二项式定理复习课讲解
- 格式:ppt
- 大小:1.43 MB
- 文档页数:39
二项式定理学习任务:1.梳理二项式定理的相关知识点;2.归纳二项式定理的相关题型。
教学过程:一:知识梳理1.二项式定理二项式定理:(α+""=C%"+C""+……+/”+……C二项展开式的通项公式:小=Ca""",它表示第八1项二项式系数:二项展开式中各项的系数CtG……C2.二项式系数的性质(I)C;=1,C:=1,CW;;,C:=C:F(O:m、neN)(2)二项式系数先增后减中间项最大.n, n-I-1 —当n为偶数时,第5项的二项式系数最大,最大值为党,当n+∖〃+3n为奇数时,第亍项和第亏项的二项式系数最大,最大值为M-I 〃+1C了或a⑶各二项式系数和:cθ÷c>c>……C=2"+q+c+……=α+w+α+.•…=2“T二:题型归纳1二项展开式问题例1:在二项式(后+W的展开式中,常数项是,系数为有理数的项的个数是,2两个多项式积的展开式问题例2 (l+2x2)(l+x)4的展开式中X3的系数为A.12B.16C.20D.243三项展开式问题(X——+1)5例3'X 展开式中的常数项为A.1B.llC.-19D.514二项式系数和与系数和(X2--}n例4(1)若二项式∙X的展开式的二项式系数之和为8,则该展开式每一项的系数之和为A.-lB.lC.27D.-27⑵若Qx)7=<70+ α1(1 + x) ÷ α2 (1 + x)2 + %(1 + X)7,则%+4+ 4 的值为A.lB.2C.129D.21885二项式系数与系数的最值问题例5二项式我的展开式中只有第11项的二项式系数最大,则展开式中X的指数为整数的项的个数为A.3B.5C.6D.7例6,若沃展开式中前三项的系数和为163,求:⑴展开式中所有X的有理项;(2)展开式中系数最大的项.课堂小结:二项式定理的相关题型主要有:1.利用展开式通项求各种项的相关问题;2.二项式系数和与系数和问题(赋值法);3.二项式系数与系数最大问题。