冲压模具冷冲压加工中英文对照外文翻译文献
- 格式:doc
- 大小:74.00 KB
- 文档页数:13
冲压模具是在冷冲压加工中,将材料(金属或非金属)加工成零件(或半成品)的一种特殊工艺装备,称为冷冲压模具(俗称冷冲模)。
冲压,是在室温下,利用安装在压力机上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件的一种压力加工方法。
下面是搜索整理的冲压模具英文参考文献,欢迎借鉴参考。
冲压模具英文参考文献一: [1]Wei Wu. Design and Analysis of Flat Washer Stamping Compound Mold[P]. Proceedings of the 2018 8th International Conference on Mechatronics, Computer and Education Informationization (MCEI 2018),2018. [2]Zengsheng Wang,Hansong Yang,Guohua Mu. Research on Teaching Reform of Stamping Process and Die Design[P]. Proceedings of the 2016 International Conference on Contemporary Education, Social Sciences and Humanities,2015. [3]Hongxing Dong. Research on Application of Comprehensive Teaching Design into the Teaching of Cold Stamping Forming Technology and Die Design[P]. Proceedings of the 2016 2nd International Conference on Social Science and HigherEducation,2016. [4]Zengsheng Wang,Luoming Zhang,Qinglian Meng. Research on Teaching Reform of Stamping Technology and Die Design[P]. Proceedings of the 4th International Conference on Contemporary Education, Social Sciences and Humanities (ICCESSH 2019),2019. [5]Sisi Chen,Zhanguo Li,Yaochen Shi,Yunguang Cai. Research on stamping die reconstruction method based on binocular stereovision[P]. Proceedings of the 2017 6th International Conference on Energy and Environmental Protection (ICEEP 2017),2017. [6]Indivarie Ubhayaratne,Michael P. Pereira,Yong Xiang,Bernard F. Rolfe. Audio signal analysis for tool wear monitoring in sheet metal stamping[J]. Mechanical Systems and Signal Processing,2017,85. [7]L. Fernandes,F.J.G. Silva,M.F. Andrade,R. Alexandre,A.P.M. Baptista,C. Rodrigues. Increasing the stamping tools lifespan by using Mo and B4C PVD coatings[J]. Surface & CoatingsTechnology,2017,325. [8]R. Muvunzi,D.M. Dimitrov,S. Matope,T.M. Harms. Evaluation of Models for Cooling System Design in Hot Stamping Tools[J]. Procedia Manufacturing,2017,7. [9]Ousse?ni Marou Alzouma,Franck Marion,Anne-Charlotte Robisson. The importance of the amount/thickness of die wall lubricant for UO 2 pellets pressing[J]. Ceramics International,2018,44(11). [10]Kailun Zheng,Yangchun Dong,Hanshan Dong,JonathanFernandez,Trevor A Dean. Investigation of the lubrication performance using WC: C coated tool surfaces for hot stampingAA6082[J]. Procedia Engineering,2017,207. [11]Ersyzario Edo Yunata,Tatsuhiko Aizawa,Kenji Tamaoki,Masao Kasugi. Plasma Polishing and Finishing of CVD-Diamond Coated WC (Co) Dies for Dry Stamping[J]. Procedia Engineering,2017,207. [12]L. Fernandes,F.J.G. Silva,M.F. Andrade,R. Alexandre,A.P.M. Baptista,C. Rodrigues. Improving the punch and die wear behavior in tin coated steel stamping process[J]. Surface & Coatings Technology,2017,332. [13]Xiaochuan Liu,Mohammad M. Gharbi,Oualid Manassib,Omer El Fakir,LiLiang Wang. Determination of the interfacial heat transfer coefficient between AA7075 and different forming tools in hot stamping processes[J]. Procedia Engineering,2017,207. [14]Li-Wei Chen,Ming-Jhe Cai. Development of a hot stamping clinching tool[J]. Journal of Manufacturing Processes,2018,34. [15]Xiaochuan Liu,Omer El Fakir,Mohammad M. Gharbi,LiLiang Wang. Effect of tool coating on interfacial heat transfer coefficient in hot stamping of AA7075 aluminium alloys[J]. ProcediaManufacturing,2018,15. [16]Yuki Nakagawa,Ken-ichiro Mori,Tomoyoshi Maeno,Yoshitaka Nakao. Reduction in holding time at bottom dead centre in hot stamping by water and die quenching[J]. ProcediaManufacturing,2018,15. [17]Tomoki Hasegawa,Tatsuhiko Aizawa,Tadahiko Inohara,Kenji Wasa,Masahiro Anzai. Hot mold stamping of optical plastics and glasses with transcription of super-hydrophobic surfaces[J]. Procedia Manufacturing,2018,15. [18]Chunping Cao,Meng Li,Yu Li,Yu Sun. Intelligent fault diagnosis of hot die forging press based on binary decision diagram and fault tree analysis[J]. Procedia Manufacturing,2018,15. [19]Shiva Shankar Mangalore Babu,Stuart Berry,Michael Ward,Michal Krzyzanowski. Numerical investigation of key stamping process parameters influencing tool life and wear[J]. Procedia Manufacturing,2018,15. [20]Y. Pascal,D. Labrousse,M. Petit,S. Lefebvre,F. Costa. Experimental investigation of the reliability of Printed Circuit Board (PCB)-embedded power dies with pressed contact made of metal foam[J]. Microelectronics Reliability,2018,88-90. [21]Enrico Armentani,Angelo Mattera,Raffaele Sepe,LucaEsposito,Francesco Naclerio,Gian Filippo Bocchini. Dies for pressingmetal powders to form helical gears[J]. Procedia Structural Integrity,2018,12. [22]Ping Chen,Xiaojie Liu,Mingji Huang,Zhe Shi,Bin Shan. Numerical simulation and experimental study on tribological properties of stamping die with triangular texture[J]. Tribology International,2018. [23]Xiaochuan Liu,Omer El Fakir,Yang Zheng,Mohammad M.Gharbi,LiLiang Wang. Effect of tool coatings on the interfacial heat transfer coefficient in hot stamping of aluminium alloys under variable contact pressure conditions[J]. International Journal of Heat and Mass Transfer,2019,137. [24]P. Vishnu,R. Raj Mohan,E. Krishna Sangeethaa,S. Raghuraman,R. Venkatraman. A review on processing of aluminium and its alloys through Equal Channel Angular Pressing die[J]. Materials Today: Proceedings,2019. [25]Liang Ying,Tianhan Gao,Minghua Dai,Ping Hu,Luming Shen. Investigation of convection heat transfer coefficient of circular cross-section short pipes in hot stamping dies[J]. Applied Thermal Engineering,2018,138. [26]Patrik Schwingenschl?gl,Philipp Niederhofer,Marion Merklein. Investigation on basic friction and wear mechanisms within hot stamping considering the influence of tool steel and hardness[J]. Wear,2019,426-427. [27]Yan-hong Mu,Bao-yu Wang,Jing Zhou,Xu Huang,Jun-ling Li. Influences of hot stamping parameters on mechanical properties and microstructure of 30MnB5 and 22MnB5 quenched in flat die[J]. Journal of Central South University,2018,25(4). [28]Q. Y. Jiang,H. Y Zhao,H. F. Yang. Numerical Simulation of the Thermomechanical Behavior of a Hot Stamping Die[J]. Strength of Materials,2018,50(1). [29]Xiaoyong Qiao,Aiguo Cheng,Xin Nie,Minqing Ning. A study on die wear prediction for automobile panels stamping based on dynamic model[J]. The International Journal of Advanced Manufacturing Technology,2018,97(5-8). [30]Mohd Fawzi Zamri,Ahmad Razlan Yusoff. Heuristic design of U-shaped die cooling channel for producing ultra-high strength steel using hot press forming[J]. The International Journal of Advanced Manufacturing Technology,2018,97(9-12). 冲压模具英文参考文献二: [31]Hangyan Wang,Hui Xie,Qiming Liu,Yunfei Shen,PinjianWang,Licheng Zhao. Structural topology optimization of a stampingdie made from high-strength steel sheet metal based on loadmapping[J]. Structural and MultidisciplinaryOptimization,2018,58(2). [32]N. Demazel,H. Laurent,J. Co?r,M. Carin,P. Masson,J. Favero,R. Canivenc,H. Salmon-Legagneur. Investigation of the progressive hot die stamping of a complex boron steel part using numerical simulations and Gleeble tests[J]. The International Journal of Advanced Manufacturing Technology,2018,99(1-4). [33]Csaba Pléh. A Review of Olivier Morin: How traditions live and die. Oxford: Oxford University Press, xvi + 300 pp, 2016, paper. Foundations of Human Interaction Series, ?25.99[J]. Evolutionary Psychological Science,2017,3(3). [34]Guo-Zheng Quan,Zhi-hua Zhang,Xuan Wang,Yong-le Li,An Mao,Yu-feng Xia. Parameter optimization of cooling system in U-shape hot stamping mold for high strength steel sheet based on MOPSO[J]. The International Journal of Advanced ManufacturingTechnology,2017,90(1-4). [35]Kailun Zheng,Denis J. Politis,Jianguo Lin,Trevor A. Dean. An experimental and numerical investigation of the effect of macro-textured tool surfaces in hot stamping[J]. International Journal of Material Forming,2017,10(2). [36]Pabitra Palai,N. Prabhu,B. P. Kashyap. Effect of Solid Die Equi-Channel Pressing Angle on β-Mg 17 Al 12 Phase Morphology and Mechanical Behavior of AZ80 Mg alloy[J]. Journal of Materials Engineering and Performance,2017,26(4). [37]I. N. Stepankin. Consideration of contact wear regularitiesof the surface layers of stamping tools in order to increase resistance[J]. Journal of Friction and Wear,2017,38(3). [38]Gui Li,Xiaoyu Long,Min Zhou,Hegen Xiong,Wensheng Wang. A geometric feature-based design system of full parametric association modeling of standard cam for automotive stamping dies[J]. The International Journal of Advanced ManufacturingTechnology,2017,92(9-12). [39]S. N. Lezhnev,I. E. Volokitina,A. V. Volokitin. Evolution of microstructure and mechanical properties of steel in the course of pressing–drawing[J]. Physics of Metals andMetallography,2017,118(11). [40]Alexander Kalies,Hüseyin ?zcoban,Claudia S. Leopold. Performance Characteristics of a Novel Vibration Technique for the Densification of a Powder Bed within a Die of a Rotary Tablet Press — a Proof of Concept[J]. AAPS PharmSciTech,2019,20(4). [41]Gui Li,Xiaoyu Long,Min Zhou. A new design method based on feature reusing of the non-standard cam structure for automotive panels stamping dies[J]. Journal of IntelligentManufacturing,2019,30(5). [42]Gui Li,Peng Yang,Zhongkai Liang,Saisai Cui. Intelligent design and group assembly of male and female dies for hole piercing of automotive stamping dies[J]. The International Journal of Advanced Manufacturing Technology,2019,103(1-4). [43]Long Chen,Wei Chen,Fan Xu,Yinxia Zhu,Yitao Zhu. A pre-design method for drilled cooling pipes in hot stamping tool based on pipe parameter window[J]. The International Journal of Advanced Manufacturing Technology,2019,103(1-4). [44]Rolinski, E,Woods, M,Damirgi, T,Sharp, G. Improving Performance of Stamping Dies with Ion/Plasma Nitriding[J].Industrial Heating,2015,83(11). [45]Jianwei Liu,Xinyu Liu,Lianfa Yang,Huiping Liang.Investigation of tube hydroforming along with stamping of thin-walled tubes in square cross-section dies[J]. Proceedings of the Institution of Mechanical Engineers,2016,230(1). [46]Sarah D Phillips. Dying Unneeded: The Cultural Context of the Russian Mortality Crisis by Michelle A. Parsons. Nashville: Vanderbilt University Press, 2014. 224 pp.[J]. American Anthropologist,2016,118(1). [47]Anonymous. Big Mill Masters Large Progressive StampingDies[J]. Manufacturing Engineering,2016,156(6). [48]. Materials Engineering; Reports Outline Materials Engineering Findings from Iran University of Science and Technology (Die Design Modification to Improve Workability during Equal Channel Angular Pressing)[J]. Journal of Engineering,2016. [49]Eric I Karchmer. Fighting for Breath: Living Morally and Dying of Cancer in a Chinese Village by Anna Lora-Wainwright. Honolulu: University of Hawai'i Press, 2013. 343 pp.[J]. American Anthropologist,2016,118(4). [50]. T.H.T. Presses, Inc.; Researchers Submit Patent Application, "Thermally Directed Die Casting Suitable for Making Hermetically Sealed Disc Drives", for Approval (USPTO20170136529)[J]. Chemicals & Chemistry,2017. [51]. Toyota Boshoku Kabushiki Kaisha; "Press Die" in Patent Application Approval Process (USPTO 20180154423)[J]. Energy Weekly News,2018. [52]Sarah D Phillips. Dying Unneeded: The Cultural Context of the Russian Mortality Crisis by Michelle A. Parsons. Nashville: Vanderbilt University Press, 2014. 224 pp.[J]. American Anthropologist,2016,118(1). [53]. GM Global Technology Operations LLC; Patent Application Titled "Die Assembly For A Stamping Press" Published Online (USPTO 20180221934)[J]. Energy Weekly News,2018. [54]. BOBST Mex SA; "Foil Reel Mounting Device, Supporting Module, Stamping Machine, Handling Tool And Method For Loading And Unloading A Reel Of Stamping Foil" in Patent Application Approval Process (USPTO 20180257366)[J]. Electronics Business Journal,2018. [55]Eric I Karchmer. Fighting for Breath: Living Morally and Dying of Cancer in a Chinese Village by Anna Lora-Wainwright. Honolulu: University of Hawai'i Press, 2013. 343 pp.[J]. American Anthropologist,2016,118(4). [56]. Nanotechnology - Micromachines; Data on Micromachines Reported by Researchers at Polytechnic of Porto (Study of Tialn Pvd Coating On Stamping Dies Used In Tinplate Food PackageProduction)[J]. Food Weekly News,2019. [57]Klass Dennis. Griffith, L. M., & Wallace, C. (Eds.). (2016). Grave matters: Death and dying in Dublin 1500 to the presentGriffith L. M. & Wallace C. (Eds.). ( 2016 ). Grave matters: Death and dying in Dublin 1500 to the present . Dublin, Ireland : Four Courts Press . 226 pp. 22.45. ISBN: 978-1-84682-601-6 (paperback)..[J]. Omega,2018,76(3). [58]Cann Candi K. Malkowski, J. (2017). Dying in Full Detail: Mortality and Digital Documentary Malkowski J. ( 2017 ). Dying in Full Detail: Mortality and Digital Documentary. Durham, NC: Duke University Press. 264 pp. ISBN 978-0-8223-6315-6. $23.95 (paperback).[J]. Omega,2017. [59]Fernandes Liliana,Silva Francisco J G,Alexandre Ricardo. Study of TiAlN PVD Coating on Stamping Dies Used in Tinplate Food Package Production.[J]. Micromachines,2019,10(3). [60]Kalies Alexander,?zcoban Hüseyin,Leopold Claudia S. Performance Characteristics of a Novel Vibration Technique for the Densification of a Powder Bed within a Die of a Rotary Tablet Press - a Proof of Concept.[J]. AAPS PharmSciTech,2019,20(4). 冲压模具英文参考文献三: [61]Cantin Yann. L'éducation de l'écolier sourd. Histoire d'une orthopédie. 1822 à 1910 par Didier Séguillon L'éducation del'écolier sourd. Histoire d'une orthopédie. 1822 à 1910 DidierSéguillon Nanterre : Presses universitaires de Paris Nanterre , 2017 , 364 p., 22 ?.[J]. Canadian bulletin of medical history=Bulletin canadien d'histoire de la medecine,2018,35(1). [62]Fanciulli C,Coduri M,Boldrini S,Abedi H,Tomasi C,FamengoA,Ferrario A,Fabrizio M,Passaretti F. Structural Texture Induced inSnSe Thermoelectric Compound via Open Die Pressing.