第七章-粘弹塑性模型的基本概念.doc
- 格式:doc
- 大小:980.56 KB
- 文档页数:22
粘弹性基本力学模型粘性:在外力作用下,分子与分子之间发生位移,材料的变形和应力随时间变化的变种特性称为粘性。
理想的粘性流体其流动形变可用牛顿定律来描述:应力与应变速率成正比。
因此,材料的本构关系的数学表达式应是反映应力-应变-时间-温度关系的方程。
粘弹性:塑料对应力的响应兼有弹性固体和粘性流体的双重特性称粘弹性。
材料既有弹性,又有粘性。
粘弹性依赖于温度和外力作用的时间。
其力学性能随时间的变化,称为力学松弛,包括应力松弛、蠕变等。
其力学行为介于理想弹性体和理想粘性体之间。
理想弹性体的形变与时间无关,形变瞬时达到,瞬时恢复。
理想粘性体的形变随时间线性发展。
粘弹性体介于这两者之间,其形变的发展具有时间依赖性,也就是说不仅具有弹性而且有粘性。
这种力学性质随时间变化的现象称为力学松弛现象或粘弹性现象。
橡胶对形变同时具有粘性响应和弹性响应。
粘性响应与形变速率成正比,而弹性响应与形变程度成正比。
粘性响应通常以阻尼延迟器为模型,而弹性响应则以金属弹簧为模型。
采用如下两种基本力学元件,即理想弹簧和理想粘壶。
理想弹簧用于模拟普弹形变,其力学性质符合虎克(Hooke)定律,应变达到平衡的时间很短,可以认为应力与应变和时间无关:σ=Eε其中σ为应力;E为弹簧的模量。
理想粘壶用于模拟粘性形变,其应变对应于充满粘度为η的液体的圆筒同活塞的相对运动,可用牛顿流动定律描述其应力应变关系:将弹簧和粘壶串联或并联起来可以表征粘弹体的应力松弛或蠕变过程。
应力松弛:就是在固定的温度和形变下,聚合物内部的应力随时间增加而逐渐衰减的现象。
这种现象也在日常生活中能观察到,例如橡胶松紧带开始使用时感觉比较紧,用过一段时间后越来越松。
也就是说,实现同样的形变量,所需的力越来越少。
未交联的橡胶应力松弛较快,而且应力能完全松弛到零,但交联的橡胶,不能完全松弛到零。
应力松弛同样也有重要的实际意义。
成型过程中总离不开应力,在固化成制品的过程中应力来不及完全松弛,或多或少会被冻结在制品内。
材料力学中的非线性本构模型材料力学是许多工程领域的基础,它研究材料受力后的力学行为,包括力的大小、方向、分布和变形等问题。
不同材料的力学行为需要采用不同的本构模型来描述,常见的材料本构模型有线性弹性模型、非线性本构模型等。
本文将重点介绍材料力学中的非线性本构模型。
一、非线性本构模型的概念在材料力学中,当受力材料的变形与施加的力之间呈非线性关系时,就需要采用非线性本构模型来描述其力学行为。
非线性本构模型可以分为弹塑性模型、粘弹塑性模型、本质非线性模型等不同类型,其中弹塑性模型在实际应用中被广泛采用。
二、弹塑性模型弹塑性模型又称弹塑性本构模型,它是一种介于线性弹性模型和塑性本构模型之间的模型。
弹塑性模型假设材料的力学行为在一定范围内是线性弹性的,但在超出一定应力范围后就会出现不可逆变形,这种不可逆变形称为塑性变形。
弹塑性模型可分为单轴应力状态下的本构模型和多轴应力状态下的本构模型。
其中单轴应力状态下的本构模型包括拉伸本构模型、压缩本构模型等,多轴应力状态下的本构模型包括Mises本构模型、Drucker-Prager本构模型等。
三、拉伸本构模型拉伸本构模型是弹塑性模型中最简单的模型之一,它假设材料的力学行为在拉伸状态下是线性弹性的,且材料的强度随着应力增大而增大。
在达到材料的屈服点后,材料的强度就不再随应力增大而增大了,这时材料开始出现塑性变形。
