杨庄中学2013年中考数学专题复习一
- 格式:doc
- 大小:1.05 MB
- 文档页数:28
杨庄镇一中2013-2014学年第一学期第一次月考试卷七年级数学一、填空(3′×10=30′)1、正方体或长方体是一个立体图形,它是由_____个面,_______条棱,_______个顶点组成的。
2、52-的绝对值是 ,相反数是 ,倒数是 3、写出两个三视图形状都一样的几何体:_______、_________。
4、数轴上到原点的距离等于3个单位长的点所表示的数为 。
5、如图,截去正方体一角变成一个多面体,这个多面体有____个面,____条棱,___个顶点。
6、要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x=____,y =______。
7、若向南走2m 记作2m -,则向北走3m 记作 m . 8、用“<”“=”或“>”号填空: -2_____098- _____109- -(+5) _____-(-|-5|)9、若a 与-5互为相反数,则a =_________;若b 的绝对值是21-,则b =_________.10、一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是________. 二、选择题(3′×10=30′)(第5题)1 2 3x y(第6题)1、下列说法正确的是( )A 、有最小的正数B 、有最小的自然数C 、有最大的有理数D 、无最大的负整数2、一个平面截圆柱,则截面形状不可能是………………………( )A 、圆B 、三角形C 、长方形D 、梯形3、如图,该物体的俯视图是 ( )A 、B 、C 、D 、4、如果|a|=-a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数 5、下列各数中互为相反数的是( )A .12-与0.2B .13与-0.33C .-2.25与124 D .5与-(-5)6、将正方体展开后,不能得到的展开图是 ( )(A )(B )(C )(D )7、()()931275129735--+++=+-+-是应用了( )A 、加法交换律B 、加法结合律C 、分配律D 、加法的交换律与结合律8、一个数是10,另一个数比10的相反数小2,则这两个数的和为( )A .18B .-2C .-18D .2 9、正方体的截面不可能是 ( )A 、 四边形B 、 五边形C 、 六边形D 、 七边形10、如图,数轴上点P 表示的数可能是( )A.-2.66B. -3.57C. 3.2-D. -1.89 三、计算下列各题(每小题5′,共15′)1、()()()3914512---+--2、3223121213+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+3、 (-143) - (+631)-2.25+310四、(6′)分析图6①,②,④中阴影部分的分布规律,按此规律在图6③中画出其中的阴影部分.五、(6′)某部队新兵入伍时,对新兵进行“引体向上”测试,以50次为标准,超过50次用正数表示,不足50次用负数表示,第二小队的10名新六、如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数。
第一部分 数与代数数与式 实数83代数式84整式与分式85 第1课时整式85第2课时因式分解86 第3课时分式87第4讲二次根式89 第二章方程与不等式 第1讲方程与方程组90第1课时一元一次方程与二元一次方程组 第2课时分式方程91 第3课时一元二次方程93 第2讲不等式与不等式组 94 第三章函数第1讲函数与平面直角坐标系 97 第2讲一次函数99 第3讲反比例函数101 第4讲二次函数103第二部分第四章三角形与四边形 第1讲相交线和平行线106 第2讲三角形108 第1课时三角形108第2课时 等腰三角形与直角三角形 110第3讲四边形与多边形112 第1课时多边形与平行四边形 112第2课时特殊的平行四边形 114 第3课时梯形116 第五章圆第1讲圆的基本性质118 第2讲与圆有关的位置关系120 第3讲与圆有关的计算122 第六章图形与变换第1讲图形的轴对称、平移与旋转 124第2讲视图与投影126 第3讲尺规作图127 第4讲图形的相似130第一章 第1讲 第2讲 第3讲90空间与图形第5讲解直角三角形132第三部分统计与概率第七章统计与概率第1讲统计135第2讲概率137第四部分中考专题突破专题一归纳与猜想140专题二方案与设计141专题三阅读理解型问题143专题四开放探究题145专题五数形结合思想147中考数学基础题强化提高测试中考数学基础题强化提高测试中考数学基础题强化提高测试中考数学基础题强化提高测试中考数学基础题强化提高测试中考数学基础题强化提高测试2013年中考数学模拟试题( 2013年中考数学模拟试题(基础题强化提高测试114921513153415551576159)161)165第五章圆第1讲圆的基本性质A级基础题1 .下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有()A . 4个B . 3个C. 2个D . 1个2. (2012年江苏苏州)如图X5 —1 —1,已知BD是O O的直径,点A, C在O O上, AB= BC,/ A OB = 60 ° 则/ BDC 的度数是()A . 20 °B . 25 ° C. 30 ° D . 40 ° W w .图X5 — 1 - 1图X5 — 1—2图X5 —1—33. (2011年四川成都)如图X5 —1 —2,若AB是O 0的直径,CD是O 0的弦,/ ABD =58 ° 则/ BCD =()A. 116°B. 32°C. 58°D. 64°4. (2012年四川广元)如图X5 —1—3, A, B 是O 0上两点.若四边形ACB0是菱形,O 0的半径为r,则点A与点B之间的距离为()A. ,2rB. . 3rC. rD. 2r5. (2011年四川乐山)如图X5 —1 —4, CD是O 0的弦,直径AB过CD的中点M.若/B0C = 40 ° 则/ ABD =()A. 40°B. 60°C. 70°D. 80°图X5 — 1 — 48. (2012年贵州六盘水)当宽为3 cm 的刻度尺的一边与圆相切时,另一边与圆的两个交 点处的读数如图 X5 — 1 — 7(单位:cm),那么该圆的半径为 _________ cm. 9.(2011年福建漳州)如图X5 —1 — 8, AB 是O 0的直径,卩 :1 ' ,Z COD = 60 °(1) △ AOC 是等边三角形吗?请说明理由;(2) 求证:OC // BD.10. (2011年湖南长沙)如图X5 — 1 — 9,在O O 中,直径AB 与弦CD 相交于点 P , Z CAB=40°, Z APD = 65°(1) 求Z B 的大小;(2) 已知圆心O 到BD 的距离为3,求AD 的长.6. (2012年山东泰安)如图X5 — 1 — 5, 结论不成立的是()A . CM = DM B.C . Z ACD = Z ADC D . OM = MD7. (2011年甘肃兰州)如图X5 — 1 — 6, Z BAC = 90° OA = 1, BC = 6,则O O 的半径为(A . 6B . 13 C. 13尺泰安 AB 是O O 的直径,弦 CD 丄AB ,垂足为M ,下列 O O 过点B , C ,圆心0在等腰Rt △ ABC 的内部, )图 X5 — 1— 811. (2012年宁夏)如图X5 — 1 — 10,在O O 中,直径 AB 丄CD 于点E ,连接CO 并延长12. (2012年湖南长沙)如图X5 — 1 — 11, A , P , B , C 是半径为8的O O 上的四点,且 满足/ BAC = Z APC = 60°B 级中等题13. (2012年安徽)如图X5 — 1 — 12,点A , B , C , D 在O O 上,点O 在/ D 的内部,四 边形OABC 为平行四边形,则/ OAD +Z OCD = ___________ ° .交AD 于点F ,且CF 丄AD.求/ D 的度数.图 X5 — 1 — 10a图 X5 — 1 — 9AB(1)求证:△ ABC 是等边三角形;图 X5 — 1 — 11D14.(2011年福建福州)如图X5 — 1 — 13,在以O 为圆心的两个同心圆中,大圆的弦 AB切小圆于点C 若/ AOB = 120°,则大圆半径 R 与小圆半径r 之间满足()A . R = . 3rB . R = 3rC . R = 2rD . R = 2 2r15. (2011年云南曲靖)如图X5 — 1 — 14,点A , B , C , D 都在O O 上,OC 丄AB ,/ ADC =30°.(1)求/ BOC 的度数; ⑵求证:四边形 AOBC 是菱形.C 级拔尖题16. (2011年江苏南京)如图X5 — 1 —15,在平面直角坐标系中,O P 的圆心是(2, a )(a >图 X5 — 1— 15A . 2 3B . 2 + 2C . 23D . 2+ .317. (2011年上海)如图X5 — 1 — 16,点C , D 分别在扇形 AOB 的半径OA , OB 的延长线上,且OA = 3, AC = 2, CD 平行于AB ,并与弧 AB 相交于点 M ,N.图 X5 — 1 — 14(1)求线段0D的长;1⑵若tan/ C= 2,求弦18. (2012年上海)如图X5 —1 —17,在半径为2的扇形AOB中,/ AOB= 90°点C是弧AB 上的一个动点(不与点A,B重合),OD丄BC, OE丄AC,垂足分别为D, E.(1) 当BC = 1时,求线段OD的长;(2) 在厶DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;⑶设BD =X,第2讲与圆有关的位置关系A级基础题1•若O O的半径为4 cm,点A到圆心O的距离为3 cm,那么点A与O O的位置关系是( )A .点A在圆内B .点A在圆上C .点A在圆外D .不能确定2. (2012年江苏无锡)已知O O的半径为2,直线I上有一点P满足PO = 2,则直线I与O O的位置关系是()A .相切B.相离C .相离或相切D .相切或相交3. (2012年湖南衡阳)已知O O的直径为12 cm,圆心O到直线I的距离为5 cm,则直线I与O O的交点个数为()A . 0 B. 1 C. 2 D .无法确定4. (2010年浙江温州)如图X5 —2- 1,在厶ABC中,AB = BC = 2,以AB为直径的O O与BC相切于点B,则AC =()图X5 —2—1A. .2B. .3C. 2 2D. 2 .35. (2010年甘肃兰州)如图X5 —2—2,正三角形的内切圆半径为1,那么这个正三角形的边长为()图X5 —2—2A . 2B . 3C. ,3D . 2 36 . (2012年黑龙江)如图X5 —2 —3,已知AB是O O的一条直径,延长AB至点C,使AC= 3BC, CD与O O相切,切点为D,若CD= 3 怎,则线段BC= .D -------------7 . (2012年四川广元)平面上有O O及一点P,点P到O O上一点的距离最长为6 cm,最短为2 cm,则O O的半径为_______________ cm.8 . (2012年江苏扬州)如图X5 —2 —4, PA, PB是O O的切线,切点分别为A, B两点, 点C在O O上,如果/ ACB = 70°那么/ P的度数是_______________ .9. (2012年湖南株洲)如图X5 —2 —5,已知AD为O O的直径,B为AD延长线上一点,BC 与O O 切于点C ,Z A = 30 ° 求证:(1)BD = CD ;(2) △ AOC ^A CDB.10. (2010年广东中山)如图X5 — 2— 6, PA 与O O 相切于点 A ,弦AB 丄OP , OP 与O O 相交于点 D ,已知 OA = 2, OP = 4.(1) 求/ POA 的度数; (2) 计算弦AB 的长.B 级中等题E _____________ H---------- U图 X5 — 2— 711. (2012 年山东济南)如图 X5 — 2— 7,在 Rt △ ABC 中,/ B = 90 ° AB = 6, 其三边为直径向三角形外作三个半圆,矩形EFGH 的各边分别与半圆相切且平行于图 X5 — 2 -5图 X5 — 2— 6则矩形EFGH的周长是________ .