[J]. Journal of nanoscience and nanotechnology,2017,17(3). [63]Zahari Taha,M A Hanafiah Shaharudin. Estimation of Thermal Contact Conductance between Blank and Tool Surface in Hot Stamping Process[J]. IOP Conference Series: Materials Science and Engineering,2016,114(1). [64]A Zakaria,M A Abidin,M S N Ibrahim,A Senin. Numerical Validation of an Optimized Cooling System for Hot Stamping Die[J]. Journal of Physics: Conference Series,2016,734(3). [65]Nan Zhang,Fadi Abu-Farha. Modeling and Simulating Material Behavior during Hot Blank - Cold Die (HB-CD) Stamping of Aluminium Alloy Sheets[J]. Journal of Physics: Conference Series,2016,734(3). [66]Johan Pilthammar,Mats Sigvant,Sharon Kao-Walter. Including die and press deformations in sheet metal forming simulations[J]. Journal of Physics: Conference Series,2016,734(3). [67]W Wei?,M Koplenig,M Alb,J Graf. Virtual method for the determination of an optimum thermal design of hot stamping tools[J]. IOP Conference Series: Materials Science andEngineering,2016,159(1). [68]I Valls,A Hamasaiid,A Padré. High Thermal Conductivity and High Wear Resistance Tool Steels for cost-effective Hot Stamping Tools[J]. Journal of Physics: Conference Series,2017,896(1). [69]V. Vignesh Shanbhag,P. Michael Pereira,F. Bernard Rolfe,N Arunachalam. Time series analysis of tool wear in sheet metal stamping using acoustic emission[J]. Journal of Physics: Conference Series,2017,896(1). [70]F Medea,G Venturato,A Ghiotti,S Bruschi. Tribological performances of new steel grades for hot stamping tools[J]. Journal of Physics: Conference Series,2017,896(1). [71]Lars Penter,Steffen Ihlenfeldt,Norbert Pierschel. Compensation for tool deformation and expansion in virtual try-outs of hot stamping tools[J]. IOP Conference Series: Materials Science and Engineering,2018,418(1). [72]Vignesh V Shanbhag,Bernard F Rolfe,N Arunachalam,Michael P Pereira. Understanding the source of acoustic emission signalsduring the wear of stamping tools[J]. IOP Conference Series: Materials Science and Engineering,2018,418(1). [73]S E Pratiwi,W Haris,I Miftakhul. Analysis of progressive dies metal stamping components for yoke a plate to maximize age ofwear[J]. IOP Conference Series: Materials Science andEngineering,2018,453(1). [74]Shand Lynda. Caring for the Dying: The Doula Approach to a Meaningful Death by Fersko-Weiss, H. (2017) Fersko-Weiss H. ( 2017 ). Caring for the Dying: The Doula Approach to a Meaningful Death. Newburyport, MA: Conari Press. 222 pp. $24.95 (hardback). ISBN: 9781573246965.[J]. Omega,2018,77(2). [75]Hill. Tell me why my children died: rabies, indigenous knowledge, and communicative justice , by Charles L. Briggs andClara Mantini-Briggs, Durham, NC, Duke University Press, 2016, 344 pp., US$26.95 (paperback), ISBN 978-0-8223-6124-4[J]. Canadian Journal of Latin American and Caribbean Studies / Revue canadienne des études latino-américaines et cara?bes,2018,43(2). [76]Andre Shihomatsu,Sergio Tonini Button,Iris Bento daSilva,Patrick De Baets. Tribological Behavior of Laser Textured Hot Stamping Dies[J]. Advances in Tribology,2016,2016. [77]Maider Muro,Garikoitz Artola,Anton Gorri?o,CarlosAngulo,Akihiko Kimura. Wear and Friction Evaluation of DifferentTool Steels for Hot Stamping[J]. Advances in Materials Science and Engineering,2018,2018. [78]Andre Shihomatsu,Sergio Tonini Button,Iris Bento da Silva. Tribological Behavior of Laser Textured Hot Stamping Dies[J]. Advances in Tribology,2016,2016. [79]Yung-Chou Hung,Yuan-Jen Chang,Chia-Lung Kuo,Jin-ChenHsu,Chao-Ching Ho. Comparison between Laser and Stamping without Die (SWD) for Micro Tapered Hole Forming[J]. Applied Sciences,2016,6(3). [80]Magdalena Cortina,Jon I?aki Arrizubieta,Amaia Calleja,Eneko Ukar,Amaia Alberdi. Case Study to Illustrate the Potential of Conformal Cooling Channels for Hot Stamping Dies Manufactured Using Hybrid Process of Laser Metal Deposition (LMD) and Milling[J]. Metals,2018,8(2). [81]Norman Domeier. Geheime Fotos. Die Kooperation von Associated Press und NS-Regime (1942–1945)[J]. ZeithistorischeForschungen,2017,14 (2017)(2). [82]Robertus Suryo Bisono. STUDI BANDING PELAPISAN MATERIAL SKD11 DENGAN METODE PHYSICAL VAPOUR DEPOSITION DAN THERMAL DIFUSION PADA KOMPONEN INSERT DIES MESIN STAMPING PRESS[J]. Jurnal TeknikMesin,2017,6(1). [83]He Bin,Si Yanglei,Ying Liang,Hu Ping. Research onoptimization design of conformal cooling channels in hot stamping tool based on response surface methodology and multi-objective optimization[J]. MATEC Web of Conferences,2016,80. [84]A.R. Zulhishamuddin, S.N. Aqida. An overview of high thermal conductive hot press forming die material development[J]. Journal of Mechanical Engineering and Sciences,2015,9. [85]NISHINO Souichiro. Damage Evaluation of Coatings for Press Forming Die[J]. JOURNAL OF JAPANESE SOCIETY OFTRIBOLOGISTS,2017,62(8). [86]. Martin Franz, Sebastian Henn und J?rg Weingarten (Hrsg.): BRIC-Investitionen in Deutschland. Chancen und Risiken für Unternehmen und Arbeitnehmer. Forschung aus der Hans-B?ckler-Stiftung 186. Bielefeld: Transcript (2016), 229 S., 24,99 ?.<break> Ulrich Jürgens und Martin Krzywdzinski: New Worlds of Work:Varieties of Work in Car Factories in the BRIC Countries. Oxford: Oxford University Press (2016), 345 pp., 85,24 ?, auch erschienen in deutscher Sprache: Neue Arbeitswelten: Wie sich die Arbeitsrealit?t i[J]. Zeitschrift für Wirtschaftsgeographie,2016,60(3).</break> [87]Ulrich Wyrwa. Dietz Bering, ?War Luther Antisemit?“ Das deutsch-jüdische Verh?ltnis als Trag?die der N?he. Berlin, Berlin University Press 2014[J]. Historische Zeitschrift,2016,302(3). [88]A.W. Or?owicz,M. Mróz,M. Tupaj,A. Trytek,B. Kupiec,M. Korzeniowski,K. Sondej,L. Kozak. The Effect of Carbides Orientation in NC11 Steel on Scratch Susceptibility of Die Inserts Used to Press Stampings for Refractory Shapes[J]. Archives of Foundry Engineering,2016,16(2). [89]. Lutz Musner, Die verletzte Trommel. Der Krieg imslowenisch-triestinischen Karst 1915–1917. Wien, new academic press 2015[J]. Historische Zeitschrift,2017,304(1). [90]Martin Rink. Douglas Porch, Counterinsurgency. Exposing the Myths of the New Way of War, Cambridge [u. a.]: Cambridge University Press 2013, XIII, 434 S., ? 19.99 [ISBN 978-1-107-0738-1] Lukas von Krshiwoblozki, Asymmetrische Kriege. Die Herausforderung für die deutsche Sicherheitspolitik im 21. Jahrhundert, Marburg: Tectum 2015, 796 S., EUR 49,95 [ISBN 978-3-8288-3513-9][J]. Militaergeschichtliche Zeitschrift,2017,76(2). 冲压模具英文参考文献四: [91]Georg Wurzer. Alexander W. Hoerkens, Unter Nazis? Die NS-Ideologie in den abgeh?rten Gespr?chen deutscher Kriegsgefangener in England 1939–1945. Waco, Baylor University Press 2014[J].Historische Zeitschrift,2017,304(2). [92]Martin Moll. Thomas R. Grischany, Der Ostmark treueAlpens?hne. Die Integration der ?sterreicher in die gro?deutsche Wehrmacht, 1938–45, G?ttingen: V&R unipress; Wien: Vienna University Press 2015, 327 S. (=Zeitgeschichte im Kontext, 9), EUR 49,99 [ISBN 978-3-8471-0377-6][J]. MilitaergeschichtlicheZeitschrift,2016,75(2). [93]Eric I. Karchmer. Fighting for Breath : Living Morally and Dying of Cancer in a Chinese Village by Anna Lora‐Wainwright .Honolulu : University of Hawai‘i Press , 2013 . 343 pp.[J]. American Anthropologist,2016,118(4). [94]M. James. Amy Appleford : Learning to Die in London, 1380–1540 . Philadelphia : University of Pennsylvania Press , 2015 ; pp. 336.[J]. Journal of Religious History,2016,40(1). [95]Mohsen Torabi,Ali Reza Eivani,Hamidreza Jafarian,Mohammad Taghi Salehi. Die Design Modification to Improve Workability during Equal Channel Angular Pressing[J]. Advanced EngineeringMaterials,2016,18(8). [96]Sarah D. Phillips. Dying Unneeded : The Cultural Context of the Russian Mortality Crisis by Michelle A. Parsons . Nashville : Vanderbilt University Press , 2014 . 224 pp.[J]. American Anthropologist,2016,118(1). [97]Cassandra Hartblay. Living and Dying in the Contemporary World: A Compendium . Veena Das and Clara Han , eds., Berkeley : University of California Press , 2016 , 896 pp.[J]. Medical Anthropology Quarterly,2017,31(3). [98]WENDY VOGT. The Land of Open Graves: Living and Dying on the Migrant Trail . Jason De Léon , Oakland, CA : University of California Press , 2015 , 384 pp .[J]. City & Society,2017,29(2). [99]MINDY J. MORGAN. Thank You for Dying for Our Country: Commemorative Texts and Performances in Jerusalem . Chaim Noy . New York : Oxford University Press , 2015 . 274 pp.[J]. American Ethnologist,2016,43(4). [100]John Morton. The Aranda's Pepa: An Introduction to Carl Strehlow's Masterpiece Die Aranda‐ und Loritja‐St?mme in Zentral Australien (1907–1920) By Anna Kenny Canberra : ANU E Press . 2013 Pp xix + 310 Price: US$28.00 (paper); free download[J].Oceania,2015,85(2). [101]Stephan Hafenstein,Ewald Werner,Jens Wilzer,WernerTheisen,Sebastian Weber,Christina Sunderk?tter,Mischa Bachmann. Influence of Temperature and Tempering Conditions on Thermal Conductivity of Hot Work Tool Steels for Hot StampingApplications[J]. steel research international,2015,86(12). [102]Jessica Robbins‐Ruszkowski. Dying Unneeded: The Cultural Context of the Russian Mortality Crisis . Michelle A. Parsons , Nashville : Vanderbilt University Press , 2014 , 209 pp.[J]. Medical Anthropology Quarterly,2015,29(3). [103]G. Rosales‐Marín,J. A. Delgadillo,E. T. Tuzcu,C. A.Pérez‐Alonso. Prediction of a piston–die press product using batch population balance model[J]. Asia‐Pacific Journal of Chemical Engineering,2016,11(6). [104]Indivarie Ubhayaratne,Michael P. Pereira,Yong Xiang,Bernard F. Rolfe. Audio signal analysis for tool wear monitoring in sheet metal stamping[J]. Mechanical Systems and Signal Processing,2017,85. [105]A. Ghiotti,S. Bruschi,F. Medea,A. Hamasaiid. Tribological behavior of high thermal conductivity steels for hot stampingtools[J]. Tribology International,2016,97. [106]R. Muvunzi,D.M. Dimitrov,S. Matope,T.M. Harms. Evaluation of Models for Cooling System Design in Hot Stamping Tools[J]. Procedia Manufacturing,2016,7. [107]A. V. Vlasov. Thermomechanical fatigue of dies for hot stamping[J]. Steel in Translation,2016,46(5). [108]In-Kyu Lee,Myeong-Sik Jeong,Sang-Kon Lee,Yong-Jae Cho,Jae-Wook Lee,Pan-Ki Seo,Dae-Cheol Ko,Kyung-Hun Lee,Byung-Min Kim. Wear and fatigue characteristics of new stamping die material for ultra-high-strength steel sheet[J]. International Journal of Precision Engineering and Manufacturing,2015,16(11). [109]Ghasem Azamirad,Behrooz Arezoo. Structural design of stamping die components using bi-directional evolutionary structural optimization method[J]. The International Journal of Advanced Manufacturing Technology,2016,87(1-4). [110]Huiping Li,Lianfang He,Chunzhi Zhang,Hongzhi Cui. Solutionof boundary heat transfer coefficients between hot stamping die and cooling water based on FEM and optimization method[J]. Heat and Mass Transfer,2016,52(4). [111]Cox Alyson. Lydia Dugdale (ed.): Dying in the twenty-first century: toward a new ethical framework for the art of dying well : MIT Press, 2015, XII + 224 pp, $35.00 (hardcover), ISBN: 9780262029124.[J]. Theoretical medicine and bioethics,2016,37(5). [112]Sachin Salunkhe,Deepak Panghal,Shailendra Kumar,H M A Hussein. An expert system for process planning of sheet metal parts produced on compound die for use in stamping industries[J].Sādhanā,2016,41(8). [113]Vitor L. Sordi,Anibal A. Mendes Filho,Gustavo T.Valio,Phillip Springer,Jose B. Rubert,Maurizio Ferrante. Equal-channel angular pressing: influence of die design on pressure forces, strain homogeneity, and corner gap formation[J]. Journal of Materials Science,2016,51(5). [114]Hongxun Wang,Peng Jiang,Weifang Zhang,Yaozhong Zhang,Tong Song. Failure analysis of large press die holder[J]. Engineering Failure Analysis,2016,64. [115]Ping Hu,Bin He,Liang Ying. Numerical investigation oncooling performance of hot stamping tool with various channel designs[J]. Applied Thermal Engineering,2016,96. [116]Bin He,Liang Ying,Xianda Li,Ping Hu. Optimal design of longitudinal conformal cooling channels in hot stamping tools[J]. Applied Thermal Engineering,2016,106. [117]Jens Fruhstorfer,Stefan Barlag,Martin Thalheim,Leandro Sch?ttler,Christos G. Aneziris. Upright die pressing of refractory hollowware for steel ingot casting with reduced clay content[J]. Ceramics International,2016,42(2). [118]Huiping Li,Lianfang He,Chunzhi Zhang,Hongzhi Cui. Research on the effect of boundary pressure on the boundary heat transfer coefficients between hot stamping die and boron steel[J]. International Journal of Heat and Mass Transfer,2015,91. [119]Dekuan Liu,Shuang Jin,Hu Xu. Humanoid Based Intelligence Control Strategy of Plastic Cement Die Press Work-Piece Forming Process for Polymer Plastics[J]. Journal of Materials Science and Chemical Engineering,2016,04(06). [120]Russell David. Closing the gaps on efforts to improve healthcare quality at the end-of-life A review of Dying in America: Improving Quality and Honoring Individual Preferences Near the Endof Life by the Committee on Approaching Death: Addressing Key End of Life Issues. Washington, DC: National Academies Press, 2014. 638 pages. (ISBN: 978-0309303101). $74.95 for print copy; available free online (see References).[J]. Death studies,2016,40(1). 以上就是关于冲压模具英文参考文献,希望对你有所帮助。
12.外文翻译1. The mold designing and manufacturingThe mold is the manufacturing industry important craft foundation, in our country, the mold manufacture belongs to the special purpose equipment manufacturing industry. China although very already starts to make the mold and the use mold, but long-term has not formed the industry. Straight stabs 0 centuries 80's later periods, the Chinese mold industry only then drives into the development speedway. Recent years, not only the state-owned mold enterprise had the very big development, the three investments enterprise, the villages and towns (individual) the mold enterprise's development also rapid quietly.Although the Chinese mold industrial development rapid, but compares with the demand, obviously falls short of demand, its main gap concentrates precisely to, large-scale, is complex, the long life mold domain. As a result of in aspect and so on mold precision, life, manufacture cycle and productivity, China and the international average horizontal and the developedcountry still had a bigger disparity, therefore, needed massively to import the mold every year .The Chinese mold industry must continue to sharpen the productivity, from now on will have emphatically to the profession internal structure adjustment and the state-of-art enhancement. The structure adjustment aspect, mainly is the enterprise structure to the specialized adjustment, the product structure to center the upscale mold development, to the import and export structure improvement, center the upscale automobile cover mold forming analysis and the structure improvement, the multi-purpose compound mold and the compound processing and the laser technology in the mold design manufacture application, the high-speed cutting, the super finishing and polished the technology, the information direction develops .The recent years, the mold profession structure adjustment and the organizational reform step enlarges, mainly displayed in, large-scale, precise, was complex, the long life, center the upscale mold and the mold standard letter development speed is higher than the common mold product; The plastic mold and the compressioncasting mold proportion increases; Specialized mold factory quantity and its productivity increase; "The three investments" and the private enterprise develops rapidly; The joint stock system transformation step speeds up and so on. Distributes from the area looked, take Zhejiang Delta and Yangtze River delta as central southeast coastal area development quickly to mid-west area, south development quickly to north. At present develops quickest, the mold produces the most centralized province is Guangdong and Zhejiang, places such as Jiangsu, Shanghai, Anhui and Shandong also has a bigger development in recent years.1.模具设计及制造模具是制造业的重要工艺基础,在我国模具制造属于专用设备制造业。