拉伸本构模型将材料的应力-应变曲线分为弹性阶段和塑性阶段来描述材料的力学行为。
四、Mises本构模型Mises本构模型也称为圆锥形模型,它是多轴应力状态下最常用的弹塑性模型之一。
该模型假设材料的塑性行为是由等效应力和应力状态判据决定的,等效应力可以通过应力张量得到,应力状态判据则基于材料力学的实验性质,通过外部应力来得到。
Mises本构模型能够较为准确地描述材料在多轴应力状态下的力学行为,并在应用中获得广泛的应用。
五、Drucker-Prager本构模型Drucker-Prager本构模型是一种常用的粘塑性模型,它假设材料有两种塑性机制:一种是塑性流动,另一种是摩擦滑移。
土体动本构模型的研究现状土体实际动本构关系是极其复杂的,它在不同的荷载条件、土性条件及排水条件下表现出极不相同的动本构特性. 要建立一个能适用于各种不同条件的动本构模型的普遍形式是不切实际的,其切实的方法是对于不同的工程问题,应该根据土体的不同要求和具体条件,有选择地舍弃部分次要因素,保留所有主要因素,建立一个能反映实际情况的动本构模型. 目前,具体建立的动本构模型已达数十个,大致可分为两大类,即粘弹性模型和弹塑性模型.曲线模型,均属于等效线性模型[2 ] 。
Masing 类模型以曲线Hardin Drnevich 或Ram2berg Osgood 曲线等为骨干,改用瞬时剪切模量代替前面的平均剪切模量。
为使这类动本构模型更接近实测的动应力应变曲线,很多学者做了大量的工作,以使其能够描述不规则循环荷载作用下土的动本构关系[3 ] 。
Iwan 用一系列具有不同屈服水平的理想弹塑性元件来描述土的动本构关系,它分串联型和并联型2 种构成方式。
串联型和并联型的伊万模型所描述的动应力应变特性基本上一致,只是前者以应变为自变量,后者以应力为自变量[4 ] 。
郑大同在伊万模型的基础上,提出了一个新物理模型,该模型的骨架曲线可为加工硬化状,也可为加工软化状,骨架曲线与滞回曲线的2 个分支既可相同,也可不同[5 ] 。
一般的粘弹性模型不能计算永久变形(残余变形) ,在主要为弹性变形的情况下比较合适。
但实际上,土在往复荷载作用下还会因土粒相互滑移,形成新的排列而产生不可恢复的永久变形。
为此,Mar2tin 等人根据等应变反复单剪试验结果,提出了循环荷载作用下永久体积应变的增量公式[6 ] 。
后来,日本学者八木、大冈和石桥等分别由等应力动单剪试验及扭剪试验各自提出了计算永久体积应变增量的经验公式。
国内的姜朴、徐亦敏、娄炎根据动三轴试验应变与破坏振次的关系式。
沈珠江[7 ] 对等价粘弹性模型进行了较全面的研究,认为一个完整的粘弹性模型应该包含4 个经验公式: (1) 平均剪切模量; (2) 阻尼比; (3) 永久体积应变增量和永久剪切应变增量; (4) 当饱和土体处于完全不排水或部分排水条件下,还需给出孔隙水压力增长和消散模型。
粘弹性体的基本理论及应用粘弹性体是一种特殊的材料,具有比普通材料更强的黏附性和弹性,其独特的物理特性使其在工业和生活中有着广泛的应用。
本文将探讨粘弹性体的基本理论和应用。
一、什么是粘弹性体粘弹性体是一种具有粘性和弹性的聚合材料,其弹性随应力变化而产生略微颠簸的行为。
它是由高分子聚合物和半固态物料(如黏土)混合制成的。
这种材料在受力时会有一定程度的弹性,但又具有一定的黏性,可以粘附在其他材料上。
二、粘弹性体的基本理论1. 初始弹性模量初始弹性模量是指在弹性阶段粘弹性体的初始刚度。