垂足为C,BC = 8,以AB 或BC,12. (2012年四川自贡)如图X5 —2- 8, AB是O O的直径,AP是O O的切线,A是切点, BP与O O交于点C.⑴若AB = 2,/ P= 30 °求AP的长;(2) 若点D为AP的中点,求证:直线CD是O O的切线.£C级拔尖题13. 如图X5 —2—9(1),一个圆形电动砂轮的半径是20 cm,转轴OA长是40 cm.砂轮未工作时停靠在竖直的档板OM上,边缘与挡板相切于点 B.现在要用砂轮切割水平放置的薄铁片(铁片厚度忽略不计,ON是切痕所在的直线).(1) 在图X5 —2—9(2)的坐标系中,求点A与点A1的坐标;(2) 求砂轮工作前后,转轴OA旋转的角度和圆心A转过的弧长.注:图X5 — 2 —9(1)是未工作时的示意图,图X5 —1—26(2)是工作前后的示意图.选做题14. (2012年江西)已知,纸片O O的半径为2,如图X5 —2 —10(1),沿弦AB折叠操作.(1)如图X5 —2—10(2),当折叠后的J'经过圆心O时,求八的长;图X5 —2—9(2) 如图X5 —2- 10(3),当弦AB = 2时,求折叠后所在圆的圆心O '到弦AB的距离;(3) 在图X5 —2—10(1 )中,再将纸片O O沿弦CD折叠操作.①如图X5 —2—10(4),当AB // CD,折叠后的;!与「,所在圆外切于点P时,设点O 到弦AB, CD的距离之和为d,求d的值;②如图X5 —2—10(5),当AB与CD不平行,折叠后的;!与「,所在圆外切于点P时,N为CD的中点.试探究四边形OMPN的形状,并证明你的结论.图X5 —2—10第3讲与圆有关的计算A级基础题1 . (2012年湖南衡阳)一个圆锥的三视图如图X5 —3 —1,则此圆锥的底面积为()设点M为AB的中点,点⑷— 3— 3图 X5 — 3 — 45. (2012年福建漳州)如图X5 — 3— 4,一枚直径为4 cm 的圆形古钱币沿着直线滚动一周, 圆心移动的距离是( )2 n cm B . 4 n cm C . 8 n cm D . 16 n cm图 X5 — 3— 5(2012年湖南衡阳)如图X5 — 3 — 5, O O 的半径为6 cm ,直线AB 是O O 的切线,切 弦BC // A0•若/ A = 30°则劣弧就的长为 _________________ cm.(2011年内蒙古乌兰察布)已知0为圆锥的顶点,M 为圆锥底面上一点,点 P 在0M 上.一只蜗牛从点 P 出发,绕圆锥侧面爬行,回到点 P 时所爬过的最短路线的痕迹如图 X5 —3 — 6,若沿0M 将圆锥侧面剪开并展开,所得的侧面展开图是 ( )230 n cm B .250 n cm D .2 25 n cm2100 n cmA . C . 2. (2012年四川自贡)如图X5 — 3 — 2,圆锥形冰淇淋盒的母线长是 则该圆锥形底面圆的面积是 ()13 cm ,高是 12 cm ,A .B .C . 10 n 25 n 60 n 65 n 2cm2cm2cm2 cm边扇形” 3.如果一个扇形的弧长等于它的半径, 的面积为()那么此扇形称为“等边扇形”, 则半径为2的“等n B . 1 C . 2(2012年湖南娄底 小圆与正方形各边都相切, 的面积是( )A . 4 nB . 3 nC .4. 2D ・§n)如图X5 — 3 — 3,正方形MNEF 的四个顶点在直径为 4的大圆上, AB 与CD 是大圆的直径,AB 丄CD , CD 丄MN ,则图中阴影部分J 丿6. 点为B ,7. 图 X5 — 3 -2DA10.(2012年浙江舟山)如图X5 — 3— 8,已知O O 的半径为2,弦AB 丄半径 OC ,沿AB 将弓形 ACB 翻折,使点 C 与圆心 O 重合,则月牙形(图中实线围成的部分 )的面积是11. (2011年江苏宿迁)如图X5 — 3— 9,把一个半径为12 cm 的圆形硬纸片等分成三个扇 形,用其中一个扇形制作成一个圆锥形纸筒的侧面 (衔接处无缝隙且不重叠),则圆锥底面半径是 ________ cm.12. (2011年浙江湖州)如图X5 — 3— 10,已知AB 是O O 的直径,弦CD 丄AB ,垂足为E , / AOC = 60° OC = 2.(1) 求OE 和CD 的长; (2) 求图中阴影部分的面积.D)已知一个圆的半径为 5 cm ,则它的内接六边形的边长为9. (2011年山东聊城)如图X5 — 3 — 7,圆锥的底面半径 OB 为10 cm ,它的展开图扇形的 半径AB 为30 cm ,则这个扇形的圆心角 Aa 的度数为 _________图 X5 — 3— 7图 X5 — 3 — 6C & (2012年四川巴中B 级中等题13.某花园内有一块五边形的空地如图 X 5 — 3— 11,为了美化环境,现计划在五边形各顶点为圆心,2m 长为半径的扇形区域(阴影部分)种上花草,那么种上花草的扇形区域总面积)2 2 2 2A . 6 n mB . 5 n mC . 4 n mD . 3 n m14. _______________________________________________________________ (2012年四川凉山州)如图X5 — 1 — 12,在由小正方形构成的网格中,半径为 1的O O 在格点上,则图中阴影部分两个小扇形的面积之和为 ____________________________________________ (结果保 留n )15. (2011年广东深圳)如图X5 — 3— 13(1),已知在O O 中,点C 为劣弧AB 上的中点, 连接AC 并延长至D ,使CD = CA ,连接DB 并延长DB 交O O 于点E ,连接AE.(1) 求证:AE 是O O 的直径;(2) 如图X5 — 3— 13(2),连接EC , O O 半径为5, AC 的长为4,求阴影部分的面积之和(结 果保留n 与根号).图 X5 — 3 - 10图 X5 — 3— 11图 X5 — 3— 12图 X5 — 3—13C级拔尖题16. (2011年四川广安)如图X5 —3- 14,圆柱的底面周长为6 cm, AC是底面圆的直径,2高BC = 6 cm,点P是母线BC上一点,且PC = 3BC.一只蚂蚁从点A出发,沿着圆柱体的表面爬行到点P的最短距离是()C图X5 —3—14 r 6)A. 14 cm. nB. 5 cmC. 3 .5 cmD. 7 cm选做题17. (2012年湖南岳阳)如图X5 —3—15,在O O 中, AD = AC,弦AB与弦AC交于点A,弦CD与AB交于点F,连接(1) 求证:AC2= AB •F ;(2) 若O O的半径长为2 cm,BC./ B= 60°求图中阴影部分的面积.AB . 8C . 9D . 10第六章图形与变换第1讲图形的轴对称、平移与旋转A 级基础题2. (2012年辽宁沈阳)在平面直角坐标系中,A . (— 1,— 2)B . (1 , — 2)C . (2, — 1)D . ( — 2,1)3 . (2012年浙江义乌)如图X6 — 1 — 1,将周长为8的厶ABC 沿BC 方向平移1个单位得 到厶DEF ,则四边形 ABFD 的周长为()6 8 10 12 (2012年贵州遵义)把一张正方形纸片按如图 X6 — 1 — 2(1)、(2)对折两次后,再按如图 个三角形小孔,则展开后的图形是 ( )图 X6 — 1 — 25 . (2012年四川资阳)下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形; ⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中心对称图形的有 ()A . 1种B . 2种C . 3种D . 4种6 . (2012年湖北武汉)如图X6 — 1 — 3,矩形 ABCD 中,点E 在边AB 上,将矩形 ABCD 沿直线DE 折叠,点A 恰好落在边BC 的点F 处.若AE = 5,BF = 3,贝U CD 的长是()1.下列图形中,是轴对称图形的是点P (—1,2)关于x 轴的对称点的坐标为( )A .B .C .D .4.X6— 1 — 2(3)挖去图 X6 — 1— 1B图 X6 — 1 — 57. ____________________________________________________ (2012年广西玉林)在平面直角坐标系中, 一青蛙从点A (— 1,0)处向右跳2个单位长度, 再向上跳2个单位长度到点 A '处,则点A '的坐标为 ___________________________________________ .8. (2012年福建厦门)如图X6 — 1— 4,点D 是等边△ ABC 内的一点,如果△ ABD 绕点A 逆时针旋转后能与△ ACE 重合,那么旋转了 __________ 度.(2012年浙江温州)分别以正方形的各边为直径向其内部作半圆得到的图形如图 X6 — 1 —5•将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是 度.9. (2012年湖南岳阳)如图X6 — 1 — 6,在Rt A ABC 中,/ B = 90°沿AD 折叠,使点B 落在斜边 AC 上,若AB = 3, BC = 4,贝U BD = ____________ .11 . (2012年四川凉山州)如图X6 — 1—乙梯形ABCD 是直角梯形. (1) 直接写出点A , B , C , D 的坐标; (2)画出直角梯形 ABCD 关于y 轴的对称图形,使它与梯形ABCD 构成一个等腰梯形;(3)将(2)中的等腰梯形向上平移四个单位长度,画出平移后的图形12. (2011年广东珠海)如图X6 — 1— 8,将一个钝角△ ABC (其中/ ABC = 120 °绕点B 顺 时针旋转得△ A 1BC 1,使得点C 落在AB 的延长线上的点 C 1处,连接AA 1. (1)写出旋转角的度数;(2)求/ A 1AC = Z C 1.1A -11-]/ T/(■(不要求写作法).a D c图 X6 — 1图 X6 — 1 — 7-4B 级中等题13. (2012 年山东济南)如图 X6 — 1 — 9,在 Rt△ ABC 中,/ C = 90 ° AC = 4,将厶 ABC沿CB 向右平移得到△ DEF ,若平移距离为2,则四边形ABED 的面积等于 ______________ .14.(2012年黑龙江大庆)在平面直角坐标系中,O 为坐标原点,点 A 的坐标为(3, 1),将OA 绕原点按逆时针方向旋转30°得OB ,则点B 的坐标为()A . (1 , 3)B . (— 1, .3)C . (0,2)D . (2,0)15. (2012年江苏南京)如图X6 — 1 — 10,在 Rt △ ABC 延长线上,且 BD = AB ,过点 B 作BE 丄AC ,与BD 的垂线 (1) 求证:△ ABC ◎△ BDE ;(2) △ BDE 可由△ ABC 旋转得到,利用尺规作出旋转中心C 级拔尖题16. (2012年山东济宁)如图X6 — 1— 11,在平面直角坐标系中,有一Rt △ ABC ,且A(—1,3), B( — 3, — 1), C(— 3,3),已知△ A 1AC 1 是由△ ABC 旋转得到的.(1) 请写出旋转中心的坐标是 ________ ,旋转角是 _________ 度;(2) 以(1)中的旋转中心为中心,分别画出△ A 1AC 1顺时针旋转90° 180°的三角形; (3) 设Rt △ ABC 两直角边BC = a , AC = b ,斜边AB = c ,利用变换前后所形成的图 X6 —案证明勾股定理.5 -中,/ ABC = 90 °点D 在BC 的 DE 交于点E.0(保留作图痕迹,不写作法 ).? 厂IL!,4图 X6 — 1— 9 I ___rt —H~I图X6 — 1 —11 -4选做题17. (2011年江苏南通)如图X6 —1 —12 , O为正方形ABCD的中心,分别延长OA, OD 到点F ,E,使OF = 2OA,OE= 2OD,连接EF.将厶EOF绕点O逆时针旋转a角得到△ EQF1(如图X6 —1 —13).(1)探究AE1与BF1的数量关系,并给予证明;⑵当a= 30时,求证:△ AOE1为直角三角形.*----------- Ed A L 图X6 —1 —124 F,aijc 图X6 —1 —第2讲视图与投影A级基础题1. 下列结论正确的是()①物体在阳光照射下,影子的方向是相同的;②物体在任何光线照射下,影子的方向都是相同的;③物体在路灯照射下,影子的方向与路灯的位置有关;④物体在光线照射下,影子的长短仅与物体的长短有关.A . 