蜂窝陶瓷蓄热体介绍
- 格式:ppt
- 大小:39.60 MB
- 文档页数:24
蜂窝陶瓷蓄热体蜂窝陶瓷蓄热体是一种常见的热交换和蓄热材料,广泛应用于工业和民用领域。
它的设计结构独特,能够有效地吸收和释放热能,提供稳定且持久的热源。
结构和原理蜂窝陶瓷蓄热体的基本结构由许多小孔组成,这些小孔被称为蜂窝孔,它们呈六边形或四边形的形状排列。
蜂窝孔的大小和形状可以根据具体的应用需求进行调整。
蜂窝陶瓷蓄热体通常由高热容量的陶瓷材料制成,如陶瓷纤维、氧化铝等。
这些陶瓷材料具有优异的导热性能和稳定的化学特性,能够承受高温环境下的蓄热和释放过程。
蜂窝陶瓷蓄热体的原理是利用其结构中的蜂窝孔来增加表面积,从而增加热传导效率。
当蓄热体暴露在高温环境中时,热量会被吸收并传导到蜂窝孔的表面。
蜂窝孔的壁面积大大超过了蓄热体的外表面积,从而增加了热量的吸收和储存能力。
应用蜂窝陶瓷蓄热体具有广泛的应用领域,下面列举几个主要的应用案例:1. 工业加热蜂窝陶瓷蓄热体广泛应用于各种工业加热设备中,如炉子、烧嘴等,用于提供稳定的热源。
它可以通过吸热和释热的循环过程,实现高效的热能利用,降低能源消耗。
2. 太阳能利用蜂窝陶瓷蓄热体可以作为太阳能热水器和太阳能发电系统中的蓄热介质。
它可以在白天吸收太阳能并将其储存起来,在晚上或阴天释放热量,提供持续的热能供应。
3. 燃气热水器蜂窝陶瓷蓄热体也被应用于家用燃气热水器中,用于快速加热和储存热水。
蓄热体可以在短时间内将水加热至适宜温度,并保持水温稳定,提供持续的热水供应。
4. 汽车尾气处理蜂窝陶瓷蓄热体还被广泛应用于汽车尾气处理系统中。
它可以有效地吸附和储存废气中的有害物质,并在适当的条件下释放出来进行进一步处理,以减少尾气对环境的污染。
优点和挑战蜂窝陶瓷蓄热体有许多优点,也存在一些挑战。
优点•高热容量和导热性能,能够快速吸收和释放热量。
•稳定的化学特性,能够承受高温环境下的蓄热和释放过程。
•结构紧凑,占用空间小,易于安装和维护。
•耐腐蚀和耐磨损,具有较长的使用寿命。
挑战•蓄热和释放过程中可能产生的热损失,降低了系统的热效率。
蜂窝陶瓷蓄热体换热效率和高度一、引言蓄热体是近年来广泛应用于能源转换和储存领域的一种热传导材料。
蜂窝陶瓷蓄热体是其中一种常见的设计。
本文将探讨蜂窝陶瓷蓄热体在传热过程中的效率和高度对于换热性能的影响,并提供一些相关实验和研究结果。
二、蜂窝陶瓷蓄热体的结构和工作原理蜂窝陶瓷蓄热体是一种具有规则孔隙结构的热传导材料。
由于其良好的热容量和导热性能,它被广泛应用于太阳能集热器、储能系统等领域。
其工作原理基于材料内部孔隙结构的热传导和储能过程。
三、蜂窝陶瓷蓄热体的换热效率蜂窝陶瓷蓄热体的换热效率是评估其性能的重要指标之一。
换热效率取决于多个因素,包括材料的导热性能、孔隙结构的设计等。
1.材料的导热性能蜂窝陶瓷蓄热体的导热性能是影响换热效率的主要因素。
导热性能越好,热量在材料内部的传递速度就越快,从而提高换热效率。
研究表明,选择导热性能良好的材料,如具有高热导率的陶瓷材料,可以显著提高蓄热体的换热效率。
2.孔隙结构的设计蓄热体的孔隙结构对于换热效率也有着重要的影响。
通常,蜂窝陶瓷蓄热体会通过设计不同形状的孔隙结构来增加有效表面积,从而提高换热效率。
例如,增加蓄热体的高度可以增加其表面积,提高热量传递的速率。
四、蓄热体高度对换热性能的影响蓄热体的高度也是影响换热性能的重要因素之一。
高度不同会影响蓄热体的表面积和导热路径的长度,进而影响其换热效率。
1.高度与表面积的关系蜂窝陶瓷蓄热体的高度与其表面积成正相关。
增加蓄热体的高度可以增加其表面积,提高热量传递的速率。
然而,随着高度的增加,由于热量传递过程中存在阻力,换热效率不会线性增加。
2.高度与导热路径的关系蓄热体的高度也会影响导热路径的长度。
较长的导热路径会增加热传导的阻力,并降低换热效率。
因此,在设计蜂窝陶瓷蓄热体时,需要在高度和导热路径长度之间寻找最佳平衡点,以获得最高的换热效率。
五、实验和研究结果许多实验和研究都证明了蜂窝陶瓷蓄热体的换热效率和高度之间的关系。
