使用MATLAB遗传算法工具箱入门
- 格式:pdf
- 大小:1.35 MB
- 文档页数:13
一、介绍Matlab是一个高性能的数学计算软件,它集成了许多数学工具箱,其中包括遗传算法工具箱,可以帮助用户利用遗传算法求解最优化问题。
遗传算法是一种模拟生物进化过程的优化方法,通过模拟自然选择、交叉和变异等操作,不断优化解的搜索空间,从而找到最优解。
二、遗传算法求最大值步骤1. 创建遗传算法对象我们需要使用Matlab的遗传算法工具箱中的函数`ga`来创建一个遗传算法对象。
在创建对象时,需要指定优化的目标函数、决策变量的上下界、约束条件等参数,以及遗传算法的种裙大小、进化代数等参数。
例如:```matlaboptions = gaoptimset('Generations', 100, 'PopulationSize', 50); [x, fval, exitflag, output] = ga(fitnessfun, nvars, A, b, Aeq, beq, lb, ub, nonlcon, options);```其中,`fitnessfun`是用户自定义的目标函数,`nvars`是决策变量的个数,`A`, `b`, `Aeq`, `beq`是线性约束条件,`lb`, `ub`是决策变量的上下界,`nonlcon`是非线性约束条件,`options`是遗传算法的参数设置。
2. 编写目标函数用户需要编写自己的目标函数`fitnessfun`,该函数接受决策变量作为输入,并返回一个标量作为目标值。
例如:```matlabfunction y = fitnessfun(x)y = -sum(x.^2);end```在这个例子中,我们希望求解一个多维的最大化问题,因此目标函数返回了决策变量的负平方和作为最优解的评价指标。
3. 运行遗传算法一切准备就绪后,我们可以调用`ga`函数来运行遗传算法,并获取最优解和最优值。
遗传算法会不断进化种裙,直到达到指定的进化代数为止。
matlab遗传算法工具箱导出数据的方法-回复如何使用MATLAB遗传算法工具箱导出数据MATLAB是一种广泛使用的数值计算和数据可视化软件,其遗传算法工具箱(Genetic Algorithm Toolbox)是一款强大的用于解决优化问题的工具。
在使用遗传算法工具箱时,可能会遇到需要导出数据的情况。
本文将详细介绍如何使用MATLAB遗传算法工具箱导出数据,并提供一步一步的操作指南。
第一步:加载遗传算法工具箱首先,打开MATLAB软件并加载遗传算法工具箱。
在命令窗口输入"ga"命令,即可加载遗传算法工具箱。
第二步:定义适应度函数在使用遗传算法工具箱前,需要定义一个适应度函数。
适应度函数用于度量个体对问题的适应程度,其中最佳适应程度对应最优解。
在定义适应度函数时,可以根据特定问题的要求进行自定义。
第三步:设置遗传算法参数在使用遗传算法工具箱之前,还需要设置一些遗传算法的参数。
这些参数包括种群数量、迭代次数、交叉概率、变异概率等。
根据具体问题的要求,选择合适的参数值。
第四步:运行遗传算法在完成适应度函数和参数设置后,就可以运行遗传算法了。
在命令窗口输入"ga"命令,并将适应度函数和参数作为输入参数传递给该命令。
第五步:导出数据使用遗传算法工具箱进行优化后,可能需要将优化结果导出。
下面介绍几种常用的导出数据的方法。
方法一:使用内置函数MATLAB提供了一些内置函数用于导出数据,其中比较常用的是"save"和"xlswrite"函数。
1. 使用"save"函数"save"函数用于保存变量和工作空间中的数据。
通过在命令窗口输入"save"命令,再将需要保存的变量名作为参数传递给该命令,即可将变量保存为.mat文件。
例如,要将名为"result"的变量保存为.mat文件,可以使用以下命令:save('result.mat', 'result')2. 使用"xlswrite"函数"xlswrite"函数用于将数据写入Excel文件。
第八章使用MATLAB遗传算法工具最新发布的MA TLAB 7.0 Release 14已经包含了一个专门设计的遗传算法与直接搜索工具箱(Genetic Algorithm and Direct Search Toolbox,GADS)。