1个B . 2个C. 3个D . 4个2. (2012年四川资阳)如图X6 —2—1是一个正方体被截去一角后得到的几何体,它的俯视图是()A B C D3. (2012年江苏宿迁)如图X6 — 2 —2是一个用相同的小立方体搭成的几何体的三视图, 则组成这个几何体的小立方体的个数是()d 图 X6 — 2 —2A . 2个B . 3个C . 4个D . 5个4. (2012年福建厦门)如图X6 — 2— 3是一个立体图形的三视图,则这个立体图形是()A .圆锥B .球C .圆柱D .三棱锥5. (2012年云南)如图X6 — 2— 4是由6个相同的小正方体搭成的一个几何体,则它的俯 视图是()6 •李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能的是• □— BCD)如图X6 — 2 — 5所示的物体是由两个紧靠在一起的圆柱体组成,它和正三角形,则左视图是 ()A .矩形B .正方形C .菱形D .正三角形9.一个几何体的三视图如图X6 — 2 — 6,那么这个图 X6 — 2 -37. (2011年浙江温州 的主视图是( )& (2010年浙江杭州 )若它的主视图和俯视图分别是正方形左观圏X6 — 2 —5几何体是()图 X6— 2 -610. (2012年衢州)长方体的主视图、俯视图如图X6 — 2 — 7所示,则其左视图面积为()A . 3B . 4C . 12D . 1611. (2012年四川自贡)画出如图X6 — 2 — 8所示立体图的三视图.图 X6 — 2— 8!-.'1 ■■/ 图 X6 — 2— 9B 级中等题13•关于盲区的说法正确的有 ()① 我们把视线看不到的地方称为盲区; ② 我们上山与下山时视野盲区是相同的;③ 我们坐车向前行驶,有时会发现一些高大的建筑物会被比它矮的建筑物挡住; ④ 人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大. A . 1个 B . 2个X6 — 2 — 10所示是它的三视图,则这一堆方便面图 X6 — 2— 712.分别画出图 X6 — 2 — 9中几何体的主视图、左视图和俯视图.丛上面看14 .若干桶方便面摆放在桌子上,如图AB 主规图D俯视图俯视图从左边共有(生视图左观图i :图X6 —2 —10最多可以是 个.图 X6 — 2— 11图 X6 — 2 — 12C 级拔尖题16. (2011年山东东营)如图X6 — 2— 13,观察由棱长为1的小立方体摆成的图形,寻找 规律:如图(1)中:共有1个小立方体,其中1个看得见,0个看不见;如图 ⑵中:共有8 个小立方体,其中 得见,8个看不见;…,则第 共有1个小立方体,其中 7个看得见,1个看不见;如图 ⑶中:共有27个小立方体,其中 (6)个图中,看得见的小立方体有 _______ 个.19个看图 X6 — 2 — 1317.如图 X6 — 2 — 14, 筑物的一端DE 所在的直线 方向前进,小明一直站在点一段街道的两边沿所在直线分别为 AB ,PQ ,并且AB // PQ ,建 MN丄AB 于点M ,交PQ 于点N ,小亮从胜利街的 A 处,沿着AB P 的位置等待小亮. (1)请你画出小亮恰好能看见小明的视线,以及此时小亮所在的位置 (用点C 标出);C 到胜利街口的距离.第3讲尺规作图A 级基础题1•下列各条件中,不能作出唯一三角形的条件是 ()A .已知两边和夹角15. (2012年黑龙江大庆)用八个同样大小的小立方体粘成一个大立方体如图 X6 — 2- 11, 得到的几何体的三视图如图 X6 — 2— 12.若小明从八个小立方体中取走若干个, 剩余的小立方 体保持原位置不动,并使得到的新几何体的三视图仍是图 X6 — 2— 12,则他取走的小立方体 ■■图 X6 — 2 — 14NC. 已知两角和夹边D. 已知两角和其中一角的对边12. (2011年浙江绍兴)如图X6 — 3 — 1,在厶ABC 中,分别以点A 和点B 为圆心,大于-AB 的长为半径画弧,两弧相交于点M , N ,作直线MN ,交BC 于点D ,连接AD.若厶ADC 的周A . 7B . 14C . 17D . 203. (2012年河北)如图X6 — 3 — 2,点C 在/ AOB 的OB 边上,用尺规作出了 CN // OA , 在作图痕迹中,■'是()c M B图 X6 — 3— 2A . 以点 C 为圆心, OD 为半径的弧B .以点 C 为圆心, DM 为半径的弧 C . 以点 E 为圆心, OD 为半径的弧D . 以点E 为圆心, DM 为半径的弧 w W w .4. 下列关于作图的语句,正确的是 )A .画直线AB = 10厘米 B .画射线OB = 10厘米C .已知A , B , C 三点,过这三点画一条直线D .过直线AB 外一点画一条直线和直线 AB 平行 5.已知线段 AB 和CD ,如图X6 — 3— 3,求作一线段,使它的长度等于AB + 2CD.Z _______ 匚 ___________ ■图 X6 — 3— 36. 试把如图X6 — 3 — 4所示的角四等分(不写作法).图 X6 — 3 — 4长为10, AB = 7,则厶ABC 的周长为(图 X6 — 3— 17. (2012年广西玉林)已知等腰厶ABC的顶角/ A = 36°如图X6 —3—5).(1)作底角/ ABC的平分线BD ,交AC于点D(用尺规作图,不写作法,但保留作图痕迹,& (2012年贵州铜仁)某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口 A , B 的距离相等,且到广场管理处 C 的距离等于A 和B 之间距离 的一半,A , B , C 的位置如图X6 - 3-6,请在原图上利用尺规作图作出音乐喷泉 M 的位置(要 求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图 ).9. (2012年山东青岛)如图X6 -3- 7已知:线段 a , c ,/ a 求作:△ ABC ,使 BC = a , AB = c ,/ ABC = / a10. (2012年浙江绍兴)如图X6 - 3-8, AB // CD ,以点A 为圆心,小于 AC 长为半径作1 圆弧,分别交AB , AC 于E , F 两点,再分别以 E , F 为圆心,大于?EF 长为半径作圆弧,两 条圆弧交于点P ,作射线AP ,交CD 于点M.(1) 若/ ACD = 114 ° 求/ MAB 的度数;(2) 若CN 丄AM ,垂足为 N ,求证:△ ACNMCN .c ______图 X6 - 3 -8然后用墨水笔加墨);(2)通过计算,说图 X6 — 3 -6ABD 和厶BDC 都是等腰三角形.图 X6 - 3 - 7作法:(1)分别作 __________ ,两平分线交于点 0; ⑵过点0作 _____ 的垂线段,交BC 于点D ; (3)以点—为圆心,以 __ 的长为半径,画圆, 那么,所画的O 0就是△ ABC 的 _______ .12. (2011年山东青岛)如图X6 — 3— 10,已知线段a 和h.求作:△ ABC ,使得 AB = AC ,BC = a ,且BC 边上的高 AD = h. 要求:尺规作图,不写作法,保留作图痕迹.■ ____ 图 X6 — 3 — 10B 级中等题13.如图X6 — 3— 11,画一个等腰△ ABC ,使得底边 BC = a ,它的高 AD = h.图 X6 — 3 — 1114.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点 P ,使P 到该镇 所属A 村、B 村、C 村的村委会所在地的距离都相等 (A ,B ,C 不在同一直线上,地理位置如 图X6 — 3 — 12),请你用尺规作图的方法确定点 P 的位置.要求: 写出已知,求作,不写作法,保留作图痕迹. 解:已知:求作:图 X6 — 3— 12 C 级拔尖题15. (2012年广西贵港)如图X6 — 3— 13,已知△ ABC ,且/ ACB = 90 ° (1) 请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明):11.如图 X6 — 3— 9,图 X6 — 3 -9① 以点A 为圆心,BC 边的长为半径作O A ;② 以点B 为顶点,在 AB 边的下方作/ ABD = Z BAC. (2) 请判断直线BD 与O A 的位置关系(不必证明).16. (2011年甘肃兰州)如图X6 — 3— 14,在单位长度为1的正方形网格中,一段圆弧经 过网格的交点A , B , C.(1) 请完成如下操作:① 以点0为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面 直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心 D 的位置(不用写作法,保留作图痕 迹),并连接AD , CD ;(2) 请在⑴的基础上,完成下列问题: ① 写出点的坐标: C _________ , D __________ ; ② O D 的半径= ____________ (结果保留根号);③ 若扇形ADC 是一个圆锥的侧面展开图,则该圆锥的底面面积为 ____________ (结果保留n ; ④ 若E(7,0),试判断直线EC 与O D 的位置关系,并说明你的理由.选做题 17. (2012年四川达州)数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平 分线,方法如下:作法:如图 X6 — 3— 15(1),①在 0A 和0B 上分别截取 0D , 0E ,使0D = 0E. ② 分别以D , E 为圆心,以大于DE 的长为半径作弧,两弧在/ A0B 内交于点C. ③ 作射线0C ,则0C 就是/ A0B 的平分线.小聪的作法步骤:如图 X6 — 3— 15(2),①利用三角板上的刻度,在 0A 和0B 上分别截取 0M , 0N ,使 0M = 0N.② 分别过M , N 作0M , 0N 的垂线,交于点 P. ③ 作射线0P ,则0P 为/ A0B 的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线. 根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是 ____________ ;X6 — 3-13 图 X6 — 3 —14co.■⑵A 1 2B 1 4C 2 1D 14 (1)图 X6 — 3- 151. (2010年广西桂林)如图X6 — 4 — 1,已知△ ADE 与厶ABC 的相似比为1 : 2,则厶ADE 与厶ABC 的面积比为( )A(2) 小聪的作法正确吗?请说明理由;(3) 请你帮小颖设计用刻度尺作角平分线的方法(要求:作出图形,写出作图步骤,不予证明).第4讲图形的相似A 级基础题BL --------------- C图 X6 — 4— 11 : 16,则它们的周长之比为();比例线段的为( )4. (2011 年湖南怀化)如图 X6 — 4 — 2,在厶 ABC 中,DE // BC , AD = 5, BD = 10, AE = 3, 则CE 的值为( )A . 1 : 2B . 1 : 4C . 1 : 5D . 1 : 163•下列各组线段 (单位:cm )中, A . 1,2,3,4 B . 1,2,2,4 C . 3,5,9,13 D . 1,2,2,32.若两个相似三角形的面积之比为图X6 — 4 -2A . 9B . 6C. 3D . 45.若厶ABC s\ DEF ,它们的周长分别为 6 cm和8 cm,那么下式中一定成立的是()A . 3AB=4DEB . 4AC= 3DEC . 3 / A = 4/ DD . 4(AB + BC+ AC)= 3(DE + EF + DF)6. 如果△ ABCA' B' C', BC = 3, B ' C'= 1.8,则△ A' B'。
2013年中考数学试题分87个专题整理汇编2013中考全国100份试卷分类汇编一次函数1、(2013陕西)如果一个正比例函数的图象经过不同象限的两点A (2,m),B(n,3),那么一定有()A.m>0,n>0B.m>0,n0D.m考点:一般考查的是一次函数或者反比例函数的图象性质及待定系数法求函数的解析式。