陶瓷蓄热体工作原理
陶瓷蓄热体是一种利用陶瓷材料的热传导性能,来实现热能储存和释放的装置。
其工作原理如下:
1. 储热阶段:当外部热源(例如太阳能或电加热器)为陶瓷蓄热体供热时,陶瓷材料会吸收并传导热能。
由于陶瓷材料具有较低的热导率,其内部会形成较高温度的热点。
2. 热传导阶段:一旦外部热源停止供热,陶瓷蓄热体内的热能将开始向周围环境传导。
由于陶瓷蓄热体内部温度高于环境温度,热能将会以热传导的方式从高温区域向低温区域传递。
3. 释放热能阶段:陶瓷蓄热体内部的热传导过程将导致热能的释放,使得外部环境得到陶瓷蓄热体储存的热能。
这种释放可以在较长时间内持续进行,从而为所需的热能供应提供持久的热源。
通过以上工作原理,陶瓷蓄热体实现了热能的储存和释放,使得其成为一种有效的热能存储装置,被广泛应用于太阳能热水器、辐射供暖等领域。
蜂窝陶瓷蓄热体设备工艺原理概述蜂窝陶瓷蓄热体是一种高效的蓄热储能技术,可广泛运用于太阳能、地源热泵、空气源热泵等新能源系统。
本文将介绍蜂窝陶瓷蓄热体设备的工艺原理,包括蜂窝陶瓷的制备、蓄热体的结构设计、充填工艺等,为读者提供深入了解该项技术的知识。
蜂窝陶瓷制备提高蓄热体的热传导性能是降低设备成本的重要因素。
蜂窝陶瓷是一种多孔陶瓷材料,其孔道呈六边形形状,因此又称为蜂窝式多孔陶瓷。
采用蜂窝陶瓷作为蓄热体的载体,可以大幅度提高其表面积,使其热传导性能得到改善。
蜂窝陶瓷的制备过程包括:原料配比、混合、成型、干燥和烧结等步骤。
首先,将粘土、石墨等原料按一定比例混合均匀,形成陶瓷泥浆;然后通过注塑、挤压等成型工艺加工成规格标准的蜂窝陶瓷成品;最后在高温下进行烧结处理,使陶瓷成品具有优异的硬度和抗渗性能。
蓄热体结构设计蜂窝陶瓷蓄热体的结构设计是蓄热体工艺原理中需要特别考虑的一部分。
蓄热体的结构设计应该尽可能地利用好蜂窝式结构的优势,使之在储能过程中具有更高的储能效率。
具体的工艺包括:制定合理的蜂窝式结构设计方案,根据设计方案进行陶瓷制作工艺;制作成尺寸规格适合的蜂窝陶瓷小块;编制充填设备方案,将蜂窝陶瓷小块以合适的密度填充到蓄热体的容器中,形成完整的蜂窝陶瓷储热体结构。
在这一过程中,应该控制好蜂窝陶瓷的充填密度,确保其能够在使用过程中,发挥出最佳的储热性能。
充填工艺充填工艺也是蓄热体工艺原理中需要特别考虑的一部分。
完整的蜂窝陶瓷蓄热体组装之前,需要对蜂窝陶瓷进行充填。
在充填过程中,一个重要的问题就是如何保证蜂窝陶瓷内部的孔隙度,避免孔隙度过小使得其内部难以充满热传导介质。
具体的工艺包括:在充填设备的协助下,将陶瓷小块沿水平、垂直轴线方向自由充填在充填容器中;在充填过程中适当调整小块的分布密度和填充方式,使小块之间的缝隙达到最佳的充填效果;控制好充填好的陶瓷微球的分布密度和孔隙度。
结论蜂窝陶瓷蓄热体设备工艺原理,包括蜂窝陶瓷制备、蓄热体结构设计和充填工艺等方面,本文进行了详细的介绍。
专利名称:高性能蜂窝陶瓷蓄热体及其制备工艺
专利类型:发明专利
发明人:欧阳德刚,蒋扬虎,罗安智,周章华,邵东,余晴,王海清,李明晖,罗巍,朱善合,陈超,丁翠娇,刘占增,宋中华,杨
超
申请号:CN200910062235.2
申请日:20090526
公开号:CN101571363A
公开日:
20091104
专利内容由知识产权出版社提供
摘要:一种高性能蜂窝陶瓷蓄热体及其制备工艺。
它包括陶瓷基体,陶瓷基体上密集分布有蜂窝状格孔,蜂窝状格孔的壁面覆盖有孔壁渗透层。
其制备工艺依次包括配料、困料、碾泥、挤压成型、微波烘烤、烘炉烘烤、坯体整形和高温烧成的步骤,还包括陶瓷基体浸泡步骤,陶瓷基体浸泡步骤是在微波烘烤与烘炉烘烤步骤之间或在高温烧成步骤之后将陶瓷基体浸泡在无机化学结合剂水溶液或溶胶结合剂水溶液中,使无机化学结合剂或溶胶结合剂向陶瓷基体的壁面内渗透,填充陶瓷基体壁面内的细孔,然后将陶瓷基体取出吹扫、阴干,再经过烘烤的步骤。
其基体组织结构致密、导热系数高、综合力学强度大、格孔应力均匀,可降低熔渣渗透、提高换热效率、延长使用寿命。
