中央空调水系统水管的设计报告
- 格式:ppt
- 大小:2.51 MB
- 文档页数:30
中央空调水系统改造初步可行性研究报告2012年07月目录1 概述 1 1.1 工程概况 11.2 编制依据 12 研究内容 12.1 研究范围 22.2 主要设计原则 23 工程设想 23.1 设计方案一 23.2 设计方案二 83.3 设计方案三 113.4 技术经济比较和推荐方案 134 工程实施条件和轮廓进度 155 投资估算和经济评价 166 结论和建议 171 概述1.1 工程概况XXX大厦已建成投用多年。
此楼盘系综合商用型高层建筑,地面高三十层,用户类型有商场、银行、餐饮、旅店、写字间等,地下三层,设有车库、中央空调机组、给水系统装置等设施。
XX大厦现有生活水给水系统,为生活水增压泵、高位水箱垂直并联联合供水方式。
楼顶层设高位水箱,由负三楼蓄水池经生活水泵直接供水;六楼以下属低区,由市政管道直接供水;七楼以上由顶层高位水箱经重力供水,属上行下给方式,且七楼至十九楼为中区下行给水,二十楼至顶楼属高区下行给水。
顶楼高位水箱和负三楼蓄水池均为生活水、消防水共用。
XX大厦属复合商用型大楼,但七楼以上中高区生活水用量不大,而现有从负三楼大蓄水池供水方式(二次供水),造成用户用水品质较差,影响用户生活甚至企业经营。
此外,现有高位水箱水位自动控制时水泵启动较频繁,且无水位远程监视,存有运行安全隐患。
基于此,重庆XX物业发展有限公司委托重庆大学动力工程学院,开展XX大厦生活给水系统改造初步可行性研究工作,以在供水水质、节能运行、水位监控方面做出彻底改善。
1.2 编制依据本报告编制依据是委托方重庆XX物业发展有限公司提供的现有原始资料和基础数据,并贯以“资源节约型、环境友好型”设计原则。
其它主要依据有:《建筑给水排水设计规范》(GB50015-2003);《给水排水管道工程施工及验收规范》(GB50268-2008);《建筑给水排水及采暖工程施工质量验收规范》(GB50242-2002);《给水排水仪表自动化控制工程施工及验收规程》(CECS162-2004);《民用建筑隔声设计规范》(GBJ118-88)。
《中央空调水系统试压报告》1. 检查系统管道各个接口焊接施工完毕,系统管道及支架安装完成,并通过验收合格。
2. 检查系统管道各开口及不参与系统试压的管道,已经采取相应的封堵措施,未完成阀门安装的开口处均采用盲板进行封堵完成,不参与试压的阀部件均已关闭。
3. 系统试压所需水源及排水条件具备。
系统试压措施及相关计划:本工程的4个楼座的空调水系统管道试压工作分为水平管道试压及主立管试压两部分,其中因不同的楼座由不同的班组进行施工,因此工程的管道试压工作以单个楼座为单位进行组织施工。
在单位楼座的系统试压过程中,试压工作以“先主管,后支管”的顺序进行,即先进行管井主立管的试压,其后进行各个水平层管道试压,最后在进行系统整体试压。
试压步骤:1. 打开自动排气阀前的球阀,对系统进行充水,直至自动排气阀无气泡排出时将球阀关闭,此时系统已充水完成。
2. 使用加压泵对系统进行缓慢升压,当压力升至试验压力的30%时,稳压5分钟,对系统各焊口进行检查,检查无漏水时,方可继续升压。
当压力升至试验压力的60%时,再稳压5分钟,对系统各焊口进行检查,检查无漏水时,将压力升至试验压力。
3. 系统稳压24小时后,观察系统压力压降不超过0.05Mpa时为合格。
4.试压完成后,打开泄水管的阀门队系统进行泄水和冲洗,管网冲洗试时,水流速度不小于设计流速,当系统出水口与入水口水色度基本一致时,冲洗方可停止。
试压保证措施及应急预案首先,在试压前将系统的各个开口用盲板进行封堵,并在系统最高处安装自动排气阀,在系统下环管处安装压力表,压力表选用的量程为系统试验压力的1.5倍。
系统试压时,低区系统计划从地下三层使用高压软管接临时施工消防管道取水接入系统,在系统的最低处安装带有阀门的泻水管,试压完成后用软管引排至管井中;高区系统计划从十三层使用高压软管接临时施工消防管道取水接入系统,在系统的最低处安装带有阀门的泻水管,试压完成后用软管引排至就近排水立管中。