冲模stamping die冲裁模blanking die落料模blanking die冲孔模piercing die修边模trimming die切口模notching die切口模lancing die剖切模parting die精修模shaving die精冲fine blanking die切断模cut-off die弯曲模bending die预弯模pre-bending die卷边模curling die扭曲模twisting die拉伸模drawing die反拉伸模reverse redrawing die 正拉伸模obverse redrawing die 变薄拉伸ironing die 成形模forming die胀形模bulging die压筋模stretching die翻边模flanging die翻孔模burring die缩口模necking die扩口模flaring die整形模restriking die压印模printing die复合模compound die正装复合模obverse…倒装复合模inverse…级进模progressive die单工序模single-operation die无导向模open die导板模guide plate die导柱模guide pillar die通用模universal die自动模automatic die组合冲模combined die传递模transfer die镶块模insert die柔性模flexible die多功能模multifunction die简易模low-cost die橡胶冲模rubber die钢带模steel strip die低熔点合金模low-melting-point al薄板模laminate die夹板模template die校平模planishing die齿形校平模roughed..硬质合金模carbide die上模upper die下模lower die模架die set通用模架universal die set快换模架quick change die set后侧导柱模架back-pillar die set对角导柱模架diagonal-pillar die set精冲模架fine blanking die set滑动导向模架sliding guide die set滚动导向模架ball-bearing die set工作零件working component凸模punch定距侧刃pitch punch凸凹模main punch镶件insert拼块section软模soft die定位零件locating component定位销locating pin定位板locating plate挡料销stop pin始用挡料销finger stop pin导正销pilot pin抬料销Lifter pin导料板stock guide rail侧刃挡块stop block for pitch punch止退键stop key侧压板Side-push plate .限位块limit block限位柱limit post压料clamping卸料stripping送料feeding卸料版stripper plate固定卸料板fixed stripper plate弹性卸料板spring stripper plate推件块ejector block顶件块kicker block顶杆kicker pin推板ejector plate推杆ejector pin连接推杆ejector tie rod打料杆knock-out pin卸料螺钉stripper bolt拉杆tie rod托杆cushion pin托板support pin废料切刀scrap cutter顶料器cushion承料板stock-supporting plate 压料板pressure plate压边圈blank holder齿圈压板vee-ring plate推件板slide feed plate自动送料装置automatic feeder 导向零件guide component导柱guide pillar导套guide bush滚柱导柱ball-bearing..滚柱导套ball-bearing..钢球保持圈cage制动件retainer导板guide plate滑块slide block耐磨板wear plate凸模保护套punch-protectingBushing固定零件retaining component上模座punch holder下模座die holder凸模固定板punch plate预应力圈shrinking ring垫板bolster plate模柄die shank浮动模柄self-centering shank斜楔cam driver模具间隙clearance模具闭合高度die shut height最大闭合高度maximum shut heigt闭合高度调节量adjustable distance冲模寿命die life压力中心load center冲模中心die center冲压方向pressing direction送料方向feed direction排样blank layout搭边web步距feed pitch切边余量trimming allowance毛刺burr塌角die roll光亮带smooth cut zone冲裁力blanking force弯曲力bending force拉深力drawing force卸料力stripping force推件力ejecting force顶件力kicking force压料力pressure plate force压边力blank holder force毛坯blank中性层neutral line弯曲角bending angle弯曲线bending line回弹spring back弯曲半径bending radius相对弯曲半径relative..最小弯曲半径minimum展开长度blank length of a bend拉深系数drawing coefficient拉深比drawing ratio拉深次数drawing number缩口系数necking coefficient圆凹模round die头部punch die头部直径punch head diameter头厚punch head thickness刃口point刃口直径point diameter刃口长度point height杆shank凸模圆角半径punch radius圆凸模round punch凹模刃口die point凹模刃口直径hole diameter凹模刃口长度land length刃口斜度cutting edge angle模体die body凹模外径die body diameter引导直径leading diameter凹模总长die overall length排料孔relief hole排料孔直径relief hole diameterWelco me To Downl oad !!! 欢迎您的下载,资料仅供参考!。
冲压模具成型外文翻译参考文献(文档含中英文对照即英文原文和中文翻译)4 Sheet metal forming and blanking4.1 Principles of die manufacture4.1.1 Classification of diesIn metalforming,the geometry of the workpiece is established entirely or partially by the geometry of the die.In contrast to machining processes,ignificantly greater forces are necessary in forming.Due to the complexity of the parts,forming is often not carried out in a single operation.Depending on the geometry of the part,production is carried out in several operational steps via one or several production processes such as forming or blanking.One operation can also include several processes simultaneously(cf.Sect.2.1.4).During the design phase,the necessary manufacturing methods as well as the sequence and number of production steps are established in a processing plan(Fig.4.1.1).In this plan,theavailability of machines,the planned production volumes of the part and other boundary conditions are taken into account.The aim is to minimize the number of dies to be used while keeping up a high level of operational reliability.The parts are greatly simplified right from their design stage by close collaboration between the Part Design and Production Departments in order to enable several forming and related blanking processes to be carried out in one forming station.Obviously,the more operations which are integrated into a single die,the more complex the structure of the die becomes.The consequences are higher costs,a decrease in output and a lower reliability.Fig.4.1.1 Production steps for the manufacture of an oil sumpTypes of diesThe type of die and the closely related transportation of the part between dies is determined in accordance with the forming procedure,the size of the part in question and the production volume of parts to be produced.The production of large sheet metal parts is carried out almost exclusively using single sets of dies.Typical parts can be found in automotive manufacture,the domestic appliance industry and radiator production.Suitable transfer systems,for example vacuum suction systems,allow the installation of double-action dies in a sufficiently large mounting area.In this way,for example,the right and left doors of a car can be formed jointly in one working stroke(cf.Fig.4.4.34).Large size single dies are installed in large presses.The transportation of the parts from oneforming station to another is carried out mechanically.In a press line with single presses installed one behind the other,feeders or robots can be used(cf.Fig.4.4.20 to 4.4.22),whilst in large-panel transfer presses,systems equipped with gripper rails(cf.Fig.4.4.29)or crossbar suction systems(cf.Fig.4.4.34)are used to transfer the parts.Transfer dies are used for the production of high volumes of smaller and medium size parts(Fig.4.1.2).They consist of several single dies,which are mounted on a common base plate.The sheet metal is fed through mostly in blank form and also transported individually from die to die.If this part transportation is automated,the press is called a transfer press.The largest transfer dies are used together with single dies in large-panel transfer presses(cf.Fig.4.4.32).In progressive dies,also known as progressive blanking dies,sheet metal parts are blanked in several stages;generally speaking no actual forming operation takes place.The sheet metal is fed from a coil or in the form of metal ing an appropriate arrangement of the blanks within the available width of the sheet metal,an optimal material usage is ensured(cf.Fig.4.5.2 to 4.5.5). The workpiece remains fixed to the strip skeleton up until the laFig.4.1.2 Transfer die set for the production of an automatic transmission for an automotive application-st operation.The parts are transferred when the entire strip is shifted further in the work flow direction after the blanking operation.The length of the shift is equal to the center line spacing of the dies and it is also called the step width.Side shears,very precise feeding devices or pilot pins ensure feed-related part accuracy.In the final production operation,the finished part,i.e.the last part in the sequence,is disconnected from the skeleton.A field of application for progressive blanking tools is,for example,in the production of metal rotors or stator blanks for electric motors(cf.Fig.4.6.11 and 4.6.20).In progressive compound dies smaller formed parts are produced in several sequential operations.In contrast to progressive dies,not only blanking but also forming operations areperformed.However, the workpiece also remains in the skeleton up to the last operation(Fig.4.1.3 and cf.Fig.4.7.2).Due to the height of the parts,the metal strip must be raised up,generally using lifting edges or similar lifting devices in order to allow the strip metal to be transported mechanically.Pressed metal parts which cannot be produced within a metal strip because of their geometrical dimensions are alternatively produced on transfer sets.Fig.4.1.3 Reinforcing part of a car produced in a strip by a compound die setNext to the dies already mentioned,a series of special dies are available for special individual applications.These dies are,as a rule,used separately.Special operations make it possible,however,for special dies to be integrated into an operational Sequence.Thus,for example,in flanging dies several metal parts can be joined together positively through the bending of certain metal sections(Fig.4.1.4and cf.Fig.2.1.34).During this operation reinforcing parts,glue or other components can be introduced.Other special dies locate special connecting elements directly into the press.Sorting and positioning elements,for example,bring stamping nuts synchronised with the press cycles into the correct position so that the punch heads can join them with the sheet metal part(Fig.4.1.5).If there is sufficient space available,forming and blanking operations can be carried out on the same die.Further examples include bending,collar-forming,stamping,fine blanking,wobble blanking and welding operations(cf.Fig.4.7.14 and4.7.15).Fig.4.1.4 A hemming dieFig.4.1.5 A pressed part with an integrated punched nut4.1.2 Die developmentTraditionally the business of die engineering has been influenced by the automotive industry.The following observations about the die development are mostly related to body panel die construction.Essential statements are,however,made in a fundamental context,so that they are applicable to all areas involved with the production of sheet-metal forming and blanking dies.Timing cycle for a mass produced car body panelUntil the end of the 1980s some car models were still being produced for six to eight years more or less unchanged or in slightly modified form.Today,however,production time cycles are set for only five years or less(Fig.4.1.6).Following the new different model policy,the demands ondie makers have also changed prehensive contracts of much greater scope such as Simultaneous Engineering(SE)contracts are becoming increasingly common.As a result,the die maker is often involved at the initial development phase of the metal part as well as in the planning phase for the production process.Therefore,a muchbroader involvement is established well before the actual die development is initiated.Fig.4.1.6 Time schedule for a mass produced car body panelThe timetable of an SE projectWithin the context of the production process for car body panels,only a minimal amount of time is allocated to allow for the manufacture of the dies.With large scale dies there is a run-up period of about 10 months in which design and die try-out are included.In complex SE projects,which have to be completed in 1.5 to 2 years,parallel tasks must be carried out.Furthermore,additional resources must be provided before and after delivery of the dies.These short periods call for pre-cise planning,specific know-how,available capacity and the use of the latest technological and communications systems.The timetable shows the individual activities during the manufacturing of the dies for the production of the sheet metal parts(Fig.4.1.7).The time phases for large scale dies are more or less similar so that this timetable can be considered to be valid in general.Data record and part drawingThe data record and the part drawing serve as the basis for all subsequent processing steps.They describe all the details of the parts to be produced. The information given in theFig.4.1.7 Timetable for an SE projectpart drawing includes: part identification,part numbering,sheet metal thickness,sheet metal quality,tolerances of the finished part etc.(cf.Fig.4.7.17).To avoid the production of physical models(master patterns),the CAD data should describe the geometry of the part completely by means of line,surface or volume models.As a general rule,high quality surface data with a completely filleted and closed surface geometry must be made available to all the participants in a project as early as possible.Process plan and draw developmentThe process plan,which means the operational sequence to be followed in the production of the sheet metal component,is developed from the data record of the finished part(cf.Fig.4.1.1).Already at this point in time,various boundary conditions must be taken into account:the sheet metal material,the press to be used,transfer of the parts into the press,the transportation of scrap materials,the undercuts as well as thesliding pin installations and their adjustment.The draw development,i.e.the computer aided design and layout of the blank holder area of the part in the first forming stage–if need bealso the second stage–,requires a process planner with considerable experience(Fig.4.1.8).In order to recognize and avoid problems in areas which are difficult to draw,it is necessary to manufacture a physical analysis model of the draw development.With this model,theforming conditions of the drawn part can be reviewed and final modifications introduced,which are eventually incorporated into the data record(Fig.4.1.9).This process is being replaced to some extent by intelligent simulation methods,through which the potential defects of the formed component can be predicted and analysed interactively on the computer display.Die designAfter release of the process plan and draw development and the press,the design of the die can be started.As a rule,at this stage,the standards and manufacturing specifications required by the client must be considered.Thus,it is possible to obtain a unified die design and to consider the particular requests of the customer related to warehousing of standard,replacement and wear parts.Many dies need to be designed so that they can be installed in different types of presses.Dies are frequently installed both in a production press as well as in two different separate back-up presses.In this context,the layout of the die clamping elements,pressure pins and scrap disposal channels on different presses must be taken into account.Furthermore,it must be noted that drawing dies working in a single-action press may be installed in a double-action press(cf.Sect.3.1.3 and Fig.4.1.16).Fig.4.1.8 CAD data record for a draw developmentIn the design and sizing of the die,it is particularly important to consider the freedom of movement of the gripper rail and the crossbar transfer elements(cf.Sect.4.1.6).These describe the relative movements between the components of the press transfer system and the die components during a complete press working stroke.The lifting movement of the press slide,the opening and closing movements of the gripper rails and the lengthwise movement of the whole transfer are all superimposed.The dies are designed so that collisions are avoided and a minimum clearance of about 20 mm is set between all the moving parts.4 金属板料的成形及冲裁4. 模具制造原理4.1.1模具的分类在金属成形的过程中,工件的几何形状完全或部分建立在模具几何形状的基础上的。