粘弹性体在受力时,由于其黏性存在,不会立即表现出完全的弹性。
因此,初始弹性模量是弹性阶段中材料最小的刚度。
2. 最大弹性模量最大弹性模量是在粘弹性体的流变点前所达到的弹性模量的最大值。
当粘弹性体受力达到一定程度时,其开始表现出塑性变形。
此时,粘弹性体的弹性模量会变小,达到一个最小值,即最大弹性模量。
3. 流动点当粘弹性体受力超过最大弹性模量后,就会开始表现出流动性质,此时的受力称为流动点。
粘弹性体在流动点后不再具有弹性,不能恢复到初始状态。
4. 粘度粘度是指粘弹性体在流动时所需要的力量,它是材料流动一个单位长度所需要的应力大小。
粘度决定了粘弹性体的流动性质,不同粘度的粘弹性体具有不同的流动速度。
三、粘弹性体的应用1. 隔振垫粘弹性体可以用于隔振减震。
比如,在机器振动传递到地面时,会产生噪声和振动,影响到人们的生活和健康。
因此,可以使用粘弹性体作为隔振垫来减少这种影响。
粘弹性体的特性可以有效地吸收振动和减少噪声的传播。
2. 医疗材料粘弹性体还可以用于医疗材料。
比如,可以制作出粘弹性体的人工心脏瓣膜,或是用于人工肢体制作的弹性组件。
粘弹性体具有良好的弹性和黏附性能,可以替代传统材料,使植入物更加适合人体。
3. 汽车制造汽车行业中也有粘弹性体的应用,可以用于汽车减震器、座椅和车门等零部件的生产中。
特别是在汽车制造中,粘弹性体可以用于模具制造,以便更好地制造出更具密度的汽车部件。
第七章 粘弹塑性模型的基本概念7 . 1 引言为了描述土体应力一应变关系受时间的影响,需要采用与时间有关的类模型(如粘弹胜模酬、粘塑性模型,粘弹塑隆模型)来描述土的性状。
弹性、塑性和粘性是连续介质的三种基本性质,各在定条件F 独自反映材料本构关系的一个方面的特性。
理想弹性模型、理想塑胜模型(或称刚塑性模型)和理想粘性模型是反映这三种性质的理想模型,通常称为简单模型。
实际工程材料的本构关系可以用这些简单模型的各种组合来构成。
理想弹性模型又称虎克弹性模型,通常用理想弹簧表示(图7-1( a ))。
其本构方程为虎克定律。
一维条件下,如单轴压缩和纯剪清况下,表达式分别为: E σε= (7.1.1)G τγ= (7.1.2)式中E —— 弹性模量、G ——剪切模量。
剪切模量与弹性模量和泊松比的关系如下式所示:()21E G ν=+ (7.1.3) 式中 ν ——泊松比。
三维条件下本构方程可表示为下述形式:m K νσε= (7.1.4)式中 K ——体积弹性模量。
(a ) (b )图7-1 理想弹性模型体积弹性模量与弹性模量和泊松比的关系如下式所示:()312E K ν=- (7.1.6) 理想粘性模型又称牛顿粘滞体模型。
通常用一粘壶(或称阻尼器)表示(图7-2 ( a ) )。
粘壶内充满粘滞液体和一个可移动的活塞。
活塞在粘滞液体中的移动速度与所受阻力成正比关系,反映了粘性介质内一点的应力与该点处应变速率成正比例关系的性质。
一维条件如单轴压缩或纯剪情况下,表达式分别为: σϕε= (7.1.7) τηγ= (7.1.8)式中 ϕ、η ——粘滞系数。
由上两式可以看出,从数学表达的形式上与理想弹性体单轴压缩和纯剪时的本构方程相类似。
与理想弹性体的方程相对应,类似式7.1.3,存在下述关系:()*21ϕην=+ (7.1.9)式中 *ν ——粘性应变速率的横向比值。
(a ) (b )图7-2 理想粘性模型 理想粘性体的体积变化与形状变化速率无关,即不具有体积粘性。