使用遗传算法与直接搜索工具箱,可以扩展MATLAB及其优化工具箱在处理优化问题方面的能力,可以处理传统的优化技术难以解决的问题,包括那些难以定义或不便于数学建模的问题,可以解决目标函数较复杂的问题,比如目标函数不连续、或具有高度非线性、随机性以及目标函数没有导数的情况。
本章8.1节首先介绍这个遗传算法与直接搜索工具箱,其余各节分别介绍该工具箱中的遗传算法工具及其使用方法。
8.1 遗传算法与直接搜索工具箱概述本节介绍MATLAB的GADS(遗传算法与直接搜索)工具箱的特点、图形用户界面及运行要求,解释如何编写待优化函数的M文件,且通过举例加以阐明。
8.1.1 工具箱的特点GADS工具箱是一系列函数的集合,它们扩展了优化工具箱和MA TLAB数值计算环境的性能。
遗传算法与直接搜索工具箱包含了要使用遗传算法和直接搜索算法来求解优化问题的一些例程。
这些算法使我们能够求解那些标准优化工具箱范围之外的各种优化问题。
所有工具箱函数都是MATLAB的M文件,这些文件由实现特定优化算法的MATLAB语句所写成。
使用语句type function_name就可以看到这些函数的MATLAB代码。
我们也可以通过编写自己的M文件来实现来扩展遗传算法和直接搜索工具箱的性能,也可以将该工具箱与MATLAB的其他工具箱或Simulink结合使用,来求解优化问题。
工具箱函数可以通过图形界面或MA TLAB命令行来访问,它们是用MATLAB语言编写的,对用户开放,因此可以查看算法、修改源代码或生成用户函数。
遗传算法与直接搜索工具箱可以帮助我们求解那些不易用传统方法解决的问题,譬如表查找问题等。
遗传算法与直接搜索工具箱有一个精心设计的图形用户界面,可以帮助我们直观、方便、快速地求解最优化问题。
第八章使用MATLAB遗传算法工具最新发布的MA TLAB 7.0 Release 14已经包含了一个专门设计的遗传算法与直接搜索工具箱(Genetic Algorithm and Direct Search Toolbox,GADS)。
使用遗传算法与直接搜索工具箱,可以扩展MA TLAB及其优化工具箱在处理优化问题方面的能力,可以处理传统的优化技术难以解决的问题,包括那些难以定义或不便于数学建模的问题,可以解决目标函数较复杂的问题,比如目标函数不连续、或具有高度非线性、随机性以及目标函数没有导数的情况。
本章8.1节首先介绍这个遗传算法与直接搜索工具箱,其余各节分别介绍该工具箱中的遗传算法工具及其使用方法。
8.1 遗传算法与直接搜索工具箱概述本节介绍MA TLAB的GADS(遗传算法与直接搜索)工具箱的特点、图形用户界面及运行要求,解释如何编写待优化函数的M文件,且通过举例加以阐明。
8.1.1 工具箱的特点GADS工具箱是一系列函数的集合,它们扩展了优化工具箱和MA TLAB数值计算环境的性能。
遗传算法与直接搜索工具箱包含了要使用遗传算法和直接搜索算法来求解优化问题的一些例程。
这些算法使我们能够求解那些标准优化工具箱范围之外的各种优化问题。
所有工具箱函数都是MA TLAB的M文件,这些文件由实现特定优化算法的MA TLAB语句所写成。
使用语句type function_name就可以看到这些函数的MA TLAB代码。
我们也可以通过编写自己的M文件来实现来扩展遗传算法和直接搜索工具箱的性能,也可以将该工具箱与MA TLAB的其他工具箱或Simulink结合使用,来求解优化问题。
工具箱函数可以通过图形界面或MA TLAB命令行来访问,它们是用MA TLAB语言编写的,对用户开放,因此可以查看算法、修改源代码或生成用户函数。
遗传算法与直接搜索工具箱可以帮助我们求解那些不易用传统方法解决的问题,譬如表查找问题等。