冲压模具冷冲压加工中英文对照资料外文翻译文献冷冲模具使用寿命的影响及对策冲压模具概述冲模ft—在冷加_1.:中,将材料(金诚成非金城)加工成零件(成半成品)的一种特殊工艺装��,称为冷冲紅::校�!:〔俗称冷冲校、冲fE—适在室溢下,利用安装在丨力机.卜.的校H.对材料施加压:力,使_乂:产生分离成塑忤:变形,从ffu获得所需零件的一种H::力加工方法,冲Hi校的形式很多,一般可按以卜几个主耍特征分类:I .报据.17力分类n)冲裁模沿封如或敞开的轮廊线使材料产生分离的模其.如落料模,冲孔模、切断根、切口模、切边視、剂切模等。
(2)齊曲模使板料宅述成其他!��料沿着货线(暫曲线)产生符曲变形,从而获得一记祐度和形状的丄件的桉A。
(3)拉深模楚把板料毛制成开口空:心作,成使:空心件进_��_改变形状和尺十的模具,(4)成形校足将毛或半成沾工仲抜图n校的形状寅接&制成形.而材木i乂产生部塑性货肜的椋:A,如胀形模、缩口模、扩口模,起伏成形模、翻iMJ,整肜校2 .根椐.1.:序组合程度分类(1)印-工序模在liK力机的一次行程中,_U完成一道冲HCI:序的模其。
(2) R合椒只n—个工位,在力机的一次行程中,在kii一:L位上同时完成两进或两逝以h冲Ha工序的模-A,(3)级进模(也称连续报>在宅坏:的送进方IH h, A冇两个或史多的工位,在所力机的一次行程中,在:4、同的‘L:位.卜.逐次完成碑道或例道以上冲tKT_序的校』:毛。
沖;��冲模全称为冷冲丨丨丨模與.冷冲压校A·足一种应用十模妈行业冷冲Hi校:A及其配件所露高性能结构陶资材科的制���方法,高件能陶资模及.It配件材料由氧化销、氣化紀粉中加���谱兀巢构成,制备工艺足将氧化格溶液、氣化紀溶液、氧化销溶液、氧化紀洛液按一定比例混仓配成母液,滴入碳酸試按’采用:]彳沉淀方法合成模-A及;H;配_ft陶瓷材料所需的原材料,反应:�成的沉淀找滤水、干燥,般烧得到高性能陶瓷模A及其配件材料超微粉,押经过成塑、烧结、精加工,便得到jS;性能陶瓷楨爲及其_配件树料。
冲压模具-冲压名称类英汉对照plain die简易模pierce die冲孔模forming die成型模progressive die连续模gang dies复合模shearing die剪边模riveting die铆合模pierce冲孔forming成型(抽凸,冲凸)draw hole抽孔bending折弯trim切边emboss凸点dome凸圆semi-shearing半剪stamp mark冲记号deburr or coin压毛边punch riveting冲压铆合side stretch侧冲压平reel stretch卷圆压平groove压线blanking下料stamp letter冲字(料号) shearing剪断tick-mark nearside正面压印tick-mark farside反面压印extension dwg展开图procedure dwg工程图die structure dwg模具结构图material材质material thickness料片厚度factor系数upward向上downward向下press specification冲床规格die height range适用模高die height闭模高度burr毛边gap间隙weight重量total wt.总重量punch wt.上模重量各式模具分类用语英汉对照landed plunger mold 有肩柱塞式模具burnishing die 挤光模landed positive mold 有肩全压式模具button die 镶入式圆形凹模loading shoe mold 料套式模具center-gated mold 中心浇口式模具loose detail mold 活零件模具chill mold 冷硬用铸模loose mold 活动式模具clod hobbing 冷挤压制模louvering die 百叶窗冲切模composite dies 复合模具manifold die 分歧管模具counter punch 反凸模modular mold 组合式模具double stack mold 双层模具multi-cavity mold 多模穴模具electroformed mold 电铸成形模multi-gate mold 复式浇口模具expander die 扩径模offswt bending die 双折冷弯模具extrusion die 挤出模palletizing die 叠层模family mold 反套制品模具plaster mold 石膏模blank through dies 漏件式落料模porous mold 通气性模具duplicated cavity plate 复板模positive mold 全压式模具fantail die 扇尾形模具pressure die 压紧模fishtail die 鱼尾形模具profile die 轮廓模flash mold 溢料式模具progressive die 顺序模gypsum mold 石膏铸模protable mold 手提式模具hot-runner mold 热流道模具prototype mold 雏形试验模具ingot mold 钢锭模punching die 落料模lancing die 切口模raising(embossing) 压花起伏成形re-entrant mold 倒角式模具sectional die 拼合模runless injection mold 无流道冷料模具sectional die 对合模具segment mold 组合模semi-positive mold 半全压式模具shaper 定型模套single cavity mold 单腔模具solid forging die 整体锻模split forging die 拼合锻模split mold 双并式模具sprueless mold 无注道残料模具squeezing die 挤压模stretch form die 拉伸成形模sweeping mold 平刮铸模swing die 振动模具three plates mold 三片式模具trimming die 切边模unit mold 单元式模具universal mold 通用模具unscrewing mold 退扣式模具yoke type die 轭型模模具英语解释一、入水:gate进入位:gate location水口形式:gate type大水口:edge gate细水口:pin-point gate水口大小:gate size转水口:switching runner/gate唧嘴口径:sprue diameter二、流道: runner热流道:hot runner,hot manifold热嘴冷流道: hot sprue/cold runner唧嘴直流: direct sprue gate圆形流道:round (full/half runner)流道电脑分析:mold flow analysis流道平衡:runner balance热嘴:hot sprue热流道板:hot manifold发热管:cartridge heater探针: thermocouples插头:connector plug插座:connector socket密封/封料:seal三、运水:water line喉塞:line lpug喉管:tube塑胶管:plastic tube快速接头:jiffy quick connector plug/socker 四、模具零件:mold components三板模:3-plate mold二板模:2-plate mold边钉/导边:leader pin/guide pin边司/导套:bushing/guide bushing中托司:shoulder guide bushing中托边L:guide pin顶针板:ejector retainner plate托板:support plate螺丝:screw管钉:dowel pin开模槽:ply bar scot内模管位:core/cavity inter-lock顶针:ejector pin司筒:ejector sleeve司筒针:ejector pin推板:stripper plate缩呵:movable core,return core core puller扣机(尼龙拉勾):nylon latch lock斜顶:lifter模胚(架):mold base上内模:cavity insert下内模:core insert行位(滑块):slide镶件:insert压座/斜鸡:wedge耐磨板/油板:wedge wear plate压条:plate撑头: support pillar唧嘴:sprue bushing挡板:stop plate定位圈:locating ring锁扣:latch扣鸡:parting lock set推杆:push bar栓打螺丝:S.H.S.B顶板:eracuretun活动臂:lever arm分流锥:spure sperader水口司:bush垃圾钉:stop pin隔片:buffle弹弓柱:spring rod弹弓:die spring中托司:ejector guide bush中托边:ejector guide pin镶针:pin销子:dowel pin波子弹弓:ball catch喉塞: pipe plug锁模块:lock plate斜顶:angle from pin斜顶杆:angle ejector rod尼龙拉勾:parting locks活动臂:lever arm复位键、提前回杆:early return bar气阀:valves斜导边:angle pin术语:terms承压平面平衡:parting surface support balance 模排气:parting line venting回针碰料位:return pin and cavity interference模总高超出啤机规格:mold base shut hight顶针碰运水:water line interferes withejector pin料位出上/下模:part from cavith (core) side模胚原身出料位:cavity direct cut on A-plate,core direct cut on B-plate.不准用镶件:Do not use (core/cavity) insert用铍铜做镶件:use beryllium copper insert初步(正式)模图设计:preliinary (final) mold design反呵:reverse core弹弓压缩量:spring compressed length稳定性好:good stability,stable强度不够:insufficient rigidity均匀冷却:even cooling扣模:sticking热膨胀:thero expansion公差:tolorance铜公(电极):copper electrode模具相关英语1padding block垫块stepping bar垫条upper die base上模座lower die base下模座upper supporting blank上承板upper padding plate blank上垫板spare dies模具备品spring 弹簧bolt螺栓document folder活页夹file folder资料夹to put file in order整理资料spare tools location手工备品仓first count初盘人first check初盘复棹人second count 复盘人second check复盘复核人equipment设备waste materials废料work in progress product在制品casing = containerazation装箱quantity of physical invetory second count 复盘点数量quantity of customs count会计师盘,点数量the first page第一联filed by accounting department for reference会计部存查end-user/using unit(department)使用单位summary of year-end physical inventory bills年终盘点截止单据汇总表bill name单据名称This sheet and physical inventory list will be sent to accounting department together (Those of NHK will be sent to financial department)本表请与盘点清册一起送会计部-(NHK厂区送财会部)Application status records of year-end physical inventory List and physical inventory card 年终盘点卡与清册使用-状况明细表blank and waste sheet NO.空白与作废单号plate电镀mold成型material for engineering mold testing工程试模材料not included in physical inventory不列入盘点sample样品incoming material to be inspected进货待验description品名steel/rolled steel钢材material statistics sheet物料统计明细表meeting minutes会议记录meeting type 会别distribution department分发单位location地点chairman主席present members出席人员subject主题conclusion结论decision items决议事项responsible department负责单位pre-fixed finishing date预定完成日approved by / checked by / prepared by核准/审核/承办PCE assembly production schedule sheetPCE组装厂生产排配表model机钟work order工令revision版次remark备注production control confirmation生产确认checked by初审approved by核准department部门stock age analysis sheet库存货龄分析表on-hand inventory现有库存available material良品可使用obsolete material良品已呆滞to be inspected or reworked待验或重工total合计cause description原因说明part number/ P/N 料号type形态item/group/class类别quality品质prepared by制表notes说明year-end physical inventory difference analysis sheet年终盘点差异分析表physical inventory盘点数量physical count quantity帐面数量difference quantity差异量cause analysis原因分析raw materials原料materials物料finished product成品semi-finished product半成品packing materials包材good product/accepted goods/ accepted parts/good parts良品defective product/non-good parts不良品disposed goods处理品warehouse/hub仓库on way location在途仓oversea location海外仓spare parts physical inventory list备品盘点清单spare molds location模具备品仓skid/pallet栈板tox machine自铆机wire EDM线割EDM放电机coil stock卷料sheet stock片料tolerance工差score=groove压线cam block滑块pilot导正筒trim剪外边pierce剪内边drag form压锻差pocket for the punch head挂钩槽slug hole废料孔feature die公母模expansion dwg展开图radius半径shim(wedge)楔子torch-flame cut火焰切割set screw止付螺丝form block折刀stop pin定位销round pierce punch=die button圆冲子shape punch=die insert异形子stock locater block定位块under cut=scrap chopper清角active plate活动板模具相关英语2baffle plate挡块cover plate盖板male die公模female die母模groove punch压线冲子air-cushion eject-rod气垫顶杆spring-box eject-plate弹簧箱顶板bushing block衬套insert 入块club car高尔夫球车capability能力parameter参数factor系数phosphate皮膜化成viscosity涂料粘度alkalidipping脱脂main manifold主集流脉bezel斜视规blanking穿落模dejecting顶固模demagnetization去磁;消磁high-speed transmission高速传递heat dissipation热传rack上料degrease脱脂rinse水洗alkaline etch龄咬desmut剥黑膜D.I. rinse纯水次Chromate铬酸处理Anodize阳性处理seal封孔revision版次part number/P/N料号good products良品scraped products报放心品defective products不良品finished products成品disposed products处理品barcode条形码flow chart流程窗体assembly组装stamping冲压molding成型spare parts=buffer备品coordinate坐标dismantle the die折模auxiliary fuction辅助功能poly-line多义线heater band 加热片thermocouple热电偶sand blasting喷沙grit 砂砾derusting machine除锈机degate打浇口dryer烘干机induction感应induction light感应光response=reaction=interaction感应ram连杆edge finder巡边器concave 凹convex凸short射料不足nick缺口speck瑕疪shine亮班splay 银纹gas mark焦痕delamination起鳞cold slug冷块blush 导色gouge沟槽;凿槽satin texture段面咬花witness line证示线patent专利grit沙砾granule=peuet=grain细粒grit maker抽粒机cushion缓冲magnalium镁铝合金magnesium镁金metal plate钣金lathe车mill锉plane刨grind磨drill钻boring镗blinster气泡fillet镶;嵌边through-hole form通孔形式voller pin formality滚针形式cam driver铡楔shank摸柄crank shaft曲柄轴augular offset角度偏差velocity速度production tempo生产进度现状torque扭矩spline=the multiple keys花键quenching淬火tempering回火annealing退火carbonization碳化alloy合金tungsten high speed steel钨高速的moly high speed steel钼高速的organic solvent有机溶剂bracket小磁导liaison联络单volatile挥发性resistance电阻ion离子titrator滴定仪beacon警示灯coolant冷却液crusher破碎机模具工程类plain die简易模pierce die冲孔模forming die成型模progressive die连续模gang dies复合模shearing die剪边模riveting die铆合模pierce冲孔forming成型(抽凸,冲凸)draw hole抽孔bending折弯trim切边模具相关英语3emboss凸点dome凸圆semi-shearing半剪stamp mark冲记号deburr or coin压毛边punch riveting冲压铆合side stretch侧冲压平reel stretch卷圆压平groove压线blanking下料stamp letter冲字(料号) shearing剪断tick-mark nearside正面压印tick-mark farside反面压印冲压名称类extension dwg展开图procedure dwg工程图die structure dwg模具结构图material材质material thickness料片厚度factor系数upward向上downward向下press specification冲床规格die height range适用模高die height闭模高度burr毛边gap间隙weight重量total wt.总重量punch wt.上模重量五金零件类inner guiding post内导柱inner hexagon screw内六角螺钉dowel pin固定销coil spring弹簧lifter pin顶料销eq-height sleeves=spool等高套筒pin销lifter guide pin浮升导料销guide pin导正销wire spring圆线弹簧outer guiding post外导柱stop screw止付螺丝located pin定位销outer bush外导套模板类top plate上托板(顶板)top block上垫脚punch set上模座punch pad上垫板punch holder上夹板stripper pad脱料背板up stripper上脱料板male die公模(凸模)feature die公母模female die母模(凹模)upper plate上模板lower plate下模板die pad下垫板die holder下夹板die set下模座bottom block下垫脚bottom plate下托板(底板)stripping plate内外打(脱料板)outer stripper外脱料板inner stripper内脱料板lower stripper下脱料板零件类punch冲头insert入块(嵌入件)deburring punch压毛边冲子groove punch压线冲子stamped punch字模冲子round punch圆冲子special shape punch异形冲子bending block折刀roller滚轴baffle plate挡块located block定位块supporting block for location定位支承块air cushion plate气垫板air-cushion eject-rod气垫顶杆trimming punch切边冲子stiffening rib punch = stinger 加强筋冲子ribbon punch压筋冲子reel-stretch punch卷圆压平冲子guide plate定位板sliding block滑块模具工程常用词汇die 模具figure file, chart file图档cutting die, blanking die冲裁模progressive die, follow (-on)die连续模compound die复合模punched hole冲孔panel board镶块to cutedges=side cut=side scrap切边to bending折弯to pull, to stretch拉伸Line streching, line pulling线拉伸engraving, to engrave刻印upsiding down edges翻边to stake铆合designing, to design设计design modification设计变化die block模块folded block折弯块sliding block滑块location pin定位销lifting pin顶料销die plate, front board模板padding block垫块stepping bar垫条upper die base上模座lower die base下模座upper supporting blank上承板upper padding plate blank上垫板spare dies模具备品spring 弹簧bolt螺栓document folder文件夹file folder资料夹to put file in order整理资料spare tools location手工备品仓first count初盘人first check初盘复棹人second count 复盘人second check复盘复核人equipment设备waste materials废料work in progress product在制品casing = containerazation装箱quantity of physical invetory second count 复盘点数量quantity of customs count会计师盘,点数量the first page第一联filed by accounting department for reference会计部存查end-user/using unit(department)使用单位summary of year-end physical inventory bills年终盘点截止单据汇总表bill name单据名称This sheet and physical inventory list will be sent to accounting department together (Those of NHK will be sent to financial department)本表请与盘点清册一起送会计部-(NHK厂区送财会部) Application status records of year-end physical inventory List and physical inventory card 年终盘点卡与清册使用-状况明细表blank and waste sheet NO.