中央空调水系统设计
- 格式:ppt
- 大小:1.49 MB
- 文档页数:88
中央空调水控制系统总体方案设计摘要:本文首先对中央空调制冷系统的结构和原理、中央空调冷冻水变水量调节的原理及特点进行分析;通过对比传统的中央空调水控制系统,设计了基于PLC的带有远程监控功能的分布式中央空调水控制系统。
1.中央空调制冷系统的结构及原理中央空调制冷系统主要由制冷机组、冷却水循环系统、冷冻水循环系统和冷却塔风机系统构成,系统原理如图1所示:图1中央空调制冷系统在中央空调制冷过程中,制冷剂通过蒸发器制冷,冷冻水与制冷剂在蒸发器中进行热交换之后带走冷量,此时制冷剂为常温低压气态,通过压缩机之后,制冷剂变成高温高压气态。
制冷剂进入冷凝器之后,在冷凝器的盘管中与冷却水完成热量交换,冷却水将带走热量,此时制冷剂由高温高压的气态冷凝为高压液体流出冷凝器。
高压液体制冷剂通过电子膨胀阀后压力降低,在降压过程中,液态制冷剂气化温度降低,在蒸发器中进行冷量交换,这个冷量交换的过程就是中央空调的制冷过程。
冷却水在冷凝器中完成热交换后,将制冷剂的热量带出,流经冷却塔时与大气充分接触,从而释放冷却水中的热量到大气中,经冷却水泵的作用后重新进入冷凝器。
冷却塔在冷却水循环的过程中有重要作用,它使冷却水与大气的接触面积增大,能够起到自然降温的目的,冷却塔的风扇也具有降温作用。
冷冻水循环是一个相对封闭的循环系统。
在冷冻水的循环过程中,冷冻水泵将冷冻水送入蒸发器,在蒸发器中,冷冻水与制冷剂完成热量交换后冷冻水温度降低,通过冷冻水泵将冷冻水输送到整个冷冻水循环系统中,之后在风机盘管中进行热交换,达到降低空气的温度的目的。
低温空气通过风机吹送到房间以达到降低房间的温度的目的,从而达到调节室内温度的效果。
2中央空调冷冻水变流量调节2.1变水量调节的特点在中央空调水系统控制中,与常用的定流量系统相比,变流量系统具有以下的特点:(1)中央空调系统冷量负荷发生变化时能够实时调节冷水量,实现冷水量根据负荷改变而变化,从而降低水泵的能耗,起到节能的作用。
中央空调水系统设计原则以及例析水系统的设计是设计中的关键环节,也是调配好中央空调主机和末端的重要渠道。
水系统的设计除了管路之外,还包括了以及冷却塔之类的动力及储存换热设备,也是中央空调系统设计里面最难的部分,下面制冷快报就以一款中央空调系统水系统的实际设计为例,详细介绍下水系统设计原则及注意事项。
1、空调水系统的设计原则l空调水系统设计应坚持的设计原则是:力求水力平衡;防止大流量小温差;水输送系数要符合规范要求;变流量系统宜采用变频调节;要处理好水系统的膨胀与排气;要解决好水处理与水过滤;要注意管网的保冷与保暖效果。
中央空调水系统⑴、水系统设计应力求各环路的水力平衡la、技术要求l空调供冷、供暖水系统的设计,应符合各个环路之间的水力平衡要求。
对压差相差悬殊的高阻力环路,应设置二次循环泵。
各环路应设置平衡阀或分流三通等平衡装置。
如管道竖井面积允许时,应尽量采用管道竖向同程式。
(2)防止大流量小温差la、造成大流量小温差的原因设计水流量一般是根据最大的设计冷负荷(或热负荷)再按5℃(或10℃)供回水温差确定的,而实际上出现最大设计冷负荷(或热负荷)的时间,即按满负荷运行的时间仅很短的时间,绝大部分时间是在部分负荷下运行。
水泵扬程一般是根据最远环路、最大阻力,再乘以一定的安全系数后确定的,然后结合上述的设计流量,查找与其一致的水泵铭牌参数而确定水泵型号,而不是根据水泵特性曲线确定水泵型号。
因此,在实际水泵运行中,水泵实际工作点是在铭牌工作点的右下侧,故实际水流量要比设计水流量大20%-50%。
在较大的水系统设计中,设计计算时常常没有对每个环路进行水力平衡校核,对于压差相差悬殊的环路,多数也不设置平衡阀等平衡装置,施工安装完毕之后又不进行任何调试,环路之间的阻力不平衡所引起的水力工况、热力工况失调象现只好靠大流量来掩盖。
避免大流量小温差的方法考虑到设计时难以做到各环路之间的严格水力平衡,以及施工安装过程中存在的种种不确定因素,在各环路中应设置平衡阀等平衡装置,以确保在实际运行中,各环路之间达到较好的水力平衡。