!"#$"%遗传算法工具箱函数及应用实例于玲!!贾春强""!#沈阳化工学院机械工程学院!辽宁沈阳!!$!%"#"&大连理工大学机械工程学院!辽宁大连!!’$"($摘要%基于!"#$"%语言的遗传算法工具箱支持二进制和浮点数编码方式!并且提供了多种选择&交叉&变异的方法’通过具体实例对!"#$"%的遗传算法工具箱的用法进行了说明介绍(关键词%)*+,*-#遗传算法#工具箱#优化中图分类号%./(0!&12文献标识码%3文章编号%!$$"4"(((""$$%)!!4$$"14$"&’()#*+(,"(-./"01$2,*(!"#$"%345++$%+/678*(9:!;<4=>’(?@*"(9A5!#67899,9:);78*<=7*,><?=<;;@=<?A68;<B*<?C<D+=+E+;9:F8;G=7*,.;78<9,9?BH68;<B*<?!!I!%"H F8=<*J"#67899,9:);78*<=7*,><?=<;;@=<?H K*,=*<L<=M;@D=+B9:.;78<9,9?BH K*,=*<!!’I"(H F8=<*N 4%,#B")#C.8;O;<;+=73,?9@=+8G.99,-9P-*D;Q9<)*+,*-DERR9@+D+8;-=<*@B*<Q:,9*+H*<Q+8;@;*@;+8;;P7;,,;<+ 9R;@*+9@D9:D;,;7+=9<H7@9DD9M;@*<Q GE+*+=9<=<+8;.99,-9PH+S9;P*GR,;D*-9E+89S+9ED;+8;.99,-9P*@;=<+@9QE7;Q =<+8=D R*R;@#C+=D+98;,R@;*Q;@D=GR@9M;+8;*-=,=+B+9*<*,BT;+8;UE;D+=9<*<Q D9,M;R@9-,;G ED=<?+8;.99,-9P# D2E F+B-,C G*+,*-J?;<;+=7*,?9@=+8GJ+99,-9PJ9R+=G=T*+=9<:遗传算法与!"#$"%语言!"#$"%是一种开放式软件!经过一定的程序可以将开发的优秀的应用程序集加入到!"#$"%工具的行列(这样!许多领域前沿的研究者和科学家都可以将自己的成果集成到!"#$"%之中!被全人类继承和利用(因此!!"#$"%中含有诸多的面向不同应用领域的工具箱!例如%信号处理工具箱&图像处理工具箱&通信工具箱&系统辨识工具箱&优化工具箱&鲁棒控制工具箱&非线性控制工具箱等!而且工具箱还在不断地扩展之中(A遗传算法工具箱的函数及其功能目前!国内图书市场上有关!"#$"%方面的书籍要么侧重于!"#$"%语言编程介绍!要么侧重于各种工具箱函数的解说!而对怎样用工具箱函数来解决实际问题鲜有涉及(本文将对遗传算法工具箱函数进行说明介绍(遗传算法工具箱&’()包括了许多实用的函数!这些函数按照功能可以分为以下几类%!"#主界面函数主程序*"+,提供了遗传算法工具箱与外部的接口(它的函数格式如下%-./012345/%345/#6"708194:;*"<%4=12>!0?"$@A!0?"$(5>!>#"6#345!45#>!#06,@A!#06,(5>!>0$07#@A!>0$07#(5>!.(?06@A>!.(?06(5>!,=#@A>!,=#(5>B输出参数输入参数!"!核心函数及其它函数具体见表C(G遗传算法工具箱应用实例$%&无约束优化问题利用遗传算法计算函数’<(B;(DEF*>G1<H(BDI*74><J(B/的最大值!其中(!-F!K:选择二进制编码!种群中的个体数目为EF!二进制编. 012345 %345#6"708194求得的最优解!包括染色体和适配度最终得到的种群最优种群的搜索轨迹每一代的最好适应度和平均适应度%4=12>0?"$@A0?"$(5>>#"6#34545#>#06,@A#06,(5>>0$07#@A>0$07#(5>.(?06@A.(?06(5>,=#@A,=#(5>变量上下界矩阵!矩阵的行数确定变量个数适应度函数传递给适应度函数的参数!默认值为+ALMM,初始种群选项(一个向量+05>G$41/564%N45>/2G>5$"O,!这里05>G$41表示两代之间的差距#564%N45>取F表示二进制编码!取E表示浮点数编码#2G>5$"O控制运行中是否输出当前群体和最好结果!取F表示运行中不输出!取E表示运行中输出(默认值为+E0P Q/E/F,终止函数的名称!默认值为+R,".&01)06,R,传递给终止函数的参数!默认值为+REFFR,选择函数的名称!默认值为+R146,&04,S0$07#R,传递给选择函数的参数!