通用液压机械手设计
- 格式:doc
- 大小:1.50 MB
- 文档页数:56
基于液压传动的机械手爪设计与改进引言机械手爪是现代制造业中常见的一种设备,它广泛应用于装配线、仓储物流等领域。
机械手爪的设计与改进对于提高生产效率、优化生产流程具有重要意义。
本文将介绍基于液压传动的机械手爪的设计原理、存在的问题以及改进方向。
设计原理基于液压传动的机械手爪是利用液压系统的动力通过控制器对机械手爪的动作进行控制的一种装置。
其基本原理是利用液体介质传递力量,通过控制传动系统中的液压缸对机械爪的打开、闭合动作进行调控。
具体来说,液压传动系统由主控制器、液压泵、控制阀和液压缸组成。
存在的问题然而,在实际应用中,基于液压传动的机械手爪存在一些问题需要解决。
首先,传统液压系统的响应速度较慢,无法满足高速作业的需求。
其次,液压系统的维护成本较高,需要定期更换液压油和维修液压元件。
此外,传统液压系统的电气控制较为复杂,需要专业技术人员进行维护和操作。
改进方向一:提高响应速度为解决传统液压系统响应速度慢的问题,可以采用先进的电液比例控制技术。
通过引入电液比例阀,将电气信号转化为液压信号,实现对液压系统的精确控制。
电液比例控制技术具有响应速度快、控制精度高的优势,可以大幅提高机械手爪的动作速度。
改进方向二:降低维护成本为降低维护成本,可以通过采用新型液压元件和优质液压油来延长液压系统的使用寿命。
新型液压元件具有更好的耐磨性和密封性能,能够减少泄漏和故障的发生。
同时,优质液压油具有良好的抗氧化性和抗污染性,能够有效保护液压元件不受外界环境的影响。
改进方向三:简化电气控制为简化电气控制,可以采用先进的智能控制器。
智能控制器集成了传感器、执行机构和控制算法,能够实现对机械手爪的智能化控制。
通过智能控制器,操作人员可以方便地进行参数设置和调整,降低了对专业技术人员的依赖,同时提高了机械手爪的灵活性和自动化水平。
结论基于液压传动的机械手爪是一种应用广泛的装备,设计与改进对于提高生产效率具有重要意义。
通过引入先进的电液比例控制技术、采用新型液压元件和优质液压油,以及应用智能控制器,可以解决传统液压系统存在的问题,提升机械手爪的性能指标,进一步推动工业自动化的发展。
五自由度液压搬运机械手”设计首先,结构设计是机械手设计的基础,决定了机械手的运动能力和稳定性。
五自由度液压搬运机械手通常由基座、旋转臂、移动臂、升降臂和手爪等五个部分组成。
基座用于支撑机械手,使其能够固定在工作台上。
旋转臂具有360度无级旋转能力,可以实现机械手在平面内的旋转运动。
移动臂可以沿着旋转臂的轴线进行水平移动。
升降臂可以沿着移动臂的轴线进行上下升降运动。
手爪可以张合,用于抓取和释放物品。
这五个部分的组合可以实现机械手在三维空间内的自由移动和搬运物品的能力。
其次,控制系统设计是机械手实现各项功能的关键,涉及了位置控制、速度控制和力控制等方面。
位置控制是指控制机械手的各个部件按照预定轨迹进行移动,使机械手能够到达指定的位置。
速度控制是指控制机械手的各个部件的运动速度,以实现对机械手的运动精度和响应速度的控制。
力控制是指机械手能够根据搬运物品的重量和形状调整手爪的力度,以实现安全和稳定的搬运操作。
控制系统设计需要结合传感器和执行器,通过信号的传输和处理,实现对机械手的精准控制。
最后,动力系统设计是为机械手提供所需的动力和能源,以实现其运动和搬运的功能。
液压系统是一种常见的动力系统,可以利用液体的压力和流动性质来驱动机械手的各个部件。
液压系统需要包括液压泵、液压缸和液压阀等组件,以实现对机械手的动力输出和控制。
动力系统设计还需要考虑能源的供给,可以采用电动机、气动元件等形式。
总结起来,五自由度液压搬运机械手的设计涉及结构设计、控制系统设计和动力系统设计三个方面。
通过合理地设计和优化这些方面,可以实现机械手的多方向移动和搬运物品的能力,提高生产效率和工作安全性。
通用液压机械手之手臂设计液压机械手是一种利用液压传动方式实现的机械手臂,常用于各种工业领域中的搬运、装配、焊接、切割等任务。
在设计液压机械手之手臂时,需要考虑以下几个方面:材料选择、结构设计、动力系统设计以及控制系统设计。
首先,对于液压机械手之手臂的设计,材料选择非常重要。
由于液压机械手需要承受较大的载荷,手臂应选择高强度和高刚度的材料,如碳钢、合金钢、铸铁等。
此外,为了提高手臂的耐磨性和耐腐蚀性,还可以在表面做相应的处理,如镀铬、喷涂等。
其次,液压机械手之手臂的结构设计需要考虑到使用的环境和任务要求。
常见的液压机械手臂结构包括单臂、双臂和多臂等。
对于不同的任务需求,可选择不同结构形式。
设计时需要考虑手臂的负荷和工作范围,保证其有足够的承载能力和灵活性。
此外,手臂的连接方式也需要设计,如铰接、滑轨、直线导轨等。
再次,液压机械手之手臂的动力系统设计是至关重要的。
液压机械手是通过液压传动实现动作的,所以动力系统设计需要满足手臂上下运动、伸缩运动以及旋转运动的需求。
设计时需要选择合适的执行元件,如液压缸和液压马达,并根据负荷和速度要求确定动力系统的参数。
同时,还需要设计相应的液压回路和控制阀,实现手臂的运动控制和调节。
最后,液压机械手之手臂的控制系统设计是整个机械手的关键。
控制系统需要与动力系统紧密配合,实现手臂各个部分的协调运动。
设计时需要选择合适的控制器和传感器,如PLC、液压传感器等。
同时,需要编写适应手臂运动的控制程序,实现手臂的自动化操作。
综上所述,设计液压机械手之手臂需要考虑材料选择、结构设计、动力系统设计以及控制系统设计等方面。
通过合理的设计和优化,可以实现液压机械手的高效、稳定和安全运行,提高工作效率和生产质量。
液压机械手手部设计计算第5章机械手手部的设计计算5.1 手部设计基本要求手部设计应具有适当的夹紧力和驱动力,考虑到不同传动机构所需的驱动力大小不同。
手指应具有一定的张开范围和足够的开闭角度以便于抓取工件。
同时,要求结构紧凑、重量轻、效率高,在保证刚度、强度的前提下,尽可能减轻手臂的负载。
此外,手抓的夹持精度也需要保证。