空白与作废单号plate电镀mold成型material for engineering mold testing工程试模材料not included in physical inventory不列入盘点sample样品incoming material to be inspected进货待验description品名steel/rolled steel钢材material statistics sheet物料统计明细表meeting minutes会议记录meeting type 会别distribution department分发单位location地点chairman主席present members出席人员subject主题conclusion结论decision items决议事项responsible department负责单位pre-fixed finishing date预定完成日approved by / checked by / prepared by核准/审核/承办PCE assembly production schedule sheetPCE组装厂生产排配表model机锺work order工令revision版次remark备注production control confirmation生产确认checked by初审approved by核准department部门stock age analysis sheet库存货龄分析表on-hand inventory现有库存available material良品可使用obsolete material良品已呆滞to be inspected or reworked待验或重工total合计cause description原因说明part number/ P/N 料号type形态item/group/class类别quality品质prepared by制表notes说明year-end physical inventory difference analysis sheet年终盘点差异分析表physical inventory盘点数量physical count quantity帐面数量difference quantity差异量cause analysis原因分析raw materials原料materials物料finished product成品semi-finished product半成品packing materials包材good product/accepted goods/ accepted parts/good parts良品defective product/non-good parts不良品disposed goods处理品warehouse/hub仓库on way location在途仓oversea location海外仓spare parts physical inventory list备品盘点清单spare molds location模具备品仓skid/pallet栈板tox machine自铆机wire EDM线割EDM放电机coil stock卷料sheet stock片料tolerance工差score=groove压线cam block滑块pilot导正筒trim剪外边pierce剪内边drag form压锻差pocket for the punch head挂钩槽slug hole废料孔feature die公母模expansion dwg展开图radius半径shim(wedge)楔子torch-flame cut火焰切割set screw止付螺丝form block折刀stop pin定位销round pierce punch=die button圆冲子shape punch=die insert异形子stock locater block定位块under cut=scrap chopper清角active plate活动板baffle plate挡块cover plate盖板male die公模female die母模groove punch压线冲子air-cushion eject-rod气垫顶杆spring-box eject-plate弹簧箱顶板bushing block衬套insert 入块club car高尔夫球车capability能力parameter参数factor系数phosphate皮膜化成viscosity涂料粘度alkalidipping脱脂main manifold主集流脉bezel斜视规blanking穿落模dejecting顶固模demagnetization去磁;消磁high-speed transmission高速传递heat dissipation热传rack上料degrease脱脂rinse水洗alkaline etch龄咬desmut剥黑膜D.I. rinse纯水次Chromate铬酸处理Anodize阳性处理seal封孔revision版次part number/P/N料号good products良品scraped products报放心品defective products不良品finished products成品disposed products处理品barcode条码flow chart流程表单assembly组装stamping冲压molding成型spare parts=buffer备品coordinate座标dismantle the die折模auxiliary fuction辅助功能poly-line多义线heater band 加热片thermocouple热电偶sand blasting喷沙grit 砂砾derusting machine除锈机degate打浇口dryer烘干机induction感应induction light感应光response=reaction=interaction感应ram连杆edge finder巡边器concave凸convex凹short射料不足nick缺口speck瑕??shine亮班splay 银纹gas mark焦痕delamination起鳞cold slug冷块blush 导色gouge沟槽;凿槽satin texture段面咬花witness line证示线patent专利grit沙砾granule=peuet=grain细粒grit maker抽粒机cushion缓冲magnalium镁铝合金magnesium镁金metal plate钣金lathe车mill锉plane刨grind磨drill铝boring镗blinster气泡fillet镶;嵌边through-hole form通孔形式voller pin formality滚针形式cam driver铡楔shank摸柄crank shaft曲柄轴augular offset角度偏差velocity速度production tempo生产进度现状torque扭矩spline=the multiple keys花键quenching淬火tempering回火annealing退火carbonization碳化alloy合金tungsten high speed steel钨高速的moly high speed steel钼高速的organic solvent有机溶剂bracket小磁导liaison联络单volatile挥发性resistance电阻ion离子titrator滴定仪beacon警示灯coolant冷却液crusher破碎机模具工程类plain die简易模pierce die冲孔模forming die成型模progressive die连续模gang dies复合模shearing die剪边模riveting die铆合模pierce冲孔forming成型(抽凸,冲凸) draw hole抽孔bending折弯trim切边emboss凸点dome凸圆semi-shearing半剪stamp mark冲记号deburr or coin压毛边punch riveting冲压铆合side stretch侧冲压平reel stretch卷圆压平groove压线blanking下料stamp letter冲字(料号) shearing剪断tick-mark nearside正面压印tick-mark farside反面压印冲压名称类extension dwg展开图procedure dwg工程图die structure dwg模具结构图material材质material thickness料片厚度factor系数upward向上downward向下press specification冲床规格die height range适用模高die height闭模高度burr毛边gap间隙weight重量total wt.总重量punch wt.上模重量五金零件类inner guiding post内导柱inner hexagon screw内六角螺钉dowel pin固定销coil spring弹簧lifter pin顶料销eq-height sleeves=spool等高套筒pin销lifter guide pin浮升导料销guide pin导正销wire spring圆线弹簧outer guiding post外导柱stop screw止付螺丝located pin定位销outer bush外导套模板类top plate上托板(顶板)top block上垫脚punch set上模座punch pad上垫板punch holder上夹板stripper pad脱料背板up stripper上脱料板male die公模(凸模)feature die公母模female die母模(凹模)upper plate上模板lower plate下模板die pad下垫板die holder下夹板die set下模座bottom block下垫脚bottom plate下托板(底板) stripping plate内外打(脱料板) outer stripper外脱料板inner stripper内脱料板lower stripper下脱料板零件类punch冲头insert入块(嵌入件)deburring punch压毛边冲子groove punch压线冲子stamped punch字模冲子round punch圆冲子special shape punch异形冲子bending block折刀roller滚轴baffle plate挡块located block定位块supporting block for location定位支承块air cushion plate气垫板air-cushion eject-rod气垫顶杆trimming punch切边冲子stiffening rib punch = stinger 加强筋冲子ribbon punch压筋冲子reel-stretch punch卷圆压平冲子guide plate定位板sliding block滑块sliding dowel block滑块固定块active plate活动板lower sliding plate下滑块板upper holder block上压块upper mid plate上中间板spring box弹簧箱spring-box eject-rod弹簧箱顶杆spring-box eject-plate弹簧箱顶板bushing bolck衬套cover plate盖板guide pad导料块塑件&模具相关英文compre sion molding压缩成型flash mold溢流式模具plsitive mold挤压式模具split mold分割式模具cavity型控母模core模心公模taper锥拔leather cloak仿皮革shiver饰纹flow mark流痕welding mark溶合痕post screw insert螺纹套筒埋值self tapping screw自攻螺丝striper plate脱料板piston活塞cylinder汽缸套chip细碎物handle mold手持式模具常用塑料英语缩略语英文简称英文全称中文全称ABA Acrylonitrile-butadiene-acrylate 丙烯腈/丁二烯/丙烯酸酯共聚物ABS Acrylonitrile-butadiene-styrene 丙烯腈/丁二烯/苯乙烯共聚物AES Acrylonitrile-ethylene-styrene 丙烯腈/乙烯/苯乙烯共聚物AMMA Acrylonitrile/methyl Methacrylate 丙烯腈/甲基丙烯酸甲酯共聚物ARP Aromatic polyester 聚芳香酯AS Acrylonitrile-styrene resin 丙烯腈-苯乙烯树脂ASA Acrylonitrile-styrene-acrylate 丙烯腈/苯乙烯/丙烯酸酯共聚物CA Cellulose acetate 醋酸纤维塑料CAB Cellulose acetate butyrate 醋酸-丁酸纤维素塑料CAP Cellulose acetate propionate 醋酸-丙酸纤维素CE Cellulose plastics, general 通用纤维素塑料CF Cresol-formaldehyde 甲酚-甲醛树脂CMC Carboxymethyl cellulose 羧甲基纤维素CN Cellulose nitrate 硝酸纤维素CP Cellulose propionate 丙酸纤维素CPE Chlorinated polyethylene 氯化聚乙烯CPVC Chlorinated poly(vinyl chloride) 氯化聚氯乙烯CS Casein 酪蛋白CTA Cellulose triacetate 三醋酸纤维素EC Ethyl cellulose 乙烷纤维素EMA Ethylene/methacrylic acid 乙烯/甲基丙烯酸共聚物EP Epoxy, epoxide 环氧树脂EPD Ethylene-propylene-diene 乙烯-丙烯-二烯三元共聚物EPM Ethylene-propylene polymer 乙烯-丙烯共聚物EPS Expanded polystyrene 发泡聚苯乙烯ETFE Ethylene-tetrafluoroethylene 乙烯-四氟乙烯共聚物EVA Ethylene/vinyl acetate 乙烯-醋酸乙烯共聚物EVAL Ethylene-vinyl alcohol 乙烯-乙烯醇共聚物FEP Perfluoro(ethylene-propylene) 全氟(乙烯-丙烯)塑料FF Furan formaldehyde 呋喃甲醛HDPE High-density polyethylene plastics高密度聚乙烯塑料HIPS High impact polystyrene 高冲聚苯乙烯IPS Impact-resistant polystyrene 耐冲击聚苯乙烯LCP Liquid crystal polymer 液晶聚合物LDPE Low-density polyethylene plastics 低密度聚乙烯塑料LLDPE Linear low-density polyethylene 线性低密聚乙烯LMDPE Linear medium-density polyethylene 线性中密聚乙烯MBS Methacrylate-butadiene-styrene 甲基丙烯酸-丁二烯-苯乙烯共聚物MDPE Medium-density polyethylene 中密聚乙烯MF Melamine-formaldehyde resin 密胺-甲醛树脂。
外文翻译Heat Treatment of Die and Mould Oriented Concurrent Design LI Xiong,ZHANG Hong-bing,RUAN Xue —yu,LUO Zhong —hua,ZHANG YanTraditional die and mould design,mainly by experience or semi —experience ,is isolated from manufacturing process.Before the design is finalized ,the scheme of die and mould is usually modified time and again ,thus some disadvantages come into being,such as long development period,high cost and uncertain practical effect.Due to strong desires for precision,service life,development period and cost,modern die and mould should be designed and manufactured perfectly.Therefore more and more advanced technologies and innovations have been applied,for example,concurrent engineering,agile manufacturing virtual manufacturing,collaborative design,etc.Heat treatment of die and mould is as important as design,manufacture and assembly because it has a vital effect on manufacture ,assembly and service life .Design and manufacture of die and mould have progressed rapidly ,but heat treatment lagged seriously behind them .As die and mould industry develops ,heat treatment must ensure die and mould there are good state of manufacture ,assembly and wear —resistant properties by request. Impertinent heat treatment can influence die and mould manufacturing such as over —hard and —soft and assembly .Traditionally the heat treatment process was made out according to the methods and properties brought forward Abstract:Many disadvantages exist in the traditional die design method which belongsto serial pattern. It is well known that heat treatment is highly important to thedies. A new idea of concurrent design for heat treatment process of die andmould was developed in order to overcome the existent shortcomings of heattreatment process. Heat treatment CAD/CAE was integrated with concurrentcircumstance and the relevant model was built. These investigations canremarkably improve efficiency, reduce cost and ensure quality of R and D forproducts.Key words:die design; heat treatment; mouldby designer.This could make the designers of die and mould and heat treatment diverge from each other,for the designers of die and mould could not fully realize heat treatment process and materials properties,and contrarily the designers rarely understood the service environment and designing thought. These divergences will impact the progress of die and mould to a great extent. Accordingly,if the process design of heat treatment is considered in the early designing stage,the aims of shortening development period,reducing cost and stabilizing quality will be achieved and the sublimation of development pattern from serial to concurrent will be realized.Concurrent engineering takes computer integration system as a carrier,at the very start subsequent each stage and factors have been considered such as manufacturing,heat treating,properties and so forth in order to avoid the error.The concurrent pattern has dismissed the defect of serial pattern,which bring about a revolution against serial pattern.In the present work.the heat treatment was integrated into the concurrent circumstance of the die and mould development,and the systemic and profound research was performed.1 Heat Treatment Under Concurrent CircumstanceThe concurrent pattern differs ultimately from the serial pattern(see Fig.1).With regard to serial pattern,the designers mostly consider the structure and function of die and mould,yet hardly consider the consequent process,so that the former mistakes are easily spread backwards.Meanwhile,the design department rarely communicates with the assembling,cost accounting and sales departments.These problems certainly will influence the development progress of die and mould and the market foreground.Whereas in the concurrent pattern,the relations among departments are close,the related departments all take part in the development progress of die and mould and have close intercommunion with purchasers.This is propitious to elimination of the conflicts between departments,increase the efficiency and reduce the cost.Heat treatment process in the concurrent circumstance is made out not after blueprint and workpiece taken but during die and mould designing.In this way,it is favorable to optimizing the heat treatment process and making full use of the potential of the materials.2 Integration of Heat Treatment CAD/CAE for Die and MouldIt can be seen from Fig.2 that the process design and simulation of heat treatment are the core of integration frame.After information input via product design module and heat treatment process generated via heat treatment CAD and heat treatment CAE module will automatically divide the mesh for parts drawing,simulation temperature field microstructure analysis after heat—treatment and the defect of possible emerging (such as overheat,over burning),and then the heat treatment process is judged if the optimization is made according to the result reappeared by stereoscopic vision technology.Moreover tool and clamping apparatus CAD and CAM are integrated into this system.The concurrent engineering based integration frame can share information with other branch.That makes for optimizing the heat treatment process and ensuring the process sound.2.1 3-D model and stereoscopic vision technology for heat treatmentThe problems about materials,structure and size for die and mould can be discovered as soon as possible by 3-D model for heat treatment based on the shape of die and mould.Modeling heating condition and phase transformation condition for die and mould during heat treatment are workable,because it has been broken through for the calculation of phase transformation thermodynamics,phase transformation kinetics,phase stress,thermal stress,heat transfer,hydrokinetics etc.For example,3-D heat—conducting algorithm models for local heating complicated impression and asymmetric die and mould,and M ARC software models for microstructure transformation was used.Computer can present the informations of temperature,microstructure and stress at arbitrary time and display the entire transformation procedure in the form of 3-D by coupling temperature field,microstructure field and stress field.If the property can be coupled,various partial properties can be predicted by computer.2.2 Heat treatment process designDue to the special requests for strength,hardness,surface roughness and distortion during heat treatment for die and mould,the parameters including quenching medium type,quenching temperature and tempering temperature and time,must be properlyselected,and whether using surface quenching or chemical heat treatment the parameters must be rightly determined.It is difficult to determine the parameters by computer fully.Since computer technology develops quickly in recent decades,the difficulty with large—scale calculation has been overcome.By simulating and weighing the property,the cost and the required period after heat treatment.it is not difficult to optimize the heat treatment process.2.3 Data base for heat treatmentA heat treatment database is described in Fig.3.The database is the foundation of making out heat treatment process.Generally,heat treatment database is divided into materials database and process database.It is an inexorable trend to predict the property by materials and process.Although it is difficult to establish a property database,it is necessary to establish the database by a series of tests.The materials database includes steel grades,chemical compositions,properties and home and abroad grades parallel tables.The process database includes heat treatment criterions,classes,heat preservation time and cooling velocity.Based on the database,heat treatment process can be created by inferring from rules.2.4 Tool and equipment for heat treatmentAfter heat treatment process is determined,tool and equipment CAD/CAE systemtransfers the information about design and manufacture to the numerical control device.Through rapid tooling prototype,the reliability of tool and the clamping apparatus can be judged.The whole procedure is transferred by network,in which there is no man—made interference.3 Key Technique3.1 Coupling of temperature,microstructure,stress and propertyHeat treatment procedure is a procedure of temperature-microstructure—stress interaction.The three factors can all influence the property (see Fig.4).During heating and cooling,hot stress and transformation will come into being when microstructure changes.Transformation temperature-microstructure and temperature—microstructure—and stress-property interact on each other.Research on the interaction of the four factors has been greatly developed,but the universal mathematic model has not been built.Many models fit the test nicely,but they cannot be put into practice.Difficulties with most of models are solved in analytic solution,and numerical method