中央空调水系统设计原则以及例析水系统的设计是设计中的关键环节,也是调配好中央空调主机和末端的重要渠道。
水系统的设计除了管路之外,还包括了以及冷却塔之类的动力及储存换热设备,也是中央空调系统设计里面最难的部分,下面制冷快报就以一款中央空调系统水系统的实际设计为例,详细介绍下水系统设计原则及注意事项。
1、空调水系统的设计原则l空调水系统设计应坚持的设计原则是:力求水力平衡;防止大流量小温差;水输送系数要符合规范要求;变流量系统宜采用变频调节;要处理好水系统的膨胀与排气;要解决好水处理与水过滤;要注意管网的保冷与保暖效果。
中央空调水系统⑴、水系统设计应力求各环路的水力平衡la、技术要求l空调供冷、供暖水系统的设计,应符合各个环路之间的水力平衡要求。
对压差相差悬殊的高阻力环路,应设置二次循环泵。
各环路应设置平衡阀或分流三通等平衡装置。
如管道竖井面积允许时,应尽量采用管道竖向同程式。
(2)防止大流量小温差la、造成大流量小温差的原因设计水流量一般是根据最大的设计冷负荷(或热负荷)再按5℃(或10℃)供回水温差确定的,而实际上出现最大设计冷负荷(或热负荷)的时间,即按满负荷运行的时间仅很短的时间,绝大部分时间是在部分负荷下运行。
水泵扬程一般是根据最远环路、最大阻力,再乘以一定的安全系数后确定的,然后结合上述的设计流量,查找与其一致的水泵铭牌参数而确定水泵型号,而不是根据水泵特性曲线确定水泵型号。
因此,在实际水泵运行中,水泵实际工作点是在铭牌工作点的右下侧,故实际水流量要比设计水流量大20%-50%。
在较大的水系统设计中,设计计算时常常没有对每个环路进行水力平衡校核,对于压差相差悬殊的环路,多数也不设置平衡阀等平衡装置,施工安装完毕之后又不进行任何调试,环路之间的阻力不平衡所引起的水力工况、热力工况失调象现只好靠大流量来掩盖。
避免大流量小温差的方法考虑到设计时难以做到各环路之间的严格水力平衡,以及施工安装过程中存在的种种不确定因素,在各环路中应设置平衡阀等平衡装置,以确保在实际运行中,各环路之间达到较好的水力平衡。
中央空调水系统设计(经典版)水系统分类按水压特性划分,可分为开式系统和闭式系统。
按冷、热水管道方式划分,可分为二管制系统、三管制系统和四管制系统。
按各末端设备的水流程划分,可分为同程式和异程式系统。
按水量特性划分,可分为定水量系统和变水量系统。
按水的性质划分,可分为冷冻水系统、冷却水系统和热水系统。
开式系统特点水系统与大气体直接相通。
常见于冷却水系统,系统比较简单。
水池容量较大时,夏季它具有一定的蓄冷能力。
水中含氧量高,管路与设备的腐蚀机会多。
需要增加克服静水压力的额外能量,水泵功率会增加。
水力平衡相对困难。
闭式系统特点水管路系统不直接与大气相通水泵选型相对于开式比较小(静压)水泵扬程、功率均相对比较小;管路与设备腐蚀机会少;系统相对设计简单;要设有膨胀水箱(定压作用),高度应高于水系统最高点1.5m以上;要有放气阀等阀件。
同程式水系统供回水经过每一环路的管路长度相等;主要是保证各管路系统的阻力大致相同,水流量分配均匀;需设回程管,管道长度长,初投资稍高。
异程式水系统供回水经过每一环路的管路长度不相等;不需回程管,管路短,管路简单、投资低;可能会导致水液量分配不均现象;可在支管上安装流量调节装置;建议安装平衡阀。
二管制水系统热、供冷合用同一管路系统;适用于冬、夏季冷、热负荷分明,过渡季很短或过渡季可不需空气调节的建筑较;夏季供冷、冬季供热、过渡季可采用天然冷源(如新风)冷却的建筑;管路系统简单、初投资省;无法同时满足供冷、供热的要求。
三管制水系统冷、热水供水管同时接至了末端设备(盘管仍为冷、热合用),每个末端设备可独立供冷或供热,供冷,供热回水的管路共用;能同时满足供冷、供热的要求,管路相对简单;在既有供冷又有供热的末端设备同时运行时,回水总管的水温是冷冻水与热水回水的混合温度,这一水温将高于冷水机组正常要求的回水温度而低于热交换器正常运行的回水温度;存在冷热损失,设备能耗将比两者各自独立运行时大得多。