5.2 典型的手部结构典型的手部结构包括回转型、移动型和平面平移型。
回转型包括滑槽杠杆式和连杆杠杆式两种。
移动型即两手指相对支座作往复运动。
平面平移型则是手指的张开闭合靠手指的平行移动。
5.3 机械手手抓的设计计算5.3.1 选择手抓的类型及夹紧装置针对本设计平动搬运机械手的设计,需要考虑手抓张合角和夹取重量等原始参数。
常用的工业机械手手部分为夹持和吸附两大类。
考虑到本设计机械手需要夹持工件,且需要结构简单、适用于夹持平板方料,且工件径向尺寸的变化不影响其轴心的位置,因此选择二指回转型手抓,采用滑槽杠杆这种结构方式。
夹紧装置则选择常开式夹紧装置。
5.3.2 手抓的力学分析针对滑槽杠杆式手部结构,进行力学分析。
在杠杆的作用下,销轴向上的拉力为F,并通过销轴中心O点,两手指的滑槽对销轴的反作用力为F1和F2,其力的方向垂直于滑槽的中心线并指向O点,交F1和F2的延长线于A及B。
由力的平衡条件得到F1=F2cosα,F1'=-F1.由F1'·h=F_N·b·a·cosα/2b·cos2α和θ_h=α可得到F_N。
注:原文中存在大量的格式错误,已经全部修正。
液压机械手PLC控制系统的设计概述本文档旨在介绍液压机械手PLC(可编程逻辑控制)控制系统的设计。
液压机械手是一种常见的工业设备,通过液压系统实现运动控制,而PLC作为控制系统的核心,负责控制信号的处理和输出。
设计要求液压机械手PLC控制系统的设计要满足以下要求:1. 稳定性:系统必须具有高稳定性,以确保机械手的运动精准度和安全性。
2. 功能性:系统需要具备多种功能,如位置控制、速度调节等,以满足不同场景的需求。
3. 可扩展性:系统应具备良好的可扩展性,以便于将来的升级和功能增加。
4. 易维护性:设计应考虑到系统的维护和故障排除,以便于后续维护工作的进行。
硬件设计液压机械手PLC控制系统的硬件设计包括以下方面:1. 选型:选择适合的PLC设备,根据需求选用不同型号和规格的PLC,确保其性能和稳定性。
2. 传感器:选择合适的传感器,如位移传感器、压力传感器等,用于采集机械手运动状态和环境信息。
3. 执行器:选择合适的液压阀、液压泵等执行器,保证系统能够精确控制机械手的各项动作。
4. 电气线路:设计合理的电气线路,确保信号传输的可靠性和稳定性。
软件设计液压机械手PLC控制系统的软件设计包括以下方面:1. PLC程序设计:使用PLC编程软件,根据机械手的运动逻辑和控制要求,编写PLC程序,实现各项功能。
2. 信号处理:对传感器采集的信号进行处理和分析,以获取机械手的状态信息。
3. 控制算法:设计合理的控制算法,根据机械手的控制需求,实现位置控制、速度调节等功能。
4. 用户界面:设计友好的用户界面,方便操作人员对机械手进行参数设置和监控。
系统测试与调试设计完成后,需要进行系统测试与调试,以验证系统的功能和性能:1. 单元测试:对各个模块进行单元测试,确保其功能正常。
2. 组装测试:将各个模块组装成完整的系统,对整个系统进行综合测试。
3. 调试优化:根据测试结果进行系统调试和优化,确保系统的稳定性和性能满足设计要求。
液压机械手液压系统设计
1.动力源选择:液压机械手主要使用液压泵作为动力源。
选择合适的液压泵需要考虑机械手的工作负荷、速度和精度要求。
通常选用可调节排量液压泵以满足工作要求。
2.液压油箱设计:液压油箱作为液压系统的储油和冷却装置,需要具备足够的容量以确保回油顺利、油液冷却和过滤。
油箱还需要考虑油温控制和油液监测装置的设计。
3.液压阀的选型:液压阀是控制液压流动和压力的重要装置,常见的液压阀有单向阀、溢流阀、换向阀等。
液压机械手液压系统设计需要根据运动控制要求选择合适的液压阀。
使用可调节溢流阀可以实现对液压机械手的速度和力矩的精确控制。
4.液压缸设计:液压缸是液压机械手的执行元件,通过液压力来驱动机械手的运动。
液压缸的设计需要考虑缸径、活塞杆直径、行程和最大推力等因素。
合理设计液压缸可以提高机械手的运动速度和精度。
5.液压管路设计:液压管路是液压系统的动力传递和控制通道。
设计合理的液压管路可以减小压力损失和泄漏,并保证液压系统的可靠运行。
液压管路的设计需要考虑液压流量、工作压力和管道材料选择等因素。
6.液压系统控制:液压机械手的运动和工作需要通过液压系统来进行控制。
可以采用手动控制、自动控制或者PLC控制来实现对液压机械手的控制。
控制方式的选择需要根据机械手的工作环境和要求来确定。
以上仅为液压机械手液压系统设计的一些主要考虑因素,具体的设计还需要根据机械手的具体要求和工作条件进行详细的分析和计算。
液压机
械手液压系统设计的目标是实现机械手的高效、精确和可靠的运动和工作,提高生产效率和产品质量。
液压机械手毕业设计液压机械手毕业设计在现代工业制造中,机械手是不可或缺的一部分。
机械手的出现使得生产线的自动化程度大大提高,极大地减少了人力成本,提高了生产效率。
而液压机械手则是机械手中的一种重要类型,它利用液压系统来实现运动控制,具有较高的精度和可靠性。
本文将探讨液压机械手的设计和应用。
一、液压机械手的工作原理液压机械手的工作原理主要是利用液压系统来控制机械手的运动。
液压系统由液压泵、液压缸、液压阀等组成,通过液压泵将液压油送入液压缸,使得液压缸产生推力,从而驱动机械手的运动。
液压阀则用于控制液压油的流向和压力,实现机械手的精确控制。
二、液压机械手的设计要点1. 结构设计液压机械手的结构设计要考虑到机械手的工作环境和工作负荷。
机械手的结构应该具有足够的刚度和强度,能够承受工作负荷和外界干扰。
同时,结构设计还应考虑到机械手的灵活性和可调性,以适应不同的工作需求。
2. 控制系统设计液压机械手的控制系统设计是实现机械手运动控制的关键。
控制系统应包括传感器、执行器、控制器等组成,能够实时感知机械手的位置和状态,并根据需求进行相应的控制。
控制系统的设计要考虑到机械手的运动范围、速度和精度等要求,以实现准确的运动控制。
3. 安全设计液压机械手在工作时可能存在一定的安全风险,因此安全设计是不可忽视的一部分。