中央空调热水三联供方案设计一、工程概况淦龙乐园-龙安围位于江西省赣州市,总建筑面积4500 m2,总的空调面积3200 m2,地上共四层,总高度18.6m,房间功能主要是客房、办公、包厢和多功能厅等。
客房日总用水量为20 m3。
二、设计标准2.1 室外设计计算参数夏季:干球温度35.4℃/ 湿球温度26.9℃冬季:干球温度0℃/相对湿度75%2.2 室内设计计算参数三、空调设计3.1 中央空调热水三联供系统冷、热源夏季:采用“ 室外湖水循环泵+室内循环水泵+双热源热泵机组(水源侧)+分散式地源热泵空调机组”的方式,总制冷量为548kw,热水日用量为20m3;热水系统通过双热源热泵热水机(水源侧)充分吸收空调系统的冷凝热来制取卫生热水,整个三联供系统能效比显著提高。
当热水加热完毕后或仍有剩余冷凝热时,则通过水-水式板式换热器与地表水(湖水)换热冷却,达到系统所需供水温度。
冬季:采用“室外湖水循环泵+室内循环水泵+双热源热泵机组(空气源侧)+分散式地源热泵空调机组”的方式,总供热量为320kw,热水日用量为20m3;热水系统通过双热源热泵热水机(空气源侧)吸收空气能来加热卫生热水,达到热水用水要求;空调系统则通过采用板式水-水换热器与湖水进行热量交换,达到系统所需供水温度。
3.2 空调水系统本工程共3套水系统:地表水(湖水)侧水系统、分散式地源热泵空调侧水系统和热水加热循环系统。
其中地表水(湖水)侧采用离心式管道泵,开式两管制系统,管材采用镀锌钢管。
地源热泵空调侧采用离心式管道泵、闭式两管制系统,在相关管路上设置手动调节阀,冬夏季可以灵活转换。
管材采用镀锌钢管。
制冷时冷却水设计供、回水温度为30℃/35℃,采暖时设计供水温度为7.5℃,室内、空外循环水泵放置在湖面机房。
空调室内水管管路按自然同程式管路设计,并且在每层总供回水管上安装手动对夹式蝶阀,有效地保证了水系统的平衡与灵活调节。
为了满足系统水压恒定和补水需求,设置一个膨胀水箱,膨胀水箱需完全保温、膨胀管安装于冷却水泵吸入端,膨胀管不设关断阀门。
中央空调冷水系统设计与配置一.引言随着我国经济的持续高速发展,建筑事业也呈现出一片蓬勃繁荣的景象,中央空调系统在宾馆﹑办公大楼﹑商业中心﹑医院及其他建筑得到广泛的应用。
中央空调系统不但涉及到高额的资金初投入,同时也是建筑的耗能大户。
大多数工程设计中,最关心的是空调冷源方案的经济性以及运行耗能的比较。
但是我们知道,选择理想的冷源方案只是良好的中央空调系统的基础,对于空调冷水系统有效运行管理和节能降耗是远远不够的,中央空调系统运行节能降耗很大程度上取决于空调冷水系统有效的运行,设计对策合理﹑调试完善﹑管理技术措施到位的中央空调冷水系统才是其最有力的保障。
二.机房侧的设计配置2.1 冷水机组﹑冷冻水泵的容量合理配置冷水机组容量偏大的问题是目前中央空调系统存在比较普遍的问题,大容量的闲置无疑是最大的浪费,一方面很大程度上增加了工程建设初投资,另一方面又加剧了系统的运行能耗。
冷水机组的容量偏大又影响决定了冷冻﹑冷却水泵的容量,如果对空调水系统的水力同时又缺乏详细的计算,设计工程师心中无数,那么水泵选型扬程难免偏大,也进一步增加水泵的功耗(N与Q*H 成正比),这无疑是雪上加霜的事情。
造成这种现象是由于对空调冷负荷没有进行仔细的计算,取而代之为“拍脑袋”,这种现象是比较普遍的,一方面是设计工程师缺乏足够的时间去做这些繁琐的计算工作,另一方面是业界缺乏对空调系统效果好与坏的评判准则,我们知道空调系统的"发挥能力"取决于很多方面,除了设计的因素其中还包括施工质量的好坏﹑竣工调试水平的高低,这些往往由于缺乏有力的管理和监控,便能形成影响空调系统效能充分发挥决定性的因素。
特别是在设计总冷量配置不太富裕的情况下,如果系统缺乏仔细的调试,很容易造成客观上贫富不均,进而引起产生空调效果不好或总制冷量不足的误解。
基于这种的忧虑,设计工程师便加大保险系数,层层加码,便造成冷水机组容量偏大的后果,投资浪费﹑建筑耗能大便在所难免。