤π4,∴-π4≤2x +π4≤3π4,∴当2x +π4=π2,即x =π8时,f(x)有最大值2;当2x +π4=-π4,即x =-π4时,f(x)有最小值-1.。