安全设计应包括机械手的防护装置、紧急停止装置等,以确保操作人员的安全。
此外,还应考虑到机械手的自故障检测和自动报警功能,及时发现并解决潜在问题。
三、液压机械手的应用领域液压机械手在工业制造中有广泛的应用。
它可以用于装配生产线上的零部件组装,提高装配效率和一致性。
同时,液压机械手还可以用于物料搬运、堆垛和包装等工作,减少人工操作,提高生产效率。
此外,液压机械手还可以应用于危险环境下的作业,如核电站、化工厂等,减少人员的风险。
四、液压机械手的发展趋势随着科技的不断进步,液压机械手也在不断发展。
未来,液压机械手将更加智能化和自动化,具备更高的灵活性和自适应性。
液压传动机械手的设计机械设计制造及其自动化指导老师:摘要本次设计的液压传动机械手根据规定的动作顺序,综合运用所学的基本理论、基本知识和相关的机械设计专业知识,完成对机械手的设计,并绘制必要装配图、液压系统图、PLC控制系统原理图。
机械手的机械结构采用油缸、螺杆、导向筒等机械器件组成;在液压传动机构中,机械手的手臂伸缩采用伸缩油缸,手腕回转采用回转油缸,立柱的转动采用齿条油缸,机械手的升降采用升降油缸,立柱的横移采用横向移动油缸;在PLC控制回路中,采用的PLC类型为FX2N,当按下连续启动后,PLC按指定的程序,通过控制电磁阀的开关来控制机械手进行相应的动作循环,当按下连续停止按钮后,机械手在完成一个动作循环后停止运动。
本设计拟开发的上料机械手可在空间抓放物体,动作灵活多样,可代替人工在高温和危险的作业区进行作业,可抓取重量较大的工件。
关键词机械手、液压、控制回路、PLCThe design of the hydraulic manipulator Machine Design & Manufacture and Automation Instructor :Abstract The design of hydraulic drive manipulator movements under the provisions of the order ,use the basic theory, basic knowledge and related mechanical design expertise comprehensively to complete the design,and drawing the necessary assembly, hydraulic system map, PLC control system diagram . Manipulator mechanical structure using tanks, screw ,guide tubes and other mechanical device component ;In the hydraulic drive bodies ,manipulator arm stretching using telescopic tank ,rotating column of tanks used rack ,manipulator movements using tank movements ,the column takes the horizontal movement of tanks ;The PLC control circuit use the type of FX2N PLC .When pressed for commencement ,PLC in accordance with the prescribed procedures ,through the control of the solenoid valve to control the switch manipulator corresponding moves cycle ,after press the row stop button , the manipulator complete a cycle of action to stop after the hole campaign.The design of the proposed development of the information on the manipulator can grasp up in space objects ,flexible and varied movements ,can replace the artificial heat and dangerous operation conducted operations,and can grasp the larger workpieces .Keywords Manipulator 、Hydraulic、Control Loop 、PLC目录1 前言1.1 工业机器人简介----------------------------------------------------------(1)1.2 世界机器人的发展--------------------------------------------------------(1)1.3 我国工业机器人的发展----------------------------------------------------(2)1.4 我要设计的机械手--------------------------------------------------------(2)1.4.1 臂力的确定---------------------------------------------------------------------------------------(2)1.4.2工作范围的确定----------------------------------------------------------------------------------(2)1.4.3 确定运动速度--------------------------------------------------------(3)1.4.4 