is employed so that the inaccuracy of calculation exists.Even so,comparing experience method with qualitative analysis,heat treatment simulation by computer makes great progress.3.2 Establishment and integration of modelsThe development procedure for die and mould involves design,manufacture,heat treatment,assembly,maintenance and so on.They should have own database and mode1.They are in series with each other by the entity—relation model.Through establishing and employing dynamic inference mechanism,the aim of optimizing design can be achieved.The relation between product model and other models was built.The product model will change in case the cell model changes.In fact,it belongs to the relation of data with die and mould.After heat treatment model is integrated into the system,it is no more an isolated unit but a member which is close to other models in the system.After searching,calculating and reasoning from the heat treatment database,procedure for heat treatment,which is restricted by geometric model,manufacture model for die and mould and by cost and property,is obtained.If the restriction is disobeyed,the system will send out the interpretative warning.All design cells are connected by communication network.3.3 Management and harmony among membersThe complexity of die and mould requires closely cooperating among item groups.Because each member is short of global consideration for die and mould development,they need to be managed and harmonized.Firstly,each item group should define its own control condition and resource requested,and learn of the request of up- and-down working procedure in order to avoid conflict.Secondly,development plan should be made out and monitor mechanism should be established.The obstruction can be duly excluded in case the development is hindered.Agile management and harmony redound to communicating information,increasing efficiency,and reducing redundancy.Meanwhile it is beneficial for exciting creativity,clearing conflict and making the best of resource.4 Conclusions(1) Heat treatment CAD/CAE has been integrated into concurrent design for die and mould and heat treatment is graphed,which can increase efficiency,easily discover problems and clear conflicts.(2)Die and mould development is performed on the same platform.When the heat treatment process is made out,designers can obtain correlative information and transfer self-information to other design departments on the platform.(3)Making out correct development schedule and adjusting it in time can enormously shorten the development period and reduce cost.References:[1] ZHOU Xiong-hui,PENG Ying-hong.The Theory and Technique of Modern Die and Mould Design and Manufacture[M].Shanghai:Shanghai Jiaotong University Press 2000(in Chinese).[2] Kang M,Park& Computer Integrated Mold Manufacturing[J].Int J Computer Integrated Manufacturing,1995,5:229-239.[3] Yau H T,Meno C H.Concurrent Process Planning for Finishing Milling and Dimensional Inspection of Sculptured Surface in Die and Mould Manufacturing[J].Int J Product Research,1993,31(11):2709—2725.[4] LI Xiang,ZHOU Xiong-hui,RUAN Xue-yu.Application of Injection Mold Collaborative Manufacturing System [J].JournaI of Shanghai Jiaotong University,2000,35(4):1391-1394.[5] Kuzman K,Nardin B,Kovae M ,et a1.The Integration of Rapid Prototyping and CAE in Mould Manufacturing[J].J Materials Processing Technology,2001,111:279—285.[6] LI Xiong,ZHANG Hong—bing,RUAN Xue-yu,et a1.Heat Treatment Process Design Oriented Based on Concurrent Engineering[J].Journal of Iron and Steel Research,2002,14(4):26—29.文献出处:LI Xiong,ZHANG Hong-bing,RUAN Xue—yu,LUO Zhong—hua,ZHANG Yan.Heat Treatment of Die and Mould Oriented Concurrent Design[J].Journal of Iron and Steel Research,2006,13(1):40- 43,74模具热处理及其导向平行设计李雄,张鸿冰,阮雪榆,罗中华,张艳摘要:在一系列方式中,传统模具设计方法存在许多缺点。
附件1:外文资料翻译译文冷冲裁模具随着制造行业的发展,材料加工方法也随着发展,其中冷冲压加工方法在制造行业得到了广泛的发展,特别在汽车制造行业。
随着冷冲压加工方法的应用,许多汽车零件的外形和精度得到了改善。
侧减震片的加工方法也得到了发展,最后由冷冲压加工而成。
最近的几年里,冷冲压加工方法得到了广泛的发展。
冷冲压是建立在金属塑性变形的基础上,在常温下利用安装在压力机上的模具对材料施加压力,使其产生分离或塑性变形,从而获得一定形状、尺寸和性能的零件的一种加工方法。
在冷加工中,将材料(金属或非金属)加工成零件(或半成品)的一种特殊工艺装备,称为冷冲压模具(俗称冷冲模)。
冷冲模在实现冷冲压加工中是必不可少的工艺装备,没有先进的模具技术,先进的冲压工艺就无法实现。
随着国民经济的高速发展、冲压技术的发展和新型模具材料的不断研究开发,市场对模具的需求量不断增长,模具的结构也发生了一定的变化,对模具的制造,装配等都有了很大的影响。
近年来,模具工业一直以15%左右的增长速度快速发展。
模具是机械制造业中技术先进、影响深远的重要工艺装备,具有生产效率高、材料利用率高、制件质量优良、工艺适应性好等特点,被广泛应用于汽车、机械、航天、航空、轻工、电子、电器、仪表等行业。
一、经过几十年的发展,冲压模具行业获得了飞速发展,具体体现在:(1)辅助设计/加工/工程技术得到广泛使用。
(2)大型模具企业拥有高速数控加工/加工中心/数控机床等先进的加工工艺与装备,可以开展RP/RT或模具逆向工程工作,硬件装备已经站在了与世界基本同步的水平线上。
(3)在冲模的表面精整加工技术方面,开展了积极探索、积累了一些经验。
(4)以汽车覆盖件为代表的大型、复杂、精密冲压模具,采用CAD /CAM /CAE 软件进行三维设计和模拟,减少试模时间和缩短周期。
借助高速、精密的加工设备加工生产,获得良好的尺寸精度和表面粗糙度,用新型的研磨或抛光方法代替传统的手工研磨抛光,提高模具质量。
外文文献翻译(含:英文原文及中文译文)中文译文冷冲模具使用寿命的影响及对策冲压模具概述冲压模具--在冷冲压加工中,将材料(金属或非金属)加工成零件(或半成品)的一种特殊工艺装备,称为冷冲压模具(俗称冷冲模) 。
冲压--是在室温下,利用安装在压力机上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件的一种压力加工方法。
冲压模具的形式很多,一般可按以下几个主要特征分类:1.根据工艺性质分类(1)冲裁模沿封闭或敞开的轮廓线使材料产生分离的模具。
如落料模、冲孔模、切断模、切口模、切边模、剖切模等。
(2)弯曲模使板料毛坯或其他坯料沿着直线(弯曲线)产生弯曲变形,从而获得一定角度和形状的工件的模具。
(3)拉深模是把板料毛坯制成开口空心件,或使空心件进一步改变形状和尺寸的模具。
(4)成形模是将毛坯或半成品工件按图凸、凹模的形状直接复制成形,而材料本身仅产生局部塑性变形的模具。
如胀形模、缩口模、扩口模、起伏成形模、翻边模、整形模等。
2.根据工序组合程度分类(1)单工序模在压力机的一次行程中,只完成一道冲压工序的模具。
(2)复合模只有一个工位,在压力机的一次行程中,在同一工位上同时完成两道或两道以上冲压工序的模具。
(3)级进模(也称连续模) 在毛坯的送进方向上,具有两个或更多的工位,在压力机的一次行程中,在不同的工位上逐次完成两道或两道以上冲压工序的模具。
冲冷冲模全称为冷冲压模具。
冷冲压模具是一种应用于模具行业冷冲压模具及其配件所需高性能结构陶瓷材料的制备方法,高性能陶瓷模具及其配件材料由氧化锆、氧化钇粉中加铝、镨元素构成,制备工艺是将氧化锆溶液、氧化钇溶液、氧化镨溶液、氧化铝溶液按一定比例混合配成母液, 滴入碳酸氢铵,采用共沉淀方法合成模具及其配件陶瓷材料所需的原材料,反应生成的沉淀经滤水、干燥,煅烧得到高性能陶瓷模具及其配件材料超微粉,再经过成型、烧结、精加工,便得到高性能陶瓷模具及其配件材料。
本发明的优点是本发明制成的冷冲压模具及其配件使用寿命长,在冲压过程中未出现模具及其配件与冲压件产生粘结现象,冲压件表面光滑、无毛刺,完全可以替代传统高速钢、钨钢材料。
j o u r n a l o f m a t e r i a l s p r o c e s s i n g t e c h n o l o g y209(2009)3532–3541j o u r n a l h o m e p a g e:w w w.e l s e v i e r.c o m/l o c a t e/j m a t p r o t ecContact pressure evolution at the die radius in sheet metal stampingMichael P.Pereira a,∗,John L.Duncan b,Wenyi Yan c,Bernard F.Rolfe da Centre for Material and Fibre Innovation,Deakin University,Pigdons Road,Geelong,VIC3217,Australiab Professor Emeritus,The University of Auckland,284Glenmore Road,RD3,Albany0793,New Zealandc Department of Mechanical and Aerospace Engineering,Monash University,Clayton,VIC3800,Australiad School of Engineering and IT,Deakin University,Geelong,VIC3217,Australiaa r t i c l e i n f oArticle history:Received27March2008 Received in revised form 18July2008Accepted17August2008Keywords:Contact pressureSheet metal stamping Tool wearBending-under-tension a b s t r a c tThe contact conditions at the die radius are of primary importance to the wear response for many sheet metal forming processes.In particular,a detailed understanding of the con-tact pressure at the wearing interface is essential for the application of representative wear tests,the use of wear resistant materials and coatings,the development of suitable wear models,and for the ultimate goal of predicting tool life.However,there is a lack of infor-mation concerning the time-dependant nature of the contact pressure response in sheet metal stamping.This work provides a qualitative description of the evolution and distribu-tion of contact pressure at the die radius for a typical channel forming process.Through an analysis of the deformation conditions,contact phenomena and underlying mechanics, it was identified that three distinct phases exist.Significantly,the initial and intermediate stages resulted in severe and localised contact conditions,with contact pressures signif-icantly greater than the blank material yield strength.Thefinal phase corresponds to a larger contact area,with steady and smaller contact pressures.The proposed contact pres-sure behaviour was compared to other results available in the literature and also discussed with respect to tool wear.©2008Elsevier B.V.All rights reserved.1.IntroductionIn recent years,there has been an increase in wear-related problems associated with the die radius of automotive sheet metal forming tools(Sandberg et al.,2004).These problems have mainly been a consequence of the implementation of higher strength steels to meet crash requirements,and the reduced use of lubricants owing to environmental concerns. As a result,forming tools,and the die radii in particular, are required to withstand higher forming forces and more severe tribological stresses.This can result in high costs due∗Corresponding author.Tel.:+61352273353;fax:+61352271103.E-mail address:michael.pereira@.au(M.P.Pereira).to unscheduled stoppages and maintenance,and lead to poor part quality in terms of surfacefinish,geometric accuracy and possible part failure.If the side-wall of a part is examined after forming,a demarcation known as the‘die impact line’is easily visible (Karima,1994).This line separates the burnished material that has travelled over the die radius and the free surface that has not contacted the tooling,clearly indicating that severe sur-face effects exist at the die radius.It is therefore important to understand the contact phenomena at this location of the tooling.0924-0136/$–see front matter©2008Elsevier B.V.All rights reserved. doi:10.1016/j.jmatprotec.2008.08.010j o u r n a l o f m a t e r i a l s p r o c e s s i n g t e c h n o l o g y 209(2009)3532–354135331.1.Bending-under-tension testThe bending-under-tension test –in which a strip is bent over a cylindrical tool surface and pulled against a speci-fied back tension –has been used in the laboratory for many years to simulate conditions at the die radius (Ranta-Eskola et al.,1982).The literature contains numerous experimental investigations that examine surface degradation over the die radius after repeated or continuous bending-under-tension operations.For example,in independent studies with differ-ing test conditions and materials,Mortensen et al.(1994),Hortig and Schmoeckel (2001)and Attaf et al.(2002),each visu-ally observed wear in two localised regions on the die radius.More detailed examination of the worn die radius surface,through measurement of surface roughness (Christiansen and De Chiffre,1997),determination of wear depth (Eriksen,1997)and scanning electron microscope imaging (Boher et al.,2005),has also confirmed the existence of similar localised wear regions.In addition to the experimental analyses,Mortensen et al.(1994),Hortig and Schmoeckel (2001)and Attaf et al.(2002),each conducted finite element analyses of the bending-under-tension process.In all cases,the finite ele-ment models predicted the existence of distinct contact pressure peaks on the die radius surface,correlating well with the regions of localised ing in situ sensors Hanaki and Kato (1984)and more recently Coubrough et al.(2002)experimentally demonstrated that similar contact pressure peaks exist at locations on the die radius near the entry and exit of the strip during the bending-under-tension test.It is evident that despite covering a wide range of die materials (both coated and un-coated),lubrication,surface roughness,bend ratio and work-piece materials,each of thestudies discussed in the preceding paragraphs were found to exhibit similar characteristic two-peak contact pressure distributions and localised regions of wear over the die radius.These results,and the documented power law rela-tion between wear and normal load for sliding contacts (Rhee,1970),indicate that contact pressure is of primary significance to the wear response.1.2.Sheet metal stampingThe contact conditions occurring during sheet metal stamping operations have not been studied as extensively as those of the bending-under-tension process.Through finite element anal-yses of axisymmetric cup-drawing processes,Mortensen et al.(1994)and Jensen et al.(1998)identified that time-dependant contact conditions occur at the die radius,as opposed to the ‘stationary’conditions of the bending-under-tension test (Hortig and Schmoeckel,2001).In recent numerical studies on a plane strain channel forming process,Pereira et al.(2007,2008)also reported time-dependant plex contact conditions over the die radius were found to occur,with regions of highly localised and severe contact pressure.Selected results of the finite element analysis by Pereira et al.(2008)are given in Fig.1,where the dynamic nature of the con-tact pressure distribution can be seen.Additionally,the Mises stress contours show the corresponding deformation of the blank and provide an indication of where yielding occurs.Although each of the above investigations report time-dependant contact conditions for sheet metal stamping processes,the authors in each case provide little explanation into the reasons for the identified contact behaviour.Further analysis of this phenomenon has not been found in the liter-ature.Fig.1–Mises stress contours and normalised contact pressure distributions predicted by finite element analysis at the three distinct stages during a channel forming process (see Section 4.1for more details).The regions in white in the Mises contours indicate values of stress below the blank material initial yield strength.3534j o u r n a l o f m a t e r i a l s p r o c e s s i n g t e c h n o l o g y209(2009)3532–3541 1.3.MotivationIn order to understand tool wear in sheet metal stamp-ing,or to use representative tests(bending-under-tension,slider-on-sheet,etc.)to characterise the wear response of toolmaterials and coatings,knowledge of the local contact condi-tions that occur during the stamping operation is essential.Asdiscussed,the contact pressure is of particular significance.However,a description of the evolution and distribution ofcontact stresses experienced by sheet metal forming tool-ing,including an explanation for this behaviour,has not beenfound in the literature.In this work,a qualitative description of the contact pres-sure evolution at the die radius and the associated stressdistributions in the blank during a channel forming processis given.The description is based on experimental observa-tions and the results offinite element analyses.Through ananalysis of the deformation conditions,contact phenomenaand underlying mechanics,it will be shown that three dis-tinct phases exist.Due to the unique deformation and contactconditions that are found to occur,the initial and intermedi-ate stages exhibit localised regions of severe contact pressure,with peak contact stresses that are significantly greater thanthe blank material yield strength.Thefinal stage,which canbe considered as steady state with regards to the conditions atthe die radius,corresponds to a larger contact area with stableand smaller contact pressures.It is noted that the magnitude of the contact stress peakswill depend on variables such as back tension on the sheet,thedie radius to sheet thickness ratio,and the clearance betweenthe punch and die.These effects are not investigated in thiswork.The objective of this work is to provide an understandingof an important aspect of sheet metal forming,rather thana quantitative analysis of a specific case.This should assistin understanding die wear,which is an increasing problemwith the implementation of higher strength sheet in stampedautomotive components.2.The sheet metal stamping processThe stamping or draw die process is shown schematically inFig.2.Sheet metal is clamped between the die and blank-holder and stretched over the punch.The sheet slides overthe die radius surface with high velocity in the presence ofcontact pressure and friction,as it undergoes complex bend-ing,thinning and straightening deformation(Fig.2c).In themost rudimentary analysis of sheet metal forming,bending isneglected and the deformation is studied under the action ofprincipal tensions(Marciniak et al.,2002).The tension is theforce per unit width transmitted in the sheet and is a prod-uct of stress and thickness.For two-dimensional plane straindeformation around the die radius,the well-known analysisindicates that the contact pressure p isp=TR=1R/t(1)where 1is the longitudinal principal stress,T is the longitu-dinal tension,R is the die radius,t is the sheet thickness,and Fig.2–(a)The beginning of a typical sheet metal stamping process.