湿法资料整理-单晶制绒
- 格式:pptx
- 大小:33.38 MB
- 文档页数:83
单晶硅制绒单晶硅制绒—(碱各向异性腐蚀)㈠、目的和原理形成表面金字塔结构,降低反射,增加光的吸收。
利用氢氧化钠对单晶硅各向异性腐蚀及不同浓度下的各向异性因子(AF):粗抛光去除硅片在多线切割锯切片时产生的表面损伤层,细抛光实现表面较低反射率表面织构。
--在100面上的腐蚀速率R100与111面上的腐蚀速率R111的比值R100:R111在一定的弱碱溶液中可以达到500。
制绒方法:弱碱溶液在一定的温度、时间下与硅片反应形成绒面。
↑+++223222H SiO Na O H NaOH Si 加热解释①现有单晶硅片是由长方体晶锭在多线切割锯切成一片片单晶硅方片。
由于切片是钢丝在金刚砂溶液作用下多次往返削切成硅片,金刚砂硬度很高,会在硅片表面带来一定的机械损伤。
如果损伤不去除,会影响太阳电池的填充因子。
②氢氧化钠俗称烧碱,是国民经济生产中大量应用的化工产品。
由电解食盐水而得,价格比较便宜,每500克6元。
化学反应方程式为:↑+↑+=+222222H Cl NaOH O H NaCl 电解分析纯氢氧化锂、氢氧化钾也可以与硅起反应,但价格较贵。
如氢氧化锂每500克23元,用于镉-镍电池电解液中。
③碱性腐蚀优点是反应生成物无毒,不污染环境。
不像HF-HNO 3酸性系统会生成有毒的NO x 气体污染大气。
另外,碱性系统与硅反应,基本处于受控状态。
有利于大面积硅片的腐蚀,可以保证一定的平行度。
㈡、工艺步骤制绒液配比(老数据)制绒过程:1、用去离子水清洗 2、制绒 3、检测4、清洗1. 本工艺步骤由施博士制定,是可行的具有指导意义的两步法碱腐蚀工艺。
第一步粗抛光去掉硅片的损伤层;第二步细抛光,表面产生出部分反射率较低的织构表面,如果含有[100]晶向的晶粒,就可以长出金字塔体状的绒面;第五步是通过盐酸中和残余的氢氧化钠,化学反应方程式为:O H NaCl NaOH HCl 2+=+;第七步氢氟酸络合掉硅片表面的二氧化硅层,化学反应方程式为:O H SiF H HF SiO 26222][6+=+。
单晶硅制绒原理一、前言单晶硅制绒是一种新型的纳米材料制备技术,其原理基于单晶硅的特殊性质和化学反应,通过控制反应条件和工艺参数,使得单晶硅表面形成微米级别的绒毛结构。
这种绒毛结构具有特殊的物理和化学性质,在光电、生物医学、能源等领域具有广泛的应用前景。
本文将详细介绍单晶硅制绒的原理及其相关机理。
二、单晶硅的特殊性质单晶硅是一种高纯度、高结晶度的半导体材料,其独特的物理和化学性质决定了它在纳米材料制备中具有重要作用。
首先,单晶硅具有高密度和高结晶度,因此在反应过程中能够提供稳定的反应场所,并且可以保证所得到的纳米材料具有较好的结晶性和形态稳定性。
其次,单晶硅表面具有天然氧化层,在空气中易于形成SiO2薄层。
这种氧化层可以保护单晶硅表面不受外界环境的影响,并且可以提供反应所需的活性位点。
最后,单晶硅具有良好的光学和电学性质,可以用于制备光电器件和传感器等。
三、单晶硅制绒的原理单晶硅制绒是一种化学反应过程,其基本原理是在特定条件下,将单晶硅表面氧化层上的Si-O键断裂,然后在空气中形成Si-OH活性位点,并通过这些活性位点进行化学反应,最终形成微米级别的绒毛结构。
具体来说,单晶硅制绒可以分为以下几个步骤:1. 单晶硅表面氧化层处理首先需要对单晶硅表面进行氧化层处理。
这一步骤通常采用湿法或干法氧化方法,在高温高压下使得Si表面形成一层厚度为数纳米至数十纳米的SiO2薄层。
这种薄层可以保护单晶硅表面不受外界环境影响,并且提供反应所需的活性位点。
2. 活性位点生成在第一步处理完成后,需要将SiO2薄层上的Si-O键断裂,生成活性位点。
这一步骤通常采用酸或碱处理,使得Si-O键断裂并形成Si-OH 活性位点。
在此过程中,需要控制处理时间和处理浓度,以避免产生过多的缺陷和损伤。
3. 化学反应在活性位点生成后,需要进行化学反应。