手臂的配置形式------------------------------------------------------(3)1.4.5 位置检测装置的选择--------------------------------------------------(4)1.4.6 驱动与控制方式的选择------------------------------------------------(4)2 手部结构------------------------------------------------------------------------------------------(5)2.1概述-------------------------------------------------------------------------------------------------------(5)2.2 设计时应考虑的几个问题----------------------------------------------------------------------------(5)2.3 驱动力的计算-----------------------------------------------------------------------------------------(5)2.4 两支点回转式钳爪的定位误差的分析------------------------------------------------------------(8)3 腕部的结构---------------------------------------------------------------------------------------(9)3.1 概述------------------------------------------------------------------------------------------------------(9)3.2 腕部的结构形式--------------------------------------------------------------------------------------(9)3.3手腕驱动力矩的计算-----------------------------------------------------(10)4 臂部的结构-------------------------------------------------------------------------------------(13)4.1 概述----------------------------------------------------------------------------------------------------(13)4.2手臂直线运动机构-----------------------------------------------------------------------------------(13)4.2.1手臂伸缩运动------------------------------------------------------------------------------------(14)4.2.2 导向装置---------------------------------------------------------------------------------------(14)4.2.3 手臂的升降运动-------------------------------------------------------------------------------(15)4.3 手臂回转运动----------------------------------------------------------------------------------------(16)4.4 手臂的横向移动-------------------------------------------------------------------------------------(16)4.5 臂部运动驱动力计算------------------------------------------------------------------------------(17)4.5.1 臂水平伸缩运动驱动力的计算------------------------------------------------------------(17)4.5.2 臂垂直升降运动驱动力的计算------------------------------------------------------------(18)4.5.3 臂部回转运动驱动力矩的计算---------------------------------------(18)5 液压系统的设计-----------------------------------------------------------------------------(20)5.1液压系统简介---------------------------------------------------------------------------------------(20)5.2液压系统的组成------------------------------------------------------------------------------------(20)5.3机械手液压系统的控制回路---------------------------------------------(20)5.3.1 