一般力学与力学基础的弹塑性分析方法弹塑性分析方法是一般力学和力学基础中重要的研究领域之一。
本文将介绍弹塑性分析方法的基本概念、应用领域以及常用的数学模型和计算方法。
一、弹塑性分析方法的基本概念弹塑性分析方法是一种综合运用弹性力学和塑性力学理论的方法,用于描述材料在外力作用下的弹性变形和塑性变形过程。
在弹塑性分析中,材料会先发生弹性变形,当应力达到一定临界值时,开始发生塑性变形。
弹塑性分析方法可以更准确地预测材料的变形和破坏行为。
二、弹塑性分析方法的应用领域弹塑性分析方法广泛应用于工程结构、土力学、岩石力学等领域。
例如,在工程结构的设计中,使用弹塑性分析方法可以预测结构在外载荷作用下的变形和破坏行为,从而确定结构的合理尺寸和材料强度要求。
在土力学和岩石力学中,弹塑性分析方法可以用于预测土体和岩石的变形和破坏特性,为工程施工和地质灾害的预测提供依据。
三、弹塑性分析的数学模型弹塑性分析方法使用了多种数学模型来描述材料的力学行为。
其中常用的模型包括线性弹性模型、单一参数塑性模型和本构模型等。
1. 线性弹性模型:线性弹性模型假设材料的应力与应变之间呈线性关系,常用于描述小应变范围内的材料行为。
2. 单一参数塑性模型:单一参数塑性模型假设材料的塑性行为由一个参数来描述,常用于描述中等应变范围内的材料行为。
3. 本构模型:本构模型是更为复杂的数学模型,可用于描述广泛的材料行为。
常见的本构模型包括弹塑性本构模型、弹塑性本构模型、弹粘塑性本构模型等。
四、弹塑性分析的计算方法弹塑性分析方法使用了多种计算方法来求解材料的变形和应力分布。
其中常用的计算方法包括有限元法、边界元法和等。
这些方法可以将实际结构离散成有限个子区域,通过求解子区域的变形和应力,得到整个结构的变形和应力分布。
这些计算方法具有高精度和较强的通用性,广泛应用于工程和科学研究领域。
综上所述,弹塑性分析方法是一般力学和力学基础中重要的研究领域,用于描述材料在外力作用下的弹性变形和塑性变形过程。
材料力学中的弹塑性本构模型建立在工程和力学实践中,弹塑性是一种非常重要的材料本构模型。
它能够对许多材料的力学性能进行准确预测,因此在设计和分析中得到广泛应用。
本文将介绍弹塑性本构模型的基本概念和建立方法。
一、弹塑性基本概念弹塑性是一种材料可能表现出的力学特性,它包括两个不同的行为:弹性和塑性。
弹性是指材料恢复原来形状和大小的能力,这是由于分子等微观结构的作用而产生的。
而在材料接受持续变形时,会发生形变不可逆的情况。
这种现象被称为塑性。
当材料被施加应力时,如果应力不超过一定范围,材料会发生弹性形变;一旦应力超过一定界限,材料就会发生塑性变形。
材料的弹塑性是由其微观结构决定的,因此不同的材料会表现出不同的弹塑性特性。
二、弹塑性本构模型的基本原理弹塑性本构模型是描述材料弹塑性问题的一类物理模型。
它基于能量守恒原理,建立材料固体在应力和应变作用下的不同状态之间的关系。
本构模型的目的是把材料行为和材料力学特性建立起来,便于进行物理和工程分析。
所以在材料力学中,弹塑性本构模型是一个非常重要的基本理论。
材料弹塑性本构模型的建立过程包含以下三个步骤。
1. 实验数据获取该步骤是建立弹塑性本构模型的基础。
通过物理实验,可以得到材料的应力-应变曲线,即通过外力施加不同载荷,测量材料在相应的应力状态下的应变表现。
从这些实验数据中可以得到材料的力学特性。
2. 建立本构关系本构关系是弹塑性本构模型中最基本的方程。