这一步骤通常采用氧化、还原、加热等方法,在空气中形成Si-O-Si键,并通过这些键进行化学反应。
单晶制绒工艺培训一、单晶制绒工艺概述单晶制绒是一种特殊的面料处理工艺,它通过将细密的绒毛布料置于高温条件下,使得布料表面的绒毛呈现出一种晶莹剔透的效果。
单晶制绒面料具有柔软、透亮、富有弹性的特点,因此在服装、家居用品和汽车内饰中得到广泛应用。
单晶制绒工艺的关键在于控制温度和时间,以及对化学品的使用和织造技术的熟练掌握。
二、单晶制绒工艺培训内容1. 基础知识学习单晶制绒工艺培训的第一步是学习基础知识。
这包括单晶制绒的原理、工艺流程、设备使用、危险品处理等方面的内容。
学员需要掌握单晶制绒工艺的基本原理和步骤,了解设备的使用和维护方法,同时还需要了解危险品的处理和安全防护知识。
2. 设备操作培训单晶制绒工艺的设备操作对于学员来说是至关重要的。
培训学员需要熟悉单晶制绒设备的操作方法,掌握设备的运转原理和操作流程,熟练掌握设备的日常使用和维护。
此外,还需要学习如何解决设备故障和应对突发情况。
3. 工艺技术培训单晶制绒工艺技术对于学员来说是培训的重点。
学员需要学习如何控制温度和时间,以及使用化学品的方法和注意事项。
同时,还需要掌握单晶制绒的织造技术,包括面料的选材、织造工艺和后处理工艺等方面的知识。
4. 实操实训除了理论学习和设备操作外,学员还需要进行实操实训。
这需要在专业的工厂或实验室中进行,学员需要按照实际工艺流程进行练习,并在老师的指导下逐步提高自己的实际操作水平。
5. 安全知识培训单晶制绒工艺是一种高温高压的工艺,因此安全问题也是培训的重点。
学员需要学习化学品的危害性及其使用方法,熟悉急救知识和安全防护措施,以确保自己和他人的安全。
三、培训机构选择想要进行单晶制绒工艺培训,首先就需要选择一所专业的培训机构。
在选择培训机构时,应该综合考虑以下因素:1. 机构资质:培训机构的资质是参加培训的首要条件,一般来说,国家认可的职业培训机构和专业的织造学校是比较好的选择。
2. 师资力量:培训机构的师资力量决定着培训的质量,应该选择有丰富实践经验和教学经验的老师来进行培训。
单晶制绒(各向异性腐蚀)硅的各向异性腐蚀是指对硅的不同晶面具用不同的腐蚀速率.各向异性腐蚀剂一般分为两类:一类是有机腐蚀剂,包括EPW和联胺等,另一类无机腐蚀剂,包括无机碱性腐蚀剂,如KOH NaOH LiOH等,我们单晶制绒腐蚀剂用的是无机碱性腐蚀剂.在腐蚀液浓度一致的前提下, 改变腐蚀液的温度, 各晶面的腐蚀速率随温度的变化示于图5单晶制绒溶液通常用低浓度(0.5.—1.5wt%)的氢氧化钠混合(5---10vol%)的异丙醇(或乙醇)配制成,在75---80℃温度范围内对(100)晶向的硅片表面进行各向异性腐蚀,便可以得到由(111)面包围形成的角锥体分布在表面上构成的绒面。
我们将<100>晶向上腐蚀速率与<111>晶向上腐蚀速率比值定义为各向异性因子AF.当AF=1时,腐蚀硅片可以得到平坦的表面.当制绒液在<100>方向上具有相对高的腐蚀速率(0.6um/min)和AF=10的各向异性系数时在硅片表面上得到最高的角锥体密度,能够腐蚀出高质量绒面.腐蚀碱溶液的浓度,温度对AF有显著影响.一般来说,低浓度的碱溶液和较低的温度具有较高的AF值;反之,高浓度的碱溶液和较高溶液温度则对应低的AF数值.因此,前者用于制绒工艺,后者用于抛光工艺,在实验和生产实践中发现,制绒溶液配制好后,初次使用时AF不高,并且锥体的覆盖率也不高.使用若干次以后,AF值和绒面覆盖率逐渐提高并趋进最大值.再继续使用若干次后,AF值和绒面覆盖率逐渐降低,直到溶液失效不能使用,这时候就要重新配制溶液了.硅在碱溶液中的腐蚀现象,可以用电化学腐蚀的微电池理论进行解释.阳极处Si+6O HˉSiO3-2+3H2O +4e阴极处2H+ +2e H2↑总的反应式Si +2NaOH +H2O Na2SiO3+ 2H2↑NaOH的作用Si在NaOH腐蚀液中反应过程,首先由水分子分解出氢氧根离子, 氢氧根离子与表面原子未配对的电子结合形成Si—O键, 然后打断表面原子与其它硅原子连接的共价键,最后生成Si(OH )4. 