解析:因为A,B是不同象限的点,而正比例函数的图象要不在一、三象限或在二、四象限,由点A与点B的横纵坐标可以知:点A与点B 在一、三象限时:横纵坐标的符号应一致,显然此题不可能,点A与点B在二、四象限:点A在四象限得m2、(2013陕西)根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()x-201y3p0A.1B.-1C.3D.-3考点:待定系数法求一次函数的解析式及由自变量的值确定对应的函数值。
解析:设y=kx+b,将表格中的对应的x,y的值代入得二元一次方程组,解方程组得k,b的值,回代x=0时,对应的y的值即可。
设y=kx+b,解得:k=-1,b=1,所以所以y=-x+1,当x=0时,得y=1,故选A.3、(2013•舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点()A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点考点:一次函数图象上点的坐标特征.专题:新定义.分析:如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上.解答:解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.4、(2013泰安)把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7B.3<m<4C.m>1D.m<4考点:一次函数图象与几何变换.分析:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,求出直线y=﹣x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.解答:解:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第一象限,∴,解得:m>1.故选C.点评:本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横、纵坐标均大于0.5、(2013菏泽)一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过()A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限考点:一次函数图象与系数的关系.分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限即可.解答:解:∵k+b=﹣5、kb=6,∴k<0,b<0∴直线y=kx+b经过二、三、四象限,故选D.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.6、(2013•徐州)下列函数中,y随x的增大而减少的函数是()A.y=2x+8B.y=﹣2+4xC.y=﹣2x+8D.y=4x考点:一次函数的性质.分析:根据一次函数的性质,k<0,y随x的增大而减少,找出各选项中k值小于0的选项即可.解答:解:A、B、D选项中的函数解析式k值都是整数,y随x的增大而增大,C选项y=﹣2x+8中,k=﹣2<0,y随x的增大而减少.故选C.点评:本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.7、(2013•娄底)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>2考点:一次函数的图象.分析:根据函数图象与x轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.解答:解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选C.点评:此题考查一次函数的图象,运用观察法解一元一次不等式通常是从交点观察两边得解.8、(2013•湖州)若正比例函数y=kx的图象经过点(1,2),则k的值为()A.B.-2C.D.2考点:一次函数图象上点的坐标特征.分析:把点(1,2)代入已知函数解析式,借助于方程可以求得k的值.解答:解:∵正比例函数y=kx的图象经过点(1,2),∴2=k,解得,k=2.故选D.点评:本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.9、(2013•益阳)已知一次函数y=x﹣2,当函数值y>0时,自变量x 的取值范围在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;一次函数的性质.分析:由已知条件知x﹣2>0,通过解不等式可以求得x>2.然后把不等式的解集表示在数轴上即可.解答:解:∵一次函数y=x﹣2,∴函数值y>0时,x﹣2>0,解得,x>2,表示在数轴上为:故选B.点评:本题考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.。
江苏省扬州市2013年中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项符合题目要求的,请根据正确选项前的字母代号填涂在答题卡相应位置上)﹣4”的概率为”这一事件发生的频率稳定在附近4.(3分)(2013•扬州)某几何体的三视图如图所示,则这个几何体是().C7.(3分)(2013•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()∠BAD=×8.(3分)(2013•扬州)方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象3B的图象交点的横坐y=时,,=4时,,=3时,,=2=1<<二、填空题((本大题共10小题,每小题3分,共30分,不需要写出解决过程,请把答案直接填在答题卡相应位置上)9.(3分)(2013•扬州)据了解,截止2013年5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为 4.5×105.10.(3分)(2013•扬州)分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).11.(3分)(2013•扬州)在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=400.P=v=12.(3分)(2013•扬州)为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有1200条鱼.×13.(3分)(2013•扬州)在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=6.ABC==314.(3分)(2013•扬州)如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为30.15.(3分)(2013•扬州)如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的长为5π.l=来求的长.的长为=516.(3分)(2013•扬州)已知关于x的方程的解是负数,则n的取值范围为n<2且n≠.,求出,的解是负数,,﹣..,17.(3分)(2013•扬州)矩形的两邻边长的差为2,对角线长为4,则矩形的面积为6.x=1+﹣另一边为:)18.(3分)(2013•扬州)如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.AE=×OM=×MH==×=EM+FN=故答案为:三、解答题(本大题共10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)(2013•扬州)(1)计算:;(2)先化简,再求值:(x+1)(2x﹣1)﹣(x﹣3)2,其中x=﹣2.×+2;20.(8分)(2013•扬州)已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.,所以,方程组的解是>﹣,的取值范围是﹣<21.(8分)(2013•扬州)端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转装盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得20元购物券,最多可得80元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.元的概率为:=22.(8分)(2013•扬州)为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.知,小明是甲组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.(23.(10分)(2013•扬州)如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.24.(10分)(2013•扬州)某校九(1)、九(2)两班的班长交流了为四川安雅地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.人,即可得方程:﹣=8﹣=825.(10分)(2013•扬州)如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.ADB=,∴===5ABE=BE=====26.(10分)(2013•扬州)如图,抛物线y=x2﹣2x﹣8交y轴于点A,交x轴正半轴于点B.(1)求直线AB对应的函数关系式;(2)有一宽度为1的直尺平行于x轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.)分别代入解析式得;.,即<<27.(12分)(2013•扬州)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.,即x xy=+x=﹣+x=.≤y=x y=x=或的长为或的长为x=的长为28.(12分)(2013•扬州)如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n两个量之间的同一关系.(1)根据劳格数的定义,填空:d(10)=1,d(10﹣2)=﹣2;(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).根据运算性质,填空:=3(a为正数),若d(2)=0.3010,则d(4)=0.6020,d(5)=0.6990,d(0.08)=﹣1.097;(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说)即可求得=。
因式分解一、 提公因式法.a 2-b 2=(a+b)(a-b) ; a 2± 2ab+b 2=(a ± b)2; a 3+b 3=(a+b)(a 2-ab+b 2); a 3-b 3=(a-b)(a 2+ab+b 2).二、 运用公式法.a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c) 2; a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca); 三、 分组分解法.a n +b n =(a+b)(a n-1 -a n-2b+a n-3b 2-, +ab n-2-b n-1),其中 n 为偶数;a n +b n =(a+b)(a n-1 -a n-2b+a n-3b 2-, +ab n-2-b n-1),其中 n 为偶数; a n +b n =(a+b)(a n-1 -a n-2 b+a n-3b 2-, -ab n-2+b n-1),其中 n 为奇数.(一) 分组后能直接提公因式例1、分解因式: am + a n+bm + b n分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式 前两项都含有 a ,后两项都含有 b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之 间的联系。