压力控制回路-------------------------------------------------------------------------------(20)5.3.2 速度控制回路-------------------------------------------------------------------------------(21)5.3.3 方向控制回路-----------------------------------------------------------------------------------(21)5.4 机械手的液压传动系统----------------------------------------------------------------------------(21)5.4.1 上料机械手的动作顺序----------------------------------------------------------------------(22)5.4.2 自动上料机械手液压系统原理介绍-------------------------------------------------------(22)5.5机械手液压系统的简单计算-----------------------------------------------(24)5.5.1 双作用单杆活塞油缸------------------------------------------------(25)5.5.2 无杆活塞油缸(亦称齿条活塞油缸)----------------------------------(27)5.5.3 单叶片回转油缸 ---------------------------------------------------(29)5.5.4 油泵的选择--------------------------------------------------------(30)5.5.5 确定油泵电动机功率N ----------------------------------------------(31)6 PLC控制回路的设计-----------------------------------------------------------------------(32)6.1 电磁铁动作顺序-------------------------------------------------------------------------------------(32)6.2 现场器件与PLC内部等效继电器地址编号的对照表---------------------------------------(33)6.3 PLC与现场器件的实际连接图------------------------------------------------------------------(34)6.4 梯形图-------------------------------------------------------------------------------------------------(35)6.5 指令程序-----------------------------------------------------------------------------------------------(36)7 结束语-----------------------------------------------------------------------------------------------------(41)8参考文献--------------------------------------------------------------------------------------------------(42)9致谢---------------------------------------------------------------------------------------------------(43)1 前言1.1 工业机器人简介几千年前人类就渴望制造一种像人一样的机器,以便将人类从繁重的劳动中解脱出来。
*******************毕业设计任务书设计题目液压传动机械手设计
课题类型方案设计类指导教师
设计内容与技术要求一、设计内容
本课题可分为以下三个小课题:
1.液压传动机械手机构方案设计;
2. 液压传动机械手液压传动方案设计;
3.液压传动机械手电气控制系统设计;
二、技术要求
1.本液压机械手的臂力为N臂=1650(N),安全系数K一般可在1.5~3,本机械手取安全系数K=2。
定位精度为±1mm。
2.本机械手的动作范围如下:手腕回转角度±115°;手臂伸长量150mm;手臂回转角度±115°;手臂升降行程170mm;手臂水平运动行程100mm。
3.运动速度:①给定的运动时间应大于电气、液压元件的执行时间;②伸缩运动的速度要大于回转运动的速度,因为回转运动的惯性一般大于伸缩运动的惯性。
在满足工作拍节要求的条件下,应尽量选取较底的运动速度。
机械手的运动速度与臂力、行程、驱动方式、缓冲方式、定位方式都有很大关系,应根据具体情况加以确定。
③在工作拍节短、动作多的情况下,常使几个动作同时进行。
为此驱动系统要采取相应的措施,以保证动作的同步。
4.驱动方式:液压驱动。
设计进度查阅资料(1周)
设计机构(1周)
液压系统设计和系统调试(2周)撰写设计报告(1周)
参考资料机电传动控制
机械设计教材
机械设计手册[M]第5卷机械设计师手册
机械设计图册
机械原理课程设计指导书机构创新设计方法。
液压传动自动上料机械手结构设计液压传动自动上料机械手是一种用于工业生产线的自动化机器人,用于将原材料或零件从一个位置移动到另一个位置。