申请人:武汉钢铁(集团)公司
地址:430083 湖北省武汉市青山区厂前2号门
国籍:CN
代理机构:武汉开元知识产权代理有限公司
代理人:胡镇西
更多信息请下载全文后查看。
催化剂蓄热体
蓄热体是一种高效能热回收装置,其中蜂窝陶瓷蓄热体是一种常见的蓄热体。
它具有比表面积大、压力损失小、热胀冷缩系数小、抗热性能优良等特点,被广泛应用于环境保护、工业废气、废水净化、垃圾焚烧等设备的核心部件。
同时,蜂窝陶瓷作为催化剂载体,可用于汽车尾气净化、空气去异味等领域。
催化剂蓄热体是催化剂载体的一种,它采用堇青石薄壁蜂窝陶瓷作为载体,采用稀土金属或过度金属制备的复合材料为助剂,适用于汽车尾气净化等场合。
总之,蓄热体和催化剂蓄热体是两种不同的技术,但它们在工业领域中都有重要的应用。
蓄热体主要用于回收热量,提高能源利用效率;而催化剂蓄热体主要用于催化反应,促进化学品的合成或分解。
蜂窝蓄热体
蜂窝蓄热体是一种新型的采暖与节能技术,是利用蜂窝结构来实
现蓄热的技术方式。
蜂窝蓄热体由一系列封闭的蜂窝形腔体组成,根
据应用需要采用不同类型的腔体。
空气从腔体入口处进入,在通过腔
体内部流动时,空气会从接口处吸收较大程度的能量。
当空气达到腔
体出口处时,其能量也将会相应地大幅度提高。
蜂窝蓄热体具有蓄热精度高、节能性能好、耐火性强、抗风浪和
噪音强、寿命长的优点,便于架设,可以采用多种安装方式,可适应
多种不同的环境条件,并且可以实现节能减耗、成本降低、热效率提
高的技术要求。
因此,蜂窝蓄热体一般用于室外空调系统、采暖系统、暖通空调设备以及国际循环节能系统等行业。
蜂窝蓄热体在使用中应当注意,腔体内部不宜有任何异物,应定
期做维护保养,如发现腔体内部有异物时,应做成及时清理。
此外,
蜂窝蓄热体的设计与制造过程也是十分重要的,必须确保整体腔体形
状的稳定性以及空气流动的顺畅,以保证蜂窝蓄热体的正常使用。
蜂窝陶瓷蓄热体的传热性能研究概述李鹏;秦朝葵【摘要】简要介绍了高温空气燃烧技术,重点说明了该技术中的关键部件蜂窝陶瓷蓄热体的传热过程.详细综述了蜂窝陶瓷蓄热体的物性参数、结构参数、操作参数对其性能的影响,以及目前的研究状况,对将来的研究提出了建议.【期刊名称】《上海煤气》【年(卷),期】2017(000)004【总页数】5页(P30-34)【关键词】高温空气燃烧技术;蓄热式烧嘴;蜂窝陶瓷蓄热体;传热性能【作者】李鹏;秦朝葵【作者单位】同济大学机械与能源工程学院;同济大学机械与能源工程学院【正文语种】中文随着经济发展、能耗激增,燃料燃烧引发的污染问题日趋严重,节约能源、减轻污染、保护环境的呼声极为迫切,开发新型燃烧技术具有非常现实的意义。
高温空气燃烧技术(high-temperature air combustion,HTAC)作为一项全新的燃烧技术,自20世纪90年代以来在冶金、机械和化工等领域得到大力推广与应用。
它具有高效节能、污染物排放低等优点。
HTAC技术可充分利用排烟余热将助燃空气加热到800 ℃甚至更高,排烟温度降到200 ℃以下,从而最大限度回收烟气余热,提高了燃料利用率。
因助燃空气被预热到很高的温度,着火、燃烧的稳定性极好,这一技术在我国工业炉窑行业得到了很大的发展。
该技术的关键设备之一是用于回收余热的蓄热式热交换器,它是实现烟气与空气(或燃气)之间热交换的蓄热载体,直接影响蓄热室的大小、热效率和经济效益的高低。
1858年,Willian Siemens发明了蓄热室,许多大型工业炉改用了这种技术,如高炉热风炉、玻璃炉窑、均热炉等。
当时的蓄热室采用格子砖作为蓄热体,蓄热室体积庞大、造价高、换向时间很长,预热气体的温度波动也较大。
1982年,英国 Hotwork Development公司和British Gas公司合作开发出一种在工业炉和锅炉上节能潜力巨大的蓄热式陶瓷燃烧器(Regenerative Ceramic Burner,RCB),蓄热体采用陶瓷小球,在材料、尺寸、形状、体积、换热面积等方面皆有质的飞跃,标志着小型高效蓄热式燃烧系统的真正来临。