解:原式 =(am an) (bm bn)= a(m - n) b(m • n)每组之间还有公因式!(m n )(a b)思考:此题还可以怎样分组?此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。
例 2、分解因式:2ax _10ay - 5by _bx(二) 分组后能直接运用公式例3、分解因式:x 2- y 2 ax ay分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另 外分组。
解:原式=(x 2 - y 2) (ax ay) = (x y)(x - y) a(x y) =(x + y)(x-y+a)例4、分解因式:a 2 -2ab • b 2 -c 2 解:原式=(a 2 -2ab b 2) -c 2 2 2= (a -b) -c=(a _b _c)(a _b c)注意这两个例题的区别! 练习:分解因式 3、x 2-x-9y 2-3y 4、x 2-y 2-z 2-2yz综合练习:(1) x 3 x 2y -xy 2-y 3(2) ax 2「bx 2 bx 「ax a 「b(3)2 x 亠6xy 亠9y 2 -16a 2 亠8a -1 (4) a 2 -6ab 12b 9b 2 -4a(5) 4a -2a 3 a 2 -9(6) 4a 2x _4a 2 y _ b 2x b 2 y (7)2x 2_2xy _ xz yz y(8) a 2 -2a b 2 -2b 2ab 1(9) y(y -2) -(m -1)(m1)(10) (a c)(a -c) b(b - 2a) (11) a 2(b c) b 2(a c) c 2(a b) 2abc ( 12)a 3 b 3 c 3 -3abc 四、十字相乘法.(一)二次项系数为 1的二次三项式 直接利用公式 ---x 2(p q)x p^ (x p)(x q)进行分解。
2013年中考数学压轴题及解析分类汇编2013年中考数学压轴题及解析分类汇编2013中考数学压轴:相似三角形问题2013中考数学压轴题函数相似三角形问题(一)2013中考数学压轴题函数相似三角形问题(二)2013中考数学压轴题函数相似三角形问题(三)2013中考数学压轴:等腰三角形问题2013中考数学压轴题函数等腰三角形问题(一)2013中考数学压轴题函数等腰三角形问题(二)2013中考数学压轴题函数等腰三角形问题(三)2013中考数学压轴:直角三角形问题2013中考数学压轴题函数直角三角形问题(一)2013中考数学压轴题函数直角三角形问题(二)2013中考数学压轴题函数直角三角形问题(三)2013中考数学压轴:平行四边形问题2013中考数学压轴题函数平行四边形问题(一)2013中考数学压轴题函数平行四边形问题(二)2013中考数学压轴题函数平行四边形问题(三)2013中考数学压轴:梯形问题2013中考数学压轴题函数梯形问题(一)2013中考数学压轴题函数梯形问题(二)2013中考数学压轴题函数梯形问题(三)2013中考数学压轴:面积问题2013中考数学压轴题函数面积问题(一)2013中考数学压轴题函数面积问题(二)2013中考数学压轴题函数面积问题(三)2013中考数学压轴题:函数相似三角形问题(一) 例1直线113y x=-+分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.(1) 写出点A、B、C、D的坐标;(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“11闸北25”,拖动点Q在直线BG上运动,可以体验到,△ABQ的两条直角边的比为1∶3共有四种情况,点B上、下各有两种.思路点拨1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角.2.用待定系数法求抛物线的解析式,用配方法求顶点坐标.3.第(3)题判断∠ABQ=90°是解题的前提.4.△ABQ与△COD相似,按照直角边的比分两种情况,每种情况又按照点Q与点B的位置关系分上下两种情形,点Q共有4个.满分解答(1)A (3,0),B (0,1),C (0,3),D (-1,0).(2)因为抛物线y =ax 2+bx +c 经过A (3,0)、C (0,3)、D (-1,0) 三点,所以930,3,0.a b c c a b c ++=⎧⎪=⎨⎪-+=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,顶点G 的坐标为(1,4).(3)如图2,直线BG 的解析式为y =3x +1,直线CD 的解析式为y =3x +3,因此CD //BG .因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB ⊥CD .因此AB ⊥BG ,即∠ABQ =90°.因为点Q 在直线BG 上,设点Q 的坐标为(x ,3x +1),那么22(3)10BQ x x x =+=±. Rt △COD 的两条直角边的比为1∶3,如果Rt △ABQ 与Rt △COD 相似,存在两种情况:①当3BQ BA =时,10310x ±=.解得3x =±.所以1(3,10)Q ,2(3,8)Q --. ②当13BQ BA =时,101310x ±=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.图2 图3考点伸展第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是BQ ==.我们换个思路解答第(3)题:如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH 中,sin 1∠=cos 1∠=①当3BQ BA=时,BQ =. 在Rt △BQN 中,sin 13QN BQ =⋅∠=,cos 19BN BQ =⋅∠=.当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --.②当13BQ BA =时,BQ =31(,2)3Q ,41(,0)3Q -.例2Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x=≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系;(2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式; (3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“11杨浦24”,拖动点A 在x 轴上运动,可以体验到,直线AB 保持斜率不变,n 始终等于m 的2倍,双击按钮“面积BDE =2”,可以看到,点E 正好在BD 的垂直平分线上,FD //x 轴.拖动点P 在射线FD 上运动,可以体验到,△AEO 与△EFP 相似存在两种情况.思路点拨1.探求m 与n 的数量关系,用m 表示点B 、D 、E 的坐标,是解题的突破口.2.第(2)题留给第(3)题的隐含条件是FD //x 轴.3.如果△AEO 与△EFP 相似,因为夹角相等,根据对应边成比例,分两种情况. 满分解答(1)如图1,因为点D (4,m )、E (2,n )在反比例函数k y x=的图像上,所以4,2.m k n k =⎧⎨=⎩ 整理,得n =2m . (2)如图2,过点E 作EH ⊥BC ,垂足为H .在Rt △BEH 中,tan ∠BEH =tan ∠A =12,EH =2,所以BH =1.因此D (4,m ),E (2,2m ),B (4,2m +1). 已知△BDE 的面积为2,所以11(1)2222BD EH m ⋅=+⨯=.解得m =1.因此D (4,1),E (2,2),B (4,3). 因为点D (4,1)在反比例函数k y x =的图像上,所以k =4.因此反比例函数的解析式为4y x=.设直线AB的解析式为y=kx+b,代入B(4,3)、E(2,2),得34,22.k bk b=+⎧⎨=+⎩解得12k=,1 b=.因此直线AB的函数解析式为112y x=+.图2 图3 图4(3)如图3,因为直线112y x=+与y轴交于点F(0,1),点D的坐标为(4,1),所以FD// x轴,∠EFP=∠EAO.因此△AEO与△EFP相似存在两种情况:①如图3,当EA EFAO FP=时,255=.解得FP=1.此时点P的坐标为(1,1).②如图4,当EA FPAO EF=时,255=.解得FP=5.此时点P的坐标为(5,1).考点伸展本题的题设部分有条件“Rt△ABC在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:第(1)题的结论m与n的数量关系不变.第(2)题反比例函数的解析式为12yx=-,直线AB为172y x=-.第(3)题FD不再与x轴平行,△AEO与△EFP也不可能相似.图52013中考数学压轴题函数相似三角形问题(二) 例3如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2动感体验请打开几何画板文件名“10义乌24”,拖动点I上下运动,观察图形和图像,可以体验到,x2-x1随S的增大而减小.双击按钮“第(3)题”,拖动点Q在DM上运动,可以体验到,如果∠GAF=∠GQE,那么△GAF与△GQE相似.思路点拨1.第(2)题用含S 的代数式表示x 2-x 1,我们反其道而行之,用x 1,x 2表示S .再注意平移过程中梯形的高保持不变,即y 2-y 1=3.通过代数变形就可以了.2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.3.第(3)题的示意图,不变的关系是:直线AB 与x 轴的夹角不变,直线AB 与抛物线的对称轴的夹角不变.变化的直线PQ 的斜率,因此假设直线PQ 与AB 的交点G 在x 轴的下方,或者假设交点G 在x 轴的上方.满分解答(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-). (2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=. 当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3). (3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD . 由于3tan 4GAF ∠=,tan 5DQ t PQD QP t ∠==-,所以345t t =-.解得207t =.图3 图4 考点伸展第(3)题是否存在点G 在x 轴上方的情况?如图4,假如存在,说理过程相同,求得的t 的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.例4如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.图1动感体验请打开几何画板文件名“10宝山24”,拖动点A ′向右平移,可以体验到,平移5个单位后,四边形A A ′B ′B 为菱形.再拖动点D 在x 轴上运动,可以体验到,△B ′CD 与△ABC 相似有两种情况.思路点拨1.点A 与点B 的坐标在3个题目中处处用到,各具特色.第(1)题用在待定系数法中;第(2)题用来计算平移的距离;第(3)题用来求点B ′ 的坐标、AC 和B ′C 的长.2.抛物线左右平移,变化的是对称轴,开口和形状都不变.3.探求△ABC 与△B ′CD 相似,根据菱形的性质,∠BAC =∠CB ′D ,因此按照夹角的两边对应成比例,分两种情况讨论.满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =. (2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所以A A ′=B ′B = AB =5.因为438342+--=x x y ()2416133x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4.因此平移后的抛物线的解析式为()3164342,+--=x y .图2(3) 由点A (-2,4) 和点B′(6,0),可得A B′=45.如图2,由AM//CN,可得''''B N B CB M B A=,即2845=.