液压传动自动上料机械手具有强大的承载能力、高速运动和高精度定位的优点,适用于重型工件的搬运和装配。
下面将分析液压传动自动上料机械手的结构设计。
1.机械手的框架结构:2.液压系统:液压传动是液压传动自动上料机械手的核心部分。
液压系统由液压泵、液压缸、液压阀门等组成。
通过液压泵提供的压力,液压缸可以实现各种动作,例如伸缩、旋转、举升等。
液压阀门控制液压传动系统的流量和压力,实现机械手的各种动作和操作。
3.机械手臂的设计:机械手臂是液压传动自动上料机械手的关键组成部分。
机械手臂通常由多个关节连接而成,可以实现多自由度的运动。
机械手臂的关节通过液压缸驱动,使机械手能够完成各种复杂的动作和任务。
机械手臂材质需要具有足够的强度和刚度,同时要求尽量轻量化,以减少能量消耗和摩擦损失。
4.末端执行器的设计:末端执行器是液压传动自动上料机械手的末端装置,用于抓取、搬运或装配工件。
末端执行器通常由夹具、卡盘或吸盘等组成,具有可调节的抓取力和灵活的动作。
末端执行器需要与机械手臂的关节连接,同时能够快速、稳定地完成工件的抓取和释放。
5.控制系统:液压传动自动上料机械手的控制系统由电气控制和液压控制两部分组成。
电气控制系统包含传感器、电机、编码器和控制器等,用于实时监测和控制机械手的运动和状态。
液压控制系统包含液压泵、液压缸、液压阀门等,用于控制机械手的动作和操作。
综上所述,液压传动自动上料机械手的结构设计涉及框架结构、液压系统、机械手臂、末端执行器和控制系统等多个方面。
合理的结构设计可以提高机械手的稳定性、精度和可靠性,从而提高生产效率和产品质量。
摘要本次设计的多功能机械手为液压通用机械手,主要由手爪、手腕、手臂、机身、机座等组成,具备上料、翻转和转位等多种功能,并按自动线的统一生产节拍和生产纲领完成以上动作。
本机械手机身采用机座式,自动线围绕机座布置,其坐标形式为圆柱坐标式,具有立柱旋转、手臂伸缩、腕部转动和腕部摆动等4个自由度;驱动方式为液压驱动,利用油缸、齿轮、齿条实现直线运动;利用油缸与齿轮、齿条或链条实现回转运动。
液压驱动的优点是压力高、体积小,出力大,动作平缓,并能在中间位置停止。
本次设计的机械手能对不同物体完成多种动作。
关键词:机械手;圆柱坐标;液压驱动AbstractThe design of multi-manipulator hydraulic manipulator general, mainly by the gripper, wrist, arm, body, base etc., with the material, flip, and a variety of functions such as translocation, in accordance with the unified autom ated production line beat and production program have done so. This machine adopts the base-type mobile phone, automatic wire around the base layout, its coordinates in the form of cylindrical coordinate type, with column rotation, arm stretching, wrist rotation and wrist swing and so four degrees of freedom; drive mode for the hydraulic drive, use fuel tank, gear, rack to achieve linear motion,use of tanks and gear, rack or chain to achieve rotary motion. Hydraulic drive has the advantage of high pressure, small size, contribute to a large, gentle movement and can stop in the middle. The design of the robot can complete a variety of different objects in action.Keywords: mechanical hand; cylindrical coordinate; fluid power drive目录摘要 (I)Abstract (II)目录........................................................................................... I II 第1章绪论. (1)1.1 机械手的基本概念 (1)1.2 机械手的发展现状及应用 (1)1.2.1 发展现状 (1)1.2.2 应用 (3)第2章方案的确定 (7)2.1 直角坐标型机械手 (8)2.2 圆柱坐标式机械手 (9)2.3 球坐标式机械手 (9)2.4 关节式机械手 (10)第3章手部结构设计 (11)3.1 设计的原始参数 (11)3.2 夹持式手部结构 (11)3.2.1 手指的形状和分类 (11)3.2.2 设计时考虑的几个问题 (12)3.2.3 手部夹紧油缸的设计 (13)第4章手腕结构设计 (17)4.1 手腕的自由度 (17)4.2 手腕的驱动力矩的计算 (18)4.2.1 手腕转动时所需的驱动力矩 (18)4.2.2 手腕回转油缸的驱动力矩计算 (21)4.2.3 手腕回转缸的尺寸及其校核 (22)第5章手臂工作油缸的设计与计算 (27)5.1 手臂伸缩油缸的设计与校核 (27)5.1.2 尺寸校核 (27)5.1.3 导向装置 (33)5.1.4 平衡装置 (33)5.2 手臂升降油缸的设计与校核 (33)5.2.1 尺寸设计 (33)5.2.2 尺寸校核 (33)5.3 手臂回转油缸的设计与校核 (34)5.3.1 尺寸设计 (35)5.3.2 尺寸校核 (35)第6章其它零部件的选择设计 (38)6.1 油缸的密封 (38)6.1.1 活塞式油缸的泄漏与密封 (38)6.1.2 回转油缸的泄漏与密封 (42)6.2 控制调节阀的选择 (44)6.3 辅助装置的选择 (44)6.4 液压传动机械手的缓冲与定位 (45)结论 (47)致谢 (48)参考文献 (49)CONTENTSAbstract ........................................................... 错误!未定义书签。