我们以(100) 面的原子为例, 其反应过程可表示为:在第二步反应中, 由于硅表面存在成键的OH 基团,使硅表面原子的背键强度降低,Si(OH )2 团中的Si—Si 背键被打开, 形成了带正电荷的氢氧化硅复合物:氢氧化硅复合物进一步与两个OH- 反应产生原硅酸:从以上反应过程可以看出, 在硅表面的原子被“移去”的过程中.除去硅原子未受腐蚀的起始态和被腐蚀反应为原硅酸的最终态之外, 还有若干个中间状态, 从微观角度来说, 各中间状态反映出腐蚀的微观过程, 可用来说明腐蚀的机制. 我们认为, 处在不同晶面的硅原子的腐蚀速率之所以不同, 一方面是与被反应原子所处的初始状态有关, 另一方面也与反应过程中存在的各个中间状态有关.硅(100) 晶面原子在NaOH 腐蚀过程中出现的状态示意图(图1)首先, 我们根据反应的过程看图1 中八种微观状态之间的转换.相应于图1 中八种不同的状态, 就反应中各个状态之间可能的转换示于图2 中. 其中, 有的状态在反应条件不确定的情况下, 受各种因素的影响, 有可能有多种形式状态的转化.硅(100) 晶面原子在腐蚀过程中各微观状态之间转化关系(图2)IPA的作用IPA 1)增加硅片表面的可湿润性2)碱溶液对硅片的腐蚀速率随着IPA浓度的增加而降低3)适当浓度发IPA在溶液中起到消泡的作用我可以从碱腐蚀硅的化学原理可知,伴随腐蚀的进行,硅表面有气泡产生,气泡的尺寸与溶液的粘度,溶液的表面张力有关,气泡的大小和在硅片表面的附着时间,的表面反应的进行乃至腐蚀形成的表面形貌有直接音响.谈到气泡的大小我们就必须谈到接触角(润湿角)接触角定义为液—固—气界面相交点,液—气界面的切线与液—固界面切线的夹角.CosØ =(δg-s –δl-s)/δg-l图.液体与固体表面的接触角定温定压平衡时液体在固体表面的接触角决定于固—气相、固—液相和液—气相三个界面张力的大小关系。
单晶硅制绒原理介绍单晶硅制绒是一种常用的制备技术,用于制备具有高质量表面的材料。
本文将详细介绍单晶硅制绒的原理及其相关的工艺流程和应用。
原理单晶硅制绒是通过晶体生长技术在硅基底上制备一层高质量的薄膜。
其原理主要包括以下几个方面:1.晶体生长:在制备单晶硅制绒时,首先需要选择适合的基底材料,通常选择硅基底。
然后,在基底上进行晶体生长,通常采用化学气相沉积(CVD)技术。
CVD技术通过将气相材料在高温条件下加热,使其分解并在基底上生成薄膜。
2.控制晶体方位:在单晶硅制绒中,晶体方位的控制是非常重要的。
晶体的方位决定了其物理和化学性质。
为了控制晶体方位,可以通过在基底上引入一层缓冲层,促使晶体在特定方位生长。
3.制备薄膜:通过晶体生长技术,可以在基底上制备一层薄膜。
这层薄膜通常具有高度的结晶度和平整度,能够提供良好的表面质量和机械性能。
工艺流程单晶硅制绒的工艺流程通常包括以下几个步骤:1.基底准备:选择适合的基底材料,并进行表面处理。
通常,基底会经过清洗、打磨和去除氧化层等工艺步骤,以保证基底的纯净性和平整度。
2.缓冲层生长:为了控制晶体的方位,常常需要生长一层缓冲层。
这层缓冲层通常由非晶态或微晶态硅材料组成,可以通过物理气相沉积(PVD)或化学气相沉积(CVD)等技术实现。
3.单晶硅生长:在缓冲层的基础上,进行单晶硅的生长。
通常,采用低温等离子体增强化学气相沉积(PECVD)或金属有机化学气相沉积(MOCVD)等技术进行生长。
这些技术可以提供较高的晶体质量和较高的生长速度。
4.表面处理:在单晶硅制绒后,通常需要进行一些表面处理,以提高薄膜的质量。
常用的表面处理方法包括化学机械抛光(CMP)、湿法腐蚀和离子注入等。
应用单晶硅制绒广泛应用于半导体器件、太阳能电池、显示器件等领域。
其应用主要包括以下几个方面:1.半导体器件:单晶硅制绒在半导体器件制造中起到重要作用。
通过控制晶体的方位和表面质量,可以提高器件的性能和可靠性。