解得'5B C=.所以35AC=.根据菱形的性质,在△ABC与△B′CD中,∠BAC=∠CB′D.①如图3,当''AB B CAC B D=时,535=,解得'3B D=.此时OD=3,点D的坐标为(3,0).②如图4,当''AB B DAC B C=时,355=,解得5'3B D=.此时OD=133,点D的坐标为(133,0).图3 图4考点伸展在本题情境下,我们还可以探求△B′CD与△AB B′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.我们也可以讨论△B′CD与△C B B′相似,这两个三角形有一组公共角∠B,根据对应边成比例,分两种情况计算.2013中考数学压轴题函数相似三角形问题(三) 例5如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,图1动感体验请打开几何画板文件名“09临沂26”,拖动点P在抛物线上运动,可以体验到,△PAM的形状在变化,分别双击按钮“P在B左侧”、“P在x轴上方”和“P在A右侧”,可以显示△PAM与△OAC相似的三个情景.双击按钮“第(3)题”,拖动点D在x轴上方的抛物线上运动,观察△DCA的形状和面积随D变化的图象,可以体验到,E是AC的中点时,△DCA的面积最大.思路点拨1.已知抛物线与x轴的两个交点,用待定系数法求解析式时,设交点式比较简便.2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程. 4.把△DCA 可以分割为共底的两个三角形,高的和等于OA .满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4.如果2==CO AO PM AM ,那么24)4)(1(21=----x x x .解得5=x 不合题意.如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x .此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM .解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4. 解方程24)4)(1(21=---xx x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---xxx,得0=x.此时点P与点O重合,不合题意.综上所述,符合条件的点P的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D作x轴的垂线交AC于E.直线AC的解析式为221-=xy.设点D的横坐标为m)41(<<m,那么点D的坐标为)22521,(2-+-mmm,点E的坐标为)221,(-mm.所以)221()22521(2---+-=mmmDE mm2212+-=.因此4)221(212⨯+-=∆mmSDACmm42+-=4)2(2+--=m.当2=m时,△DCA的面积最大,此时点D的坐标为(2,1).图5 图6第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S . 由于225212-+-=m m n ,所以m m S 42+-=. 例6如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域; (2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图 备用图动感体验请打开几何画板文件名“09闸北25”,拖动点D 可以在射线BA 上运动.双击按钮“第(2)题”,拖动点D 可以体验到两圆可以外切一次,内切两次.双击按钮“第(3)题”,再分别双击按钮“DE 为腰”和“DE 为底边”,可以体验到,△DEF 为等腰三角形.1.先解读背景图,△ABC是等腰三角形,那么第(3)题中符合条件的△DEF也是等腰三角形.2.用含有x的式子表示BD、DE、MN是解答第(2)题的先决条件,注意点E的位置不同,DE、MN表示的形式分两种情况.3.求两圆相切的问题时,先罗列三要素,再列方程,最后检验方程的解的位置是否符合题意.4.第(3)题按照DE为腰和底边两种情况分类讨论,运用典型题目的结论可以帮助我们轻松解题.满分解答(1)如图2,作BH⊥AC,垂足为点H.在Rt△ABH中,AB=5,cosA=310 AHAB=,所以AH=32=12AC.所以BH垂直平分AC,△ABC为等腰三角形,AB=CB=5.因为DE//BC,所以AB ACDB EC=,即53y x=.于是得到53y x=,(0x>).(2)如图3,图4,因为DE//BC,所以DE AEBC AC=,MN ANBC AC=,即|3|53DE x-=,1|3|253xMN-=.因此5|3|3xDE-=,圆心距5|6|6xMN-=.图2 图3 图4 在⊙M中,115226Mr BD y x===,在⊙N中,1122Nr CE x==.①当两圆外切时,5162x x +5|6|6x -=.解得3013x =或者10x =-. 如图5,符合题意的解为3013x =,此时5(3)15313x DE -==. ②当两圆内切时,5162x x -5|6|6x -=. 当x <6时,解得307x =,如图6,此时E 在CA 的延长线上,5(3)1537x DE -==; 当x >6时,解得10x =,如图7,此时E 在CA 的延长线上,5(3)3533x DE -==.图5 图6 图7(3)因为△ABC 是等腰三角形,因此当△ABC 与△DEF 相似时,△DEF 也是等腰三角形.如图8,当D 、E 、F 为△ABC 的三边的中点时,DE 为等腰三角形DEF 的腰,符合题意,此时BF =2.5.根据对称性,当F 在BC 边上的高的垂足时,也符合题意,此时BF =4.1.如图9,当DE 为等腰三角形DEF 的底边时,四边形DECF 是平行四边形,此时12534BF =.图8 图9 图10 图11考点伸展第(3)题的情景是一道典型题,如图10,如图11,AH 是△ABC 的高,D 、E 、F 为△ABC 的三边的中点,那么四边形DEHF 是等腰梯形.例 7如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA ⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.图1动感体验请打开几何画板文件名“08杭州24”,拖动点A 在y 轴上运动,可以体验到,AQ 与BC 保持平行,OA ∶OB 与OA ∶OB ′保持3∶2.双击按钮“t =3”,“t =0.6”,“t =-0.6”,“t =-3”,抛物线正好经过点B (或B ′).思路点拨1.数形结合思想,把OC OB OA ⋅=2转化为212t x x =⋅.2.如果AQ ∥BC ,那么以OA 、AQ 为邻边的矩形是正方形,数形结合得到t =b . 3.分类讨论tan ∠ABO =23,按照A 、B 、C 的位置关系分为四种情况.A 在y 轴正半轴时,分为B 、C 在y 轴同侧和两侧两种情况;A 在y 轴负半轴时,分为B 、C 在y 轴同侧和两侧两种情况.满分解答(1)因为平移2tx y -=的图象得到的抛物线F 的顶点为Q (t ,b ),所以抛物线F 对应的解析式为b t x t y +--=2)(.因为抛物线与x 轴有两个交点,因此0>b t .令0=y ,得-=t OB t b,+=t OC tb . 所以-=⋅t OC OB (|||||tb)( +t t b)|-=2|t 22|OA t tb ==.即22bt t t-=±.所以当32t b =时,存在抛物线F 使得||||||2OC OB OA ⋅=. (2)因为AQ //BC ,所以t =b ,于是抛物线F 为t t x t y +--=2)(.解得1,121+=-=t x t x .①当0>t 时,由||||OC OB <,得)0,1(-t B .如图2,当01>-t 时,由=∠ABO tan 23=||||OB OA =1-t t ,解得3=t .此时二次函数的解析式为241832-+-=x x y .如图3,当01<-t 时,由=∠ABO tan 23=||||OB OA =1+-t t ,解得=t 53.此时二次函数的解析式为-=y 532x +2518x +12548.图2 图3②如图4,如图5,当0<t 时,由||||OC OB <,将t -代t ,可得=t 53-,3-=t .此时二次函数的解析式为=y 532x +2518x -12548或241832++=x x y .图4 图5考点伸展第(2)题还可以这样分类讨论:因为AQ //BC ,所以t =b ,于是抛物线F 为2()y t x t t =--+.由3tan 2OA ABO OB ∠==,得23OB OA =. ①把2(,0)3B t 代入2()y t x t t =--+,得3t =±(如图2,图5). ②把2(,0)3B t -代入2()y t x t t =--+,得35t =±(如图3,图4).2013中考数学压轴题函数等腰三角形问题(一) 例1如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M 是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从O向C运动时,点H也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2动感体验请打开几何画板文件名“11湖州24”,拖动点P在OC上运动,可以体验到,△APD的三个顶点有四次机会可以落在对边的垂直平分线上.双击按钮“第(3)题”,拖动点P由O向C运动,可以体验到,点H在以OM为直径的圆上运动.双击按钮“第(2)题”可以切换.思路点拨1.用含m的代数式表示表示△APD的三边长,为解等腰三角形做好准备.2.探求△APD是等腰三角形,分三种情况列方程求解.3.猜想点H的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt△OHM的斜边长OM是定值,以OM为直径的圆过点H、C.满分解答(1)因为PC //DB ,所以1CP PM MC BD DM MB ===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-. ①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3). ②当PA =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H 5. 考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单: ①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以12PC MB CM BA ==.因此12PC =,32m =.②如图4,当PA =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43m =. 第(2)题的思路是这样的:如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.图6 图7例2如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O—C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“11盐城28”,拖动点R由B向O运动,从图像中可以看到,△APR的面积有一个时刻等于8.观察△APQ,可以体验到,P在OC上时,只存在AP=AQ的情况;P在CA上时,有三个时刻,△APQ是等腰三角形.思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR的面积等于8,按照点P的位置分两种情况讨论.事实上,P在CA上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ,按照点P的位置分两种情况讨论,点P的每一种位置又要讨论三种情况.满分解答(1)解方程组7, 4,3y xy x=-+⎧⎪⎨=⎪⎩得3,4.xy=⎧⎨=⎩所以点A的坐标是(3,4).令70y x=-+=,得7x=.