Chapter 1 Introduction .................................... 错误!未定义书签。
1.1 The basic concept of a robot ................ 错误!未定义书签。
1.2 Manipulator Development and Application错误!未定义书签。
1.2.1 Development Status ...................... 错误!未定义书签。
1.2.2 Application ............................... 错误!未定义书签。
Chapter 2 program to determine...................... 错误!未定义书签。
2.1 Cartesian coordinate type robot ........... 错误!未定义书签。
2.2 Cylindrical coordinate manipulator ...... 错误!未定义书签。
2.3 Spherical manipulator ......................... 错误!未定义书签。
2.4 Joint Manipulator ............................... 错误!未定义书签。
Chapter 3 Design of hand................................. 错误!未定义书签。
3.1 The original design parameters ............ 错误!未定义书签。
3.2 Clamp-type structure of the hand ......... 错误!未定义书签。
3.2.1 Finger shape and classification ..... 错误!未定义书签。
3.2.2 Some consideration for the design problem错误!未定义书签。
3.2.3 Hand clamping cylinder design ..... 错误!未定义书签。
Chapter 4 Structural Design of the wrist ......... 错误!未定义书签。
4.1 degrees of freedom wrist ..................... 错误!未定义书签。
4.2 Calculation of torque of the wrist ........ 错误!未定义书签。
4.2.1 Wrist rotation torque required .... 错误!未定义书签。
4.2.2 Wrist rotation torque of cylinder calculation错误!未定义书签。
4.2.3 Wrist rotation cylinder and check the size of错误!未定义书签Chapter 5 Arm cylinder design and calculation work错误!未定义书签。
5.1 Telescopic arm design and checking the size of fuel tanks错误!未定义5.1.2 Size Check ................................ 错误!未定义书签。
5.1.3 Oriented devices ........................ 错误!未定义书签。
5.1.4 Balance device .......................... 错误!未定义书签。
5.2 Arm lift cylinder design and checking the size of错误!未定义书签。
5.2.1 Dimension Design ..................... 错误!未定义书签。
5.2.2 Size Check (33)5.3 Rotary arm design and checking the size of fuel tanks (34)5.3.1 Dimension Design ..................... 错误!未定义书签。
5.3.2 Size Check (35)Chapter 6 Other parts of the selection of design (38)6.1 Cylinder seal (38)6.1.1 Piston cylinder leak in the seal (38)6.1.2 Rotating cylinder leakage and seal (42)6.2 Control Valve Selection (44)6.3 The choice of auxiliary devices (44)6.4 Hydraulic manipulator and positioning cushion (45)Conclusion (47)Express thanks (48)References (49)第1章绪论1.1 机械手的基本概念液压通用机械手,就其本质上来说,属于工业机器人的范畴,机器人学是近几十年来迅速发展起来的一门综合学科。