(b)The motion and forces exerted by the tools cause the blank to be formed into a channel shape during the stamping process.(c)Forces acting on the sheet at the die radius region.R/t the bend ratio.Due to the effect of friction,the longitudinal tension in the sheet varies along the die radius.If the tension at one point,j,on the die radius is known,then the tension at some other point,k,further along the radius can be found according to:T k=T j exp( Âjk)(2)whereÂjk is the angle turned through between the two points, and is the coefficient of friction between the tool and sheet surfaces.j o u r n a l o f m a t e r i a l s p r o c e s s i n g t e c h n o l o g y209(2009)3532–35413535Eq.(1)provides a useful relationship that shows the contactpressure is inversely proportional to the bend ratio.Given thatthe tension is usually close to the yield tension and that thebend ratio in typical tooling is often less than10,Eq.(1)indi-cates that the contact stress is an appreciable fraction of theyield stress.This implies that the assumption of plane stressin the strip may not be valid.Additionally,a numerical studyof a bending-under-tension process with a bend ratio of3.3revealed that the restraint forces attributed to bending(andunbending)were almost50%of the total restraint forces onthe sheet(Groche and Nitzsche,2006).Although Eqs.(1)and(2)can be modified to include the work done in bending andstraightening,these simple models are unlikely to adequatelydescribe the contact pressure distribution.Furthermore,such an analysis assumes that the sheetslides continuously over the die radius under steady-state-type conditions analogous to a bending-under-tensionprocess.However,as discussed in Section1,several studies inthe literature have shown that the contact conditions are notsteady during typical sheet metal stamping.For these reasons,it is evident that a more detailed analysis,including examina-tion of the stress states and yielding in the sheet,is required inorder to understand the complex and time-dependant contactconditions at the die radius.3.Contact pressure at the die radiusIn this work,a qualitative description of the developmentof peak contact pressures at the die radius for the channelforming process shown in Fig.2is given.For simplicity,thedeformation of the sheet is considered as a two-dimensional,plane strain process.A linear-elastic,perfectly plastic sheetmaterial model,obeying a Tresca yield criterion is used.Thematerial curve is shown in Fig.3,where theflow stress is S,with zero Bauschinger effect on reverse loading.It is assumedthat if there is a draw-bead,it is at some distance from the dieradius so that the sheet entering the die radius is undeformedbut has some tension applied.In this study,the deformation and contact conditions at thedie radius for a typical sheet metal forming process are dividedinto three distinct phases(Fig.4).A material element on theblank,Point A,is initially located at the beginning of the dieradius,as shown in Fig.4a.At this instant,contact islimitedFig.3–Simplified plane strain material response with reverseloading.Fig.4–Three distinct phases of deformation and contact, which occur during the channel forming process:(a)initial deformation,(b)intermediate conditions,and(c)steady-state conditions at die radius.to a line across the die radius.During the next stage,Point A has travelled around the die radius,but has not yet reached the exit or tangent point(Fig.4b).At this instant,the material in the side-wall(between the die radius and punch radius) remains straight and has not previously contacted the tools.A state of approximately steady conditions at the die radius is reached in Fig.4c,where Point A is now in the side-wall region.3.1.Initial deformationAt the start of the forming stroke,contact between the blank and die occurs near the start of the die radius at an angle of Â=˛,as shown in Fig.5a.The Mohr circle of stress at the con-tacting inner surface and the stress distribution through the thickness of the sheet are given schematically in this diagram. The regions of plastic deformation in the sheet are indicated by shading.The sheet is bent by the transverse force F shown,so that a compressive bending stress 1exists on the upper surface.Due to the initial lack of conformance of the blank to the radius, contact occurs almost along a line,resulting in a contact pres-sure P˛that can be very high.As a result,the normal stress 3, which is equal to−P˛,is greatest at the surface and diminishes to zero at the outer,free surface.At this location,approx-3536j o u r n a l o f m a t e r i a l s p r o c e s s i n g t e c h n o l o g y 209(2009)3532–3541Fig.5–(a)Schematic of the blank to die radius interface during the initial deformation stage—the stress distribution through the thickness and the Mohr’s circle at the surface of the contact zone are shown.Corresponding distributions around the die radius of (b)contact pressure and (c)bending moment in the sheet.imately plane stress conditions exist and the sheet yields under tension at the plane strain yield stress S .The transverse stress 2at the inner surface will have an intermediate value,since the process is plane strain.In the plastic case,this is the mean of the other principal stresses.In the elastic case,this is only approximately so.The bending stress and contact pressure at the inner sur-face generate a high compressive hydrostatic stress,such that yielding can be suppressed (the diameter of the Mohr circle is <S ).This phenomenon is supported by the finite element simulation results of the case study shown in Fig.1a.The bending moment m is greatest at the contact line,as shown in Fig.5c;yet plastic bending only takes place either side of thisregion,where the inhibiting compressive hydrostatic stress is lower.The result is that a very high-pressure peak occurs at the contact line,greater in magnitude than the sheet yield stress (Fig.5b).This initial line contact,causing a localised peak contact pressure,is a momentary event.3.2.Intermediate conditionsAs the punch draws the sheet to slide into the die cavity,Point A moves away from the start of the radius,as shown in Fig.6a.Due to the plastic bending of the sheet that occurs near the beginning of the die radius,in the vicinity of Â=0◦,the mate-rial entering the die radius has greater conformance with thej o u r n a l o f m a t e r i a l s p r o c e s s i n g t e c h n o l o g y209(2009)3532–35413537Fig.6–(a)Schematic of the blank to die radius interface during the intermediate conditions—the stress distribution through the thickness and the Mohr’s circle at the surface of the contact zones are shown.Corresponding distributions around the die radius of(b)contact pressure and(c)bending moment in the sheet.die radius surface.This causes a reduction in contact pressure, due to the change from line contact in Fig.5to a broader con-tact area in Fig.6.Consequently,the compressive hydrostatic stress is reduced and plastic deformation at the blank surface occurs(the diameter of the Mohr circle is S).The bending moment on the sheet is greatest near the Point A,as shown in Fig.6c,such that the strip may be over-bent at this point,causing a loss of contact between the sheet and the die radius.A similar effect can exist over the nose of the punch in vee-die bending(Marciniak et al.,2002).As such,a second contact point with the die occurs further along the radius,at Â=ˇ.Point A,which began at the start of the radius,has not yet reached the tangent point atˇ.Hence,the material currently atˇis largely undeformed,despite the fact that the angle of wrap of the blank over the die radius is relatively large.With similar contact conditions to the initial deformation stage,line contact occurs atˇ.As seen previously,these conditions result in high contact pressure,large compressive hydrostatic stress, and can suppress plastic deformation at the blank surface as supported by the case study in Fig.1b.Fig.6b shows the contact pressure distribution for the inter-mediate stage.The magnitude of the contact pressure at the start of the radius is less than the yield stress,where con-tact is distributed over a wider area.Conversely,a sharp peak exists at the tangent point atˇ,where the sheet is still being bent and the contact area is small.In many punch and die3538j o u r n a l o f m a t e r i a l s p r o c e s s i n g t e c h n o l o g y209(2009)3532–3541configurations,the punch displacement needed to draw the material from the beginning of the die radius(Point A in this case)around to the tangent point is significant.Therefore,the intermediate phase may be long and the maximum contact angle,ˇmax,quite large.3.3.Steady-state conditions at the die radiusSteady-state conditions at the die radius are reached when Point A,which began at the start of the die radius,has moved around and become part of the side-wall,as shown in Fig.7a. New material is plastically bent as it enters the die radius from the blank-holder region.Here,the contact pressure and stress distributions are similar to those of the intermediate stage, due to the bending and conformance of the blank to the die radius.Beyond this region,the sheet remains in contact with the die without further plastic deformation,and the resulting contact pressure is small.Further along the radius,under the action of an increasing opposite moment,the sheet is partially straightened,whereFig.7–(a)Schematic of the blank to die radius interface during the steady-state deformation stage—the stress distribution through the thickness and the Mohr’s circle at the surface of the contact zones are shown.The stress distribution through the thickness at two locations in the side-wall region is also shown.Corresponding distributions around the die radius of (b)contact pressure and(c)bending moment in the sheet.j o u r n a l o f m a t e r i a l s p r o c e s s i n g t e c h n o l o g y209(2009)3532–35413539it loses contact with the die radius.A second,smaller con-tact pressure peak occurs at the locationÂ= .This peak can be explained,at least in part,by examining the sim-plified analysis presented in Section2.According to Eq.(1), the contact pressure is proportional to the tension in the sheet—which itself increases with increasing angleÂalong the radius,according to Eq.(2).Therefore,the contact pressure increases with angle along the radius,causing a peak pressure near the sheet exit point,indicated by P in Fig.7b.Here,the sheet unloads elastically and the stress distribution is shown (the diameter of the Mohr circle is<S).Beyond the contact pressure peak,the bending moment on the sheet becomes reversed,as shown in Fig.7c,and straightening begins at the tangent point.The straightening process continues beyond the contact point;the extent of which depends on the tooling conditions and the tension gen-erated by the blank-holder.‘Side-wall curl’is a well-known phenomenon in channel forming and is greatest with smaller blank-holder tension.As a result of the curl in the side-wall,the angle of contact is less than in the intermediate stage,where the entire side-wall was approximately straight. This indicates that there is a region on the die radius that only makes contact with the blank during the intermediate stage—i.e.an intermediate-only contact region.It is worth emphasizing that,despite the approximately steady contact conditions that occur at the die radius during this stage,the forming process itself does not reach a true steady state.This is because the blank continues to experi-ence significant deformation and displacement as it is drawn over the die radius by the action of the moving punch.As a result,there will be a continual reduction in theflange length and a subsequent changing of contact conditions in the blank-holder region.4.DiscussionIn Section3,a qualitative description of the deformation and contact pressure response at the die radius of a sheet metal stamping process was given.This section will discuss the identified response,with particular reference to results from other analyses in the literature,comparison to the bending-under-tension process,and wear at the die radius.4.1.Correlation withfinite element model predictionsIn recent studies,Pereira et al.(2007,2008)usedfinite element analysis to examine the contact pressure at the die radius for a channel forming process.A2mm thick high strength steel blank was formed over an R5mm die radius(R/t=2.5), with a punch stroke of50mm.The contact pressure response predicted by Pereira et al.(2008)was re-plotted at three dis-tinct instances in Fig.1.In thisfigure,the contact pressure is normalised by the constant Y,which can be considered as theflow stress of the blank material if a perfectly plas-tic approximation of the material stress–strain response was adopted(see Marciniak et al.