所以点B的坐标是(7,0).(2)①如图2,当P在OC上运动时,0≤t<4.由8APR ACP PORCORAS S S S=--=△△△梯形,得1113+7)44(4)(7)8222t t t t-⨯-⨯⨯--⨯-=(.整理,得28120t t-+=.解得t=2或t=6(舍去).如图3,当P在CA上运动时,△APR的最大面积为6.因此,当t=2时,以A、P、R为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =,所以OB >AB .因此∠OAB >∠AOB >∠B . 如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠PAQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1.我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418t =. 如图6,当QP =QA 时,点Q 在PA 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当PA =PQ 时,那么12cos AQ A AP∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图7考点伸展当P 在CA 上,QP =QA 时,也可以用2cos AP AQ A =⋅∠来求解.2013中考数学压轴题函数等腰三角形问题(二) 例3如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1动感体验请打开几何画板文件名“10闸北25”,拖动点M在CA上运动,可以看到△BNP 与△MNA的形状随M的运动而改变.双击按钮“△BNP∽△MNA”,可以体验到,此刻两个三角形都是直角三角形.分别双击按钮“BP=BN,N在AB上”、“NB=NP”和“BP=BN,N在AB的延长线上”,可以准确显示等腰三角形BNP的三种情况.思路点拨1.第(1)题求证MN∶NP的值要根据点N的位置分两种情况.这个结论为后面的计算提供了方便.2.第(2)题探求相似的两个三角形有一组邻补角,通过说理知道这两个三角形是直角三角形时才可能相似.3.第(3)题探求等腰三角形,要两级(两层)分类,先按照点N 的位置分类,再按照顶角的顶点分类.注意当N 在AB 的延长线上时,钝角等腰三角形只有一种情况.4.探求等腰三角形BNP ,N 在AB 上时,∠B 是确定的,把夹∠B 的两边的长先表示出来,再分类计算.满分解答(1)如图2,图3,作NQ ⊥x 轴,垂足为Q .设点M 、N 的运动时间为t 秒. 在Rt △ANQ 中,AN =5t ,NQ =4t ,AQ =3t .在图2中,QO =6-3t ,MQ =10-5t ,所以MN ∶NP =MQ ∶QO =5∶3.在图3中,QO =3t -6,MQ =5t -10,所以MN ∶NP =MQ ∶QO =5∶3.(2)因为△BNP 与△MNA 有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP ∽△MNA ,在Rt △AMN 中,35AN AM =,所以531025t t =-.解得3031t =.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MP QN MN =,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-.(Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=. (Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=. (Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况.②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.例4如图1,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12ym,要使△DEF为等腰三角形,m的值应为多少?图1动感体验请打开几何画板文件名“10南通27”,拖动点E在BC上运动,观察y随x变化的函数图像,可以体验到,y是x的二次函数,抛物线的开口向下.对照图形和图像,可以看到,当E是BC的中点时,y取得最大值.双击按钮“m=8”,拖动E到BC的中点,可以体验到,点F是AB的四等分点.拖动点A可以改变m的值,再拖动图像中标签为“y随x”的点到射线y=x上,从图形中可以看到,此时△DCE≌△EBF.思路点拨1.证明△DCE∽△EBF,根据相似三角形的对应边成比例可以得到y关于x的函数关系式.2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF为等腰三角形,那么得到x=y;一段是计算,化简消去m,得到关于x的一元二次方程,解出x的值;第三段是把前两段结合,代入求出对应的m的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m =-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2.(3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m =,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如:由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.2013中考数学压轴题函数相似三角形问题(三)例5已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由; (3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1动感体验请打开几何画板文件名“09重庆26”,拖动点G 在OC 上运动,可以体验到,△DCG 与△DEF 保持全等,双击按钮“M 的横坐标为1.2”,可以看到,EF =2,GO =1.拖动点P 在AB 上运动的过程中,可以体验到,存在三个时刻,△PCG 可以成为等腰三角形.。
2013年临沂市初中学生学业考试试题数 学(解析)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第I 卷1至4页,第II 卷5至12页.共120分.考试时间120分钟. 第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的. 1.2-的绝对值是(A )2.(B )2-. (C )12. (D )12-. 答案:A解析:负数的绝对值是它的相反数,故选A 。
2.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学计数法表示为(A)110.510⨯千克. (B)95010⨯千克. (C)9510⨯千克. (D) 10510⨯千克. 答案:D解析:科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 50 000 000 000=10510⨯千克3.如图,已知AB ∥CD ,∠2=135°,则∠1的度数是 (A) 35°. (B) 45°. (C) 55°. (D) 65°. 答案:B解析:因为∠2=135°,所以,∠2的邻补角为45°,又两直线平行,内错角相等,所以,∠1=45°4.下列运算正确的是(A)235x x x +=. (B)4)2(22-=-x x . (C)23522x x x ⋅=. (D)()743x x =.答案:C解析:对于A ,不是同类项不能相加,故错;完全平方展开后有三项,故B 也错;由幂的乘方知()4312x x =,故D 错,选C 。
5(A)(C). 答案:B 解析=9=B 。
2013年历届数学中考常考题与易错题整理考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释一、单选题(注释)1、 解集在数轴上表示为如图所示的不等式组是( )A .B .C .D .2、下列各式能用完全平方公式进行分解因式的是( )A .x 2+1B .x 2+2x ﹣1C .x 2+x+1D .x 2+4x+43、(2011?衢州)如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为( )A .1B .2C .3D .44、如图所示,AB =AC ,要说明△ADC ≌△AEB ,需添加的条件不能是( )A .∠B =∠C B .AD =AEC .DC =BED .∠ADC =∠AEB5、(11·佛山)下列说法正确的是( )6、函数与的图象在同一平面直角坐标系内的交点的个数是( )第3页共26页第4页共26页A.1个B.2个C.3个D.07、若,则下列不等式成立的是()A .B.C .D.8、为了美化环境,某市2008年用于绿化的投资为20万元,2010年为25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为,根据题意所列方程为()A.B.C.D.9、对于一组数据:75,73,75,71,76,下列说法正确的是()A.这组数据的平均数是75 B.这组数据的方差是3.2C.这组数据的中位数是74 D.这组数据的众数是7610、不等式组的解集在数轴上表示为11、函数中,自变量x的取值范围是A.x>1 B.x≥1C.x>-2 D.x≥―212、清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h,则x满足的方程为A.-=20 B.-=20 C.-=D.-=13、如图所示,一个正方形水池的四周恰好被4个正n边形地板砖铺满,则n等于( )A.4 B.6 C.8 D.1014、如图,已知∠AOB是直角,∠AOC是锐角,ON平分∠AOC,OM平分∠BOC,则∠MON是()A .45ºB .45º+∠AOCC .60°-∠AOCD .不能计算15、如图9四边形ABCD 是菱形,且,是等边三角形,M 为对角线BD(不含B 点)上任意一点,将BM 绕点B 逆时针旋转得到BN ,连接EN 、AM 、CM ,则下列五个结论中正确的是( )①若菱形ABCD 的边长为1,则的最小值1;②; ③;④连接AN ,则;⑤当的最小值为时,菱形ABCD 的边长为2.A .①②③B .②④⑤C .①②⑤D .②③⑤16、经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( ) A .B .C .D .17、(2011?舟山)方程x (x ﹣1)=0的解是( )A .x="0"B .x=1C .x=0或x="1"D .x=0或x=﹣118、一个多边形的内角和与它的一个外角和为570°,则这个多边形的边数为( ) A .5 B .6 C .7 D .819、如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD 的边上有一动点 P ,沿A→B→C→D→A 运动一周,则点P 的纵坐标y 与P 所走过的路程S 之间的函数关系用图象表示大致是【 】20、如图,已知□ABCD 的对角线BD =" 4" cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为( ) 更多功能介绍/zt/第7页共26页第8页共26页A.4π cm B.3π cm C.2π cm D.π cm21、(2011?衢州)如图,下列几何体的俯视图是右面所示图形的是()A.B.C.D.22、(2011?北京)如图在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D 是AB边上的一个动点(不与点A、B重合),过点D作CD 的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y与x的函数关系图象大致是()23、下面四个图形中,∠1=∠2一定成立的是().污染指数()100<≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为A.255 B.256 C.292 D.29325、某校九年级(2)班50名同学为玉树灾区献爱心捐款情况如下表:捐款(元)10 15 30 40 50 60人数 3 6 11 11 13 6则该班捐款金额的众数和中位数分别是A. 13,11B. 50,35C. 50,40D. 40,50第11页共26页第12页共26页※题※※…………线…………○…分卷II分卷II注释二、填空题(注释)26、若x=2是关于x 的方程2x+3m ﹣1=0的解,则m 的值等于__________27、如图,△ABC 绕点A 顺时针旋转80°得到△AEF ,若∠B=100°,∠F=50°,则∠α的度数是 .28、如图,正方形的边长为cm ,正方形的边长为cm .如果正方形绕点旋转,那么、两点之间的最小距离是____________.29、30、(2004?无锡)点(1,2)关于原点的对称点的坐标为 . 三、计算题(注释)31、计算:32、(2011?金华)计算:.33、计算或化简:(1)计算.34、如图,已知AC 与BD 相交于点E ,DE =CE ,AE =BE 求证:∠A =∠B35、如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2),过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N。