它建立材料中的形变应力与形变大小和方向之间的关系。
大多数情况下,本构关系并不只是一个公式,而是一系列方程的集合,不同的方程适用于不同的材料。
在建立本构关系时,通常需要将材料划分为一定数量或限制条件下的应力状态,并在这些状态下建立相应的方程形式。
然后,通过插值或其它数值方法可以精确地计算出材料弹塑性的行为。
3. 参数确定弹塑性本构模型的参数是过程中最难确定的部分。
参数在本构模型中的作用类似于提供具体材料的物理性质或形状。
第七章 粘弹塑性模型的基本概念
7 . 1 引言
为了描述土体应力一应变关系受时间的影响 ,需要采用与时间有关的类模型(如粘弹胜模酬、粘塑性模型 ,粘弹塑隆模型)来描述土的性状。
弹性、塑性和粘性是连续介质的三种基本性质 ,各在定条件F 独自反映材料本构关系的一个方面的特性。
理想弹性模型、理想塑胜模型(或称刚塑性模型)和理想粘性模型是反映这三种性质的理想模型 ,通常称为简单模型。
实际工程材料的本构关系可以用这些简单模型的各种组合来构成。
理想弹性模型又称虎克弹性模型 ,通常用理想弹簧表示(图7-1( a ))。
其本构方程为虎克定律。
一维条件下 ,如单轴压缩和纯剪清况下 ,表达式分别为:
E σε= (7.1.1)
G τγ= (7.1.2)
式中E —— 弹性模量、
G ——剪切模量。
剪切模量与弹性模量和泊松比的关系如下式所示:
()
21E G ν=+ (7.1.3) 式中 ν ——泊松比。
三维条件下本构方程可表示为下述形式:
m K νσε= (7.1.4)
式中 K ——体积弹性模量。
(a ) (b )
图7-1 理想弹性模型
体积弹性模量与弹性模量和泊松比的关系如下式所示:
()
312E K ν=- (7.1.6) 理想粘性模型又称牛顿粘滞体模型。
通常用一粘壶(或称阻尼器)表示(图7-2 ( a ) )。
粘壶内充满粘滞液体和一个可移动的活塞。
活塞在粘滞液体中的移动速度与所受阻力成正比关系 ,反映了粘性介质内一点的应力与该点处应变速率成正比例关系的性质。
一维条件如单轴压缩或纯剪情况下 ,表达式分别为: σϕε= (7.1.7)
τηγ= (7.1.8)
式中 ϕ、η ——粘滞系数。
由上两式可以看出 ,从数学表达的形式上与理想弹性体单轴压缩和纯剪时的本构方程相类似。
与理想弹性体的方程相对应 ,类似式7.1.3 ,存在下述关系:
()*21ϕ
ην=+ (7.1.9)
式中 *ν ——粘性应变速率的横向比值。
(a ) (b )
图7-2 理想粘性模型 理想粘性体的体积变化与形状变化速率无关 ,即不具有体积粘性。
因此 ,*ν应等于0.5 。
于是式7.1.9成为:
3ϕη= (7.1.10)
这与弹性不可压缩时的E=3G 相对应。
在三维条件下理想粘性体本构方程可表示为:
2ij ij S e η= (7.1.11)
理想塑性模型又称Saint-Venant 塑性模型 ,或称刚塑性模型。
通常采用两块接触的粗糙面表示(图7-3 (a ))。
面上存在有一称晰脚擦阻力 ,与作用在面上的法向压力无关 ,是一常数。
若外作用力心婚此起始摩擦阻力 ,物体不发生变形。
一维条件如单轴压缩或此钾扮况 ,当轴向应力或剪应力小于某一数值时 ,物体不发生变形.当软祠应力或剪应力等于某数值时 ,物体产生流动 ,变形无限制增长.理想塑性模刮的体积应变等于零 ,即体积不发生改变。
在三维条件
下理想塑性体的本构方程可表示为:
(a ) (b )
图 7-3 理想塑性体模型