(2002)for an explanation of the approximation method and calculation of Y).As such,the use of the normalised contact pressure allows better comparison between the analysis employing a blank material with con-siderable strain hardening(Fig.1)to that which assumes the blank material has zero strain hardening(Figs.5–7).The normalised contact pressure distributions in Fig.1 clearly demonstrate the existence of the three phases iden-tified in Section3.Notably,thefirst two stages in Section3 correspond to the single transient phase reported in the pre-vious numerical study(Pereira et al.,2008).The discrepancy is caused by the fact that the initial contact stage,which is a momentary event,is easily overlooked without a detailed analysis of the deformation and contact conditions occurring at the die radius.The results by Pereira et al.(2007,2008)verify that the ini-tial and intermediate phases of the process result in the most severe and localised contact loads.Fig.1shows that at the regions of line contact,identified in Sections3.1and3.2,the peak contact pressures are well in excess of Y.In fact,the maximum contact pressure for the entire process was found to occur during the intermediate stage,with a magnitude of approximately3times the material’s initial yield strength (Pereira et al.,2008).Examination of the Mises stress plots in Fig.1at the regions of line contact also confirm the hypothesis of suppressed plasticity due the localised zones of large con-tact pressure,and hence large compressive hydrostatic stress.The results in Fig.1c confirm that the contact pressure is significantly reduced during the steady phase,with the mag-nitude of pressure less than Y due to the increased contact area.Thefinite element results also show that the maximum angles of contact between the blank and die radius during the intermediate and steady phases are approximately80◦and 45◦,respectively(Pereira et al.,2008).This confirms the exis-tence of an intermediate-only contact region,corresponding to the region of45◦<Â≤80◦for the case examined.parison to the bending-under-tension testThe identified steady-state behaviour at the die radius during the stamping process shows numerous similarities to a typical bending-under-tension test.For example,the stress distribu-tions through the thickness of the sheet shown in Fig.7a, compare well to those proposed by Swift(1948),in his analysis of a plastic bending-under-tension process for a rigid,per-fectly plastic strip.Additionally,the angle of contact and shape of contact pressure distributions presented in Figs.7b and1c, show good correlation with the results recorded by Hanaki and Kato(1984)for experimental bending-under-tension tests.The separatefinite element studies of bending-under-tension processes by Hortig and Schmoeckel(2001)and by Boher et al.(2005)also show similarly shaped two-peak contact pressure distributions.The distributions are char-acterised by large and relatively localised pressure peaks at the beginning of the contact zone,with smaller and more distributed secondary peaks at the end of the con-tact zone.Additionally,these investigations each show that the angle of contact is significantly less than the geomet-ric angle of wrap,confirming the existence of the unbending of the blank and curl that occurs in the side-wall region. These attributes of the bending-under-tension test have direct similarities to the contact pressure response predicted by Pereira et al.(2008)and described previously in Section 3.3,despite the obvious differences in materials,processes,3540j o u r n a l o f m a t e r i a l s p r o c e s s i n g t e c h n o l o g y209(2009)3532–3541bend ratios and back tensions considered.Although there are numerous similarities,direct quantitative comparison between the bending-under-tension test and the steady-state phase of the channel forming process cannot be made,due to the differences in the application of the back and forward tensions.4.3.Contradictions withfinite element model predictionsAs stated in Section1,there are a limited number of other investigations in the literature that examine the time-dependant contact pressure response of sheet metal stamping processes.Finite element analyses by Mortensen et al.(1994) and Jensen et al.(1998)predicted that time-dependant contact conditions do occur.However,these results do not show the same trends as presented in this study and shown by Pereira et al.(2007,2008)in previousfinite element investigations. This section will briefly discuss the possible reasons for such discrepancies.Firstly,considering thefinite element analysis of a cup-drawing process by Mortensen et al.(1994),the predicted contact pressure over the die radius was presented at only three distinct intervals during the process.By comparison, Pereira et al.(2008)recorded the contact pressure at approx-imately140intervals throughout thefinite element results history,in order to completely characterise the complex pressure evolution.Therefore,it is likely that the transient effects,which are reported in this study,were not captured by Mortensen et al.(1994)due to the limited number of instances at which the contact pressure was recorded.Thefinite element investigation by Jensen et al.(1998) examined the contact conditions at approximately100inter-vals during a cup-drawing process,but also did not observe a severe and localised transient response,as seen in this study. (Significantly varied and localised contact conditions were observed at the end of the process,but these were identi-fied to be due to the blank-rim effect,and are not relevant to this study.)Close examination of the results by Jensen et al. (1998)show that some localised contact conditions do occur at the beginning of the process—however,these appear rela-tively mild and were not discussed in the text.This reduced severity of the transient response,compared to that predicted by Pereira et al.(2008),can be partly explained by the fact that the actual contact pressure at the die radius was not shown by Jensen et al.(1998).Instead,Z xt,which was defined to be a function of contact pressure and sliding velocity,was used to characterise the contact conditions.This could have effec-tively reduced the appearance of the initial localised contact conditions,due to the slower sliding velocity shown to exist during the initial stage.Additionally,Jensen et al.(1998)used 20finite elements to describe the die radius surface,compared to240elements used by Pereira et al.(2008).The reduced num-ber of elements at the die radius surface can have the effect of averaging the extremely localised contact loads over a larger area,thus reducing the magnitude of the observed contact pressure peaks.Finally,the different processes examined(cup drawing vs.channel forming)may also result in a different transient response.4.4.Relevance to tool wearWear is related to contact pressure through a power law rela-tionship(Rhee,1970).Therefore,the regions of severe contact pressure during the initial and intermediate stages may be particularly relevant to tool wear at the die radius.Thefinite element investigations by Pereira et al.(2007,2008)showed that the maximum contact pressure for the entire process occurs in the intermediate-only contact region,at approximately Â=59◦,indicating that the intermediate stage is likely to be of primary significance to the wear response.This result was val-idated by laboratory-based channel forming wear tests,for the particular case examined(Pereira et al.,2008).However,for each stamping operation,it can be seen that the relative sliding distance between the blank and die radius associated with the initial and intermediate stages is small—i.e.no greater than the arc length of the die radius surface.In comparison,the steady contact pressure phase cor-responds to a much larger sliding distance—i.e.the sliding distance will be approximately in the same order of magnitude as the punch travel.Therefore,despite the smaller contact pressures,it is possible that the steady phase may also influ-ence the tool life;depending on the process conditions used (e.g.materials,surface conditions,sliding speed,lubrication) and the resulting wear mechanisms that occur.The existence of an intermediate-only contact zone(i.e.the region <Â≤ˇmax),is convenient for future wear analyses.Due to the lack of sliding contact in this region during the steady-state phase,any surface degradation of the die radius at angles ofÂ> must be attributed to the intermediate stage of the sheet metal stamping process.Therefore,it is recommended that future wear analysis examine this region to assess the importance of the intermediate contact conditions on the overall tool wear response of the sheet metal stamping pro-cess.The existence of the initial and intermediate stages high-light that the bending-under-tension test,due to its inherently steady nature,is unable to capture the complete contact con-ditions that exists during a typical sheet metal stamping process.Therefore,the applicability of the bending-under-tension test for sheet metal stamping wear simulation may be questionable.5.SummaryIn this work,a qualitative description of the development of peak contact pressures at the die radius for a sheet metal stamping process was given.It was shown that three distinct phases exist:(i)At the start of the process,the blank is bent by the actionof the punch and a high contact pressure peak exists at the start of the die radius.(ii)During the intermediate stage,the region of the sheet that was deformed at the start of the die radius has not reached the side-wall.Therefore,the side-wall remains straight and the arc of contact is a maximum.The largest pressure,which is significantly greater than the sheet materialflow stress,exists towards the end of the die。
中英文对照资料外文翻译文献冷冲模具使用寿命的影响及对策冲压模具概述冲压模具--在冷冲压加工中,将材料(金属或非金属)加工成零件(或半成品)的一种特殊工艺装备,称为冷冲压模具(俗称冷冲模)。
冲压--是在室温下,利用安装在压力机上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件的一种压力加工方法。
冲压模具的形式很多,一般可按以下几个主要特征分类:1.根据工艺性质分类(1)冲裁模沿封闭或敞开的轮廓线使材料产生分离的模具。
如落料模、冲孔模、切断模、切口模、切边模、剖切模等。
(2)弯曲模使板料毛坯或其他坯料沿着直线(弯曲线)产生弯曲变形,从而获得一定角度和形状的工件的模具。
(3)拉深模是把板料毛坯制成开口空心件,或使空心件进一步改变形状和尺寸的模具。
(4)成形模是将毛坯或半成品工件按图凸、凹模的形状直接复制成形,而材料本身仅产生局部塑性变形的模具。
如胀形模、缩口模、扩口模、起伏成形模、翻边模、整形模等。
2.根据工序组合程度分类(1)单工序模在压力机的一次行程中,只完成一道冲压工序的模具。
(2)复合模只有一个工位,在压力机的一次行程中,在同一工位上同时完成两道或两道以上冲压工序的模具。
(3)级进模(也称连续模)在毛坯的送进方向上,具有两个或更多的工位,在压力机的一次行程中,在不同的工位上逐次完成两道或两道以上冲压工序的模具。
冲冷冲模全称为冷冲压模具。
冷冲压模具是一种应用于模具行业冷冲压模具及其配件所需高性能结构陶瓷材料的制备方法,高性能陶瓷模具及其配件材料由氧化锆、氧化钇粉中加铝、镨元素构成,制备工艺是将氧化锆溶液、氧化钇溶液、氧化镨溶液、氧化铝溶液按一定比例混合配成母液,滴入碳酸氢铵,采用共沉淀方法合成模具及其配件陶瓷材料所需的原材料,反应生成的沉淀经滤水、干燥,煅烧得到高性能陶瓷模具及其配件材料超微粉,再经过成型、烧结、精加工,便得到高性能陶瓷模具及其配件材料。
本发明的优点是本发明制成的冷冲压模具及其配件使用寿命长,在冲压过程中未出现模具及其配件与冲压件产生粘结现象,冲压件表面光滑、无毛刺,完全可以替代传统高速钢、钨钢材料。
冷冲模具主要零件冷冲模具是冲压加工的主要工艺装备,冲压制件就是靠上、下模具的相对运动来完成的。
加工时由于上、下模具之间不断地分合,如果操作工人的手指不断进入或停留在模具闭合区,便会对其人身安全带来严重威胁。
(一)模具的主要零件、作用及安全要求1.工作零件凸凹模是直接使坯料成形的工作零件,因此,它是模具上的关键零件。
凸凹模不但精密而且复杂,它应满足如下要求:(1)应有足够的强度,不能在冲压过程中断裂或破坏.(2)对其材料及热处理应有适当要求,防止硬度太高而脆裂。
2.定位零件定位零件是确定坯件安装位置的零件,有定位销(板)、挡料销(板)、导正销、导料板、定距侧刀、侧压器等。
设计定位零件时应考虑操作方便,不应有过定位,位置要便于观察,最好采用前推定位、外廓定位和导正销定位等。
3.压料、卸料及出料零件压料零件有压边圈、压料板等。
压边圈可对拉延坯料加压边力,从而防止坯料在切向压力的作用下拱起而形成皱褶。
压料板的作用是防止坯料移动和弹跳。
顶出器、卸料板的作用是便于出件和清理废料。
它们由弹簧、橡胶和设备上的气垫推杆支撑,可上下运动,顶出件设计时应具有足够的顶出力,运动要有限位。
卸料板应尽量缩小闭合区域或在操作位置上铣出空手槽。
暴露的卸料板的四周应设有防护板,防止手指伸入或异物进入,外露表面棱角应倒钝。
4.导向零件导柱和导套是应用最广泛的一种导向零件。
其作用是保证凸凹模在冲压工作时有精确的配合间隙。
因此,导柱、导套的间隙应小于冲裁间隙。
导柱设在下模座,要保证在冲程下死点时,导柱的上端面在上模板顶面以上最少5至10毫米。
导柱应安排在远离模块和压料板的部位,使操作者的手臂不用越过导柱送取料。
5.支承及夹持零件它包括上下模板、模柄、凸凹模固定板、垫板、限位器等。
上下模板是冷冲模具的基础零件,其他各种零件都分别安装固定在上面。
模板的平面尺寸,尤其是前后方向应与制件相适应,过大或过小均不利于操作。
有些模具(落料、冲孔类模具)为了出件方便,需在模架下设垫板。
这时垫板最好与模板之间用螺钉连接在一起,两垫板的厚度应绝对相等。
垫板的间距以能出件为准,不要太大,以免模板断裂。
6.紧固零件它包括螺钉、螺母、弹簧、柱销、垫圈等,一般都采用标准件。
冷冲模具的标准件用量较多,设计选用时应保证紧固和弹性顶出的需要,避免紧固件暴露在表面操作位置上,防止碰伤人手和妨碍操作。
冷冲模具的发展改革开放以来,随着国民经济的高速发展,市场对冷冲模具的需求量不断增长。
近年来,冷冲模具工业一直以15%左右的增长速度快速发展,冷冲模具工业企业的所有制成分也发生了巨大变化,除了国有专业模具厂外,集体、合资、独资和私营也得到了快速发展。
随着与国际接轨的脚步不断加快,市场竞争的日益加剧,人们已经越来越认识到产品质量、成本和新产品的开发能力的重要性。
而冷冲模具制造是整个链条中最基础的要素之一,冷冲模具制造技术现已成为衡量一个国家制造业水平高低的重要标志,并在很大程度上决定企业的生存空间。
近年许多冷冲模具企业加大了用于技术进步的投资力度,将技术进步视为企业发展的重要动力。
一些国内模具企业已普及了二维CAD,并陆续开始使用UG、Pro/Engineer、I-DEAS、Euclid-IS等国际通用软件,个别厂家还引进了Moldflow、C-Flow、DYNAFORM、Optris和MAGMASOFT等CAE软件,并成功应用于冲压模的设计中。
以汽车覆盖件模具为代表的大型冲压模具的制造技术已取得很大进步,东风汽车公司模具厂、一汽模具中心等模具厂家已能生产部分轿车覆盖件模具。
此外,许多研究机构和大专院校开展模具技术的研究和开发。
经过多年的努力,在模具CAD/CAE/CAM技术方面取得了显著进步;在提高模具质量和缩短模具设计制造周期等方面做出了贡献。
虽然中国冷冲模具工业在过去十多年中取得了令人瞩目的发展,但许多方面与工业发达国家相比仍有较大的差距。
例如,精密加工设备在冷冲模具加工设备中的比重比较低;CAD/CAE/CAM技术的普及率不高;许多先进的模具技术应用不够广泛等等,致使相当一部分大型、精密、复杂和长寿命冷冲模具依赖进口。
随着科学技术的不断进步,现代工业产品的生产日益复杂与多样化,产品性能和质量也在不断提高,因而对冷冲压技术提出了更高的要求.为了使冷冲压技术能适应各工业部门的需要,冷冲压技术自身也在不断革新和发展.冷冲压技术的发展思路就是尽可能地完善和扩充冷冲压工艺的优点,克服其缺点.在冷冲压技术的发展过程中,应注意以下几方面:(1)冷冲压技术的发展过程中应正确地确定工艺参数及冷冲模具工作部分的形状与尺寸,提高冲压件的质量、缩短新产品试制周期,应在加强冲压成形理论研究的基础上,使冲压成形理论达到能对生产实际起指导作用,逐步建立起一套密切结合生产实际的先进的工艺分析计算方法.国外已开始采用弹塑性有限元法对汽车覆盖零件的成形过程进行应力应变分析和计算机模拟,以预测某一工艺方案对零件成形的可能性和可能出现的问题。
(2)加快产品更新换代,克服模具设计周期长的缺点.应大力开展模具计算机辅助设计和制造(CAD/CAM)技术的研究.在我国,目前要特别注意加强多工位级进模CAD/CAM技术的研究。
(3)满足大量生产需要以及减轻劳动强度.应加强冷冲压生产的机械化和自动化研究,使一般中、小件能在高速压力机上采用多工位级进模生产,达到生产高度自动化,进一步提高冲压的生产率。
(4)扩大冷冲压生产的运用范围.使冷冲压既适合大量生产,也适合小批量生产;既能生产一般精度的产品,也能生产精密零件.应注意开发如精密冲裁(特别是厚料精冲)、高能成形、软模成形、施压和超塑性加工等新成形工艺,还要推广简易模(软模和低熔点合金模)、通用组合模、数控冲床等设备的运用。
此外,对冲压板料性能的改进,模具新材料、模具新加工方法的开发也应进一步加强。
冷冲模具使用寿命的影响及对策冷冲模具的使用寿命是以冲制出的工件数量来计算的。
影响冷冲模寿命的因素很多。
主要有模具结构设计、制造模具所用凸模和凹模的材料、模具的热处理质量与表面强化、冲模零件的制造精度和冷冲压材料的选取。
除此之外,还有冲模的安装、调整、使用以及维修等。
1.模具设计对寿命的影响(1)排样设计的影响排样方法与搭边值对模具寿命的影响很大,过小的搭边值,往往是造成模具急剧磨损和凸、凹模啃伤的重要原因。
从节约材料出发,搭边值愈小愈好,但搭边值小于一定数值后,对模具寿命和剪切表面质量不利。
在冲裁中有可能被拉人模具问隙中,使零件产生毛刺,甚至损坏模具刃口,降低模具寿命。
因此,在考虑提高材料利用率的同时,必须根据零件产量、质量和寿命,确定排样方法和搭边值。
(2)凹模结构的影响对容易产生应力集中而开裂的凹模结构,可以采用组合结构或镶拼结构,以及预应力结构,从而提高模具使用寿命。
(3)间隙的影响当间隙过小时,压缩挤压利害,摩擦力增大,磨损增大,侧面的磨损加剧,冲裁后卸料和推件时,材料与凸、凹模之间的摩擦还将造成刃口侧面的磨损比端面的磨大大,同时也容易造成凸、凹模温度很高,把金属碎屑吸附在刃口侧面,形成金属瘤,使凸、凹模出现崩刃或胀裂现象。
因此,过小的间隙对模具寿命极为不利。
间隙太大,会增加凸模与凹模端面边缘的集中应力,致使压应力急剧增加,于是刃口边很快屈服变形而失去棱角。
因此又增加了冲裁力,进而使刃口边更快磨损,降低模具寿命。
但为了减小凸、凹模的磨损,延长模具使用寿命,在保证冲裁件质量的前提下,设计时适当采用较大间隙是十分必要的。
(4)模具导向结构对寿命的影响可靠的导向对于减小工作零件的磨损,避免凸、凹模啃伤是非常有效的。
特别对无问隙或小问隙冲裁模、复合模和多工位级进模更为重要。
为提高模具寿命,必须根据工序和零件精度要求,正确选择导向形式和导向精度,所选择导向精度应高于凸、凹模的配合精度。
(5)冷冲压材料选取的影响冷冲压材料应满足制件的设计要求和冲压工艺要求,否则容易损伤模具,降低模具使用寿命。
冷冲压材料表面质量不好,冲压时制件易破裂,也易擦伤模具。
冷冲压材料塑性不好,变形量小,冲压时制件易破裂,也易擦伤模具。
另外,材料的厚度公差应符合国家标准。
因为一副冲模适用于一定材料的厚度,成形、弯曲、翻边、引伸模具的凸、凹模结构间隙是直接根据材料厚度来确定的。
所以材料厚度不均匀,会导致废品产生和模具损坏。
2.模具材料对模具寿命的影响模具材料对模具寿命的影响是模具材料性质、化学成分、组织结构、硬度和冶金质量等的综合反映。
其中,材料性质和热处理质量影响最为明显。
模具材料性质对模具寿命的影响是很大的。
如将同一种工件,使用不同的模具材料做弯曲试验,试验结果:用9Mn2V 材料,其寿命为5万次;用Crl2MoV渗氮,其寿命可达40万次。