2013年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.气温由-1℃上升2℃后是A.-1℃B.1℃C.2℃D.3℃答案:B解析:上升2℃,在原温度的基础上加2℃,即:-1+2=1,选B。
2. 截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为A.0.423×107B.4.23×106C.42.3×105D.423×104答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.4 230 000=4.23×106 3.下列图形中,既是轴对称图形又是中心对称图形的是答案:C解析:A是只中心对称图形,B、D只是轴对称图形,只有C既是轴对称图形又是中心对称图形。
4.下列等式从左到右的变形,属于因式分解的是A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)答案:D解析:因式分解是把一个多项式化为几个最简整式的积的形式,所以,A、B、C都不符合,选D。
x-4=5.若x=1,则||A.3B.-3C.5D.-5答案:A解析:当x=1时,|x-4|=|1-4|=3。
杨庄中学2013年中考数学专题复习一选择填空热点综合题例1[2012·安徽] 在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图1-1所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()图1-1A. 10 B.45 C. 10或4 5 D.10或217例2[2011·安徽]如图1-2所示,P是菱形ABCD的对角线AC上一动点,过点P作垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象的大致形状是()图1-2例3[2011·安徽] 定义运算a⊗b=a(1-b),下面给出了关于这种运算的几个结论:①2⊗(-2)=6;②a ⊗b =b ⊗a ;③若a +b =0,则(a ⊗a )+(b ⊗b )=2ab ; ④若a ⊗b =0,则a =0. 其中正确结论的序号是______.(在横线上填上你认为所有正确结论的序号) 例4 [2012·东营] 在平面直角坐标系xOy 中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y =kx +b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 1(1,1),A 2(72,32),那么点A n 的纵坐标是________.图1-4例5 [2006·安徽]如图是由10把相同的折扇组成的“蝶恋花”(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为【 】A .36°B .42°C .45°D .48°例6(2009安徽省)如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是 。
①∠BAD=∠ACD ; ②∠BAD=∠CAD ;③AB+BD=AC+CD ; ④AB -BD=AC -CD .杨庄中学2013年中考数学专题复习二基础题分析与预测——计算与求解例1 [2011·安徽] 先化简,再求值:1x -1-2x 2-1,其中x =-2.例2 [2012·广安] 解分式方程:23+x 3x -1=19x -3.例3 [2012·黔西南] 计算:-2sin 30°--13-2+(2-π)0-3-8+(-1)2012.例4 [2011·岳阳] 解方程组:⎩⎪⎨⎪⎧x +y =3,5x -3(x +y )=1.例5 [2012·巴中] 解不等式组⎩⎪⎨⎪⎧x +3≥2-x ,3(x -1)+1<2(x +1),并写出不等式组的整数解.练习1.(2008安徽省)解不等式组:3x 142x x 2><--⎧⎨+⎩①②,并把它的解集表示在数轴上:2.(2003安徽省)解不等式组:()⎪⎩⎪⎨⎧<--<-②x ①x 32211213.解方程组:2x y 33x 5y 11+=⎧⎨-=⎩4.(2012安徽省)解方程:2x 2x 2x 1-=+杨庄中学2013年中考数学专题复习三数学建模——方程与函数例1[2012·南昌] 小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨了50%,排骨的单价上涨了20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).例2[2010·安徽] 在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m2下降到5月份的12600元/m2;(1)问4、5两月平均每月降价的百分率是多少?(参考数据:0.9≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.例3[2011·广东] 某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?例4[2012·河南] 甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图3-1是他们离A地的距离y(千米)与x(时)之间的函数关系图象.(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x 的取值范围;(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?图3-1例5[2010·安徽] 春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如下表:(1)在此期间该养殖场每天的捕捞量与前一天的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额-日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?杨庄中学2013年中考数学专题复习四网格作图与计算网格是同学们熟悉的图形,在网格中研究格点图形(在正方形的方格纸中,每个小方格的顶点叫做格点,我们把以格点的连线为边的图形叫做格点图形),具有很强的可操作性,这和新课程的理念相符合,安徽中考中的“格点问题”也秉承了“狠抓基础,注重过程,渗透思想,突出能力,强调应用,着重创新”这一精神,既突出了“数形结合”的数学思想方法,考查了学生对图形的敏锐观察力和对数学规律的发现探究能力,又考查了学生的创新意识、决策意识和实践能力.预测在2013年安徽中考题中还会有利用网格对图形进行变换设计的题目.例1[2012·安徽] 如图4-1,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的?例2[2011·安徽] 如图4-2,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;(1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.例3.(2012江苏泰州市)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1,然后将△A1B1C1绕点A1顺时针旋转90°得到△A1B2C2.(1)在网格中画出△A1B1C1和△A1B2C2;(2)计算线段AC在变换到A1C2的过程中扫过区域的面积(重叠部分不重复计算)C AB杨庄中学2013年中考数学专题复习五统计与概率例1[2012·安徽] 九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理:请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)求该小区用水量不超过15 t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20 t 的家庭大约有多少户?例2[2011·芜湖] 某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图5-2所示.(1)根据图示填写下表;(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.方差公式:s2=1n[(x1-x-)2+(x2-x-)2+…+(x n-x-)2]例3 [2010·安徽] 上海世博会门票价格如下表所示:某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率.例4[2012·宜宾] 为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其他活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如图X5-3的两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共调查了________名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为________,喜欢“戏曲”活动项目的人数是________人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目中任选两项成立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.杨庄中学2013年中考数学专题复习六解直角三角形的应用例1[2012·安徽] 如图X6-1,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.例2[2011·安徽] 如图6-2,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500 m高度C处的飞机,测量人员测得正前方A、B两点处的俯角分别为60°和45°,求隧道AB的长.(3取1.73)图6-2例3[2012·黄冈] 新星小学门口有一直线马路,为方便学生过马路,交警在路口设有一定宽度的斑马线,斑马线的宽度为4米,为安全起见,规定车头距斑马线后端的水平距离不得低于2米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为∠FAE=15°和∠FAD=30°.司机距车头的水平距离为0.8米,试问该旅游车停车是否符合上述安全标准?(E、D、C、B四点在平行于斑马线的同一直线上.)参考数据:tan15°=2-3,sin15°=6-24,cos15°=6+24,3≈1.732,2≈1.414杨庄中学2013年中考数学专题复习七开放性探究题例1(2010年安徽)下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。