当 ij ij S H <时 ,0ij e = 当 ij ij S H =时 ,2ij ij S e λ= (7.1.12)
式中 ij H ——起始摩擦阻力 ,或称塑性条件;
λ——比例常数。
式7.1.12表明 ,理想塑性体的塑性应变偏量的变化率与应力偏量成正比。
由理想弹性模型、理想粘性模型和理想塑性模型等简单模型可以组合成许多复杂模型。
由理想弹性模型和理想塑性模型可以组合成理想弹塑性模型。
由弹性模型和粘性模型可以组合成各种粘弹性模型。
由粘性模型和塑性模型可以组合成各种粘塑性模型。
由弹性模型、粘性模型和塑性模型可以组合成各种粘弹塑性模型。
理想弹塑性模型已在第六章作了介绍。
在以下几节将对几种由简单模型组成的粘弹性模型、粘塑性模型和粘弹塑胜模型作简单介绍。
利用简单模型可以组合成各种复杂模型 ,从而可以建立各种材料的本构方程。
但是进一步的研究发现 ,许多材料的实际性状并不能满意地用简单的组合模型来描述 ,而目采用复杂的组合模型又常遇到数学上的困难。
因此 ,常常在试验的基础上 ,通过假设一实验一理论的方法建立材料的本构力程。
在本章的最后一节将简要介绍描述材料蠕变现象的蠕变力程。
7 . 2 粘弹性模型
既具有弹性又具有粘性的性质称为粘弹性。
蠕变和应力松弛现象是人们熟悉的也是特别受重视的粘弹性胜质粘弹性性质的特点是在本构方程中除了有应力和应变项外 ,还包括有它们对时间导数的项。
对线性粘弹胜材料 ,其本构方程的一般表达式为:
()()
0101m n m n a a a b b b σσσεεε+++=+++ (7.2.1) 式中 ,i i a b ——与材料性质有关的参数。
下面首先介绍几种简单的粘弹性模型 ,然后再介绍较复杂的情况。
7.2.1Maxwell 模型
Maxwell 模型又称松弛模型。
它是由线性弹簧和牛顿枯壶串联组成 ,如图7 -4 (a )所示。
在串联条件下 ,作用在两元件上的应力相同 ,而总的应变应为两个元件应变的和 ,即
εεε'''=+ (7.2.2)
或
εεε'''=+ (7.2.3)
式中 ,εε'''——分别为线性弹簧和粘壶的应变;
,εε'''——分别为线性弹簧和粘壶的应变率。
考虑到线性弹簧有/E εσ'=和牛顿粘壶有/εσϕ''= ,则式7.2.3可改写成: E σσεϕ=+
(7.2.4)
(a ) (b ) (c )
图7-4 Maxwoll 模型 写成如式7.2.1的标准形式 ,上式可改写为:
n σσϕε+=(7.2.5)
式中 n ——松驰时间 ,n E ϕ
= ,量纲为时间。
式7.2.5称为Maxwell 方程。
若物体获得初始应变0ε以后总应变保持不变(图7-4b) ,即0ε= ,式7.2.5成为:
0n σσ+=
(7.2.6) 积分上式 ,得
/t n Ce σ-= (7.2.7)
式中 C ——积分常数。
应用初始条件 ,0t = ,0σσ=代人式7.2.7解出C ,再代人式7.2.7 , 得 /0t n e σσ-= (7.2.8 ) 式7.2.8表示 ,Maxwell 模型在保持总应变不变的条件下 ,发生应力随时间衰减的松弛现象 ,如图7-4c 所示。
若物体获得初始应力0σ以后 ,保持应力不变 ,即0σ= ,则式7.2.5成为:
0σϕε= (7.2.9 )
式7.2.9表示材料应变率为常数 ,即应变随时间成比例地增长 ,因此变形随时间无限地发展。
下面讨论松弛试验的情况。
在松弛试验中 ,首先对试件施加应变0ε ,然后保。