默认值为+RF+FTR,交叉函数名称表!以空格分开!浮点数编码默认值为+R/"6G#UV4?06/U0=6G>#G7V4?06/>G,5$0V4?06R,!二进制编码默认值为+R>G,5$0V4?06R,传递给交叉函数的参数表!浮点数编码默认值为+RW/F#W/C#W/FR,!二进制编码默认值为+F+Q,变异函数名称表!以空格分开!浮点数编码默认值为+R%4=12"6O!=#"#G41/,=$#GA41L1G9!=#"#G41141/L1G9!=#"#G41=P1G9!=#"#G41R,!二进制编码默认值为+R%G1"6O!=#"#G41R,传递给变异函数的参数表!浮点数编码默认值为+J/F#Q/EFF/C#J/EFF/C#J/F/F,!二进制编码默认值为+F+FH,表:表A码长度为!"!交叉概率为"#$%!变异概率为"#"&"采用’()*的程序清单如下#+编写目标函数文件,-.#/!文件存放在工作目录下"0123.4,256,7!89:7;<,-.=6,7!,-.4,26>?@<6,7=A>$89:7<@BA"C642=%C@>BDC 3,6=EC @>$F 生成初始种群!大小为A"?"424.G,-<424.4:74H8I:=A"!5"?$;!J,-.K>$L 调用遗传算法函数"5@?82MG ,-?NG ,-O.P:38;<I :=5"?$;!K,-.K !5;!424.G ,-!5A8Q R?A?A;!K/:@’82*8P/K !!%!K2,P/’8,/S 8783.K !5"#"&;!5K:P4.TU,98PK;!5!;!K2,2V240W1.:.4,2K !5!?!%?X;>?$经过!%次遗传迭代!运算结果为#!<D#&%RR "=!><!E#&%%E $即当!为D#&%RR 时!"=!>取最大值!E#&%%E "遗传算法一般用来取得近似最优解!另外!遗传算法的收敛性跟其初始值有关!大家运行上面的命令所得到的结果可能跟我的结果不同或是差别很大!但多执行几次上面的命令%随机取不同的初始群体&一定可以得到近似最优解"#$%有约束优化问题考虑如下问题#/42"=!><=!A Q !>!B=!!Q A>!6#.#&A =!><!A Q !!!BA !"&!=!><!!A EQ !!!BA !"本例中存在两个不等式约束!因此我们需要把有约束问题转换成无约束问题来求解"近年来提出了多种用遗传算法满足约束的技术!工程中常用的策略是惩罚策略!通过惩罚不可行解!将约束问题转换为无约束问题"惩罚项的适值函数一般有加法和乘法两种构造方式!本例采用加法形式的适值函数!惩罚函数由两部分构成!可变乘法因子和违反约束乘法"种群中的个体数目为A""!实数编码!交叉概率为"#$%!变异概率为"#"&"遗传算法求的是函数的极大值!因此在求极小值问题时!需将极大值问题转换为极小值问题求解"采用’()*的程序清单如下#Y 编写目标函数文件04.#/!文件存放在工作目录下"0123.4,256,7!89:7;<04.=6,7!,-.4,26>?@A<6,7=A>$@!<6,7=!>$PA<"#A $P!<"#&$Z 约束条件IA<@AQ !C @!BA $I!<@A#[!\EQ @!#[!BA $Z 加惩罚项的适值40?=IA]<">^=I!]<">89:7<=@AQ !>#[!B=@!Q A>#[!$876889:7<=@AQ !>#[!B=@!Q A>#[!BPAC I ABP!CI!$89:7<Q 89:7$82M_设置参数边界!本例边界为!O "N,12M6<,286%!!A &C5Q A !A;$‘调用遗传算法函数"5@O82MG,-ONG,-O.P:38;<I:=N,12M6!KW42K>O $a 性能跟踪"-7,.=.P:38=b !A>!.P:38=b !X>!KPQ K>$T,7MO,2-7,.=.P:38=b !A>!.P:38=b !!>!KNC K>$@7:N87=K’828P:.4,2K>cOd7:N87=Ke4..2866K>$f8I82M=K 解的变化K !K 种群平均值的变化K>$经过A""次遗传迭代!运算结果为#!<O5AOA;$此时极小值89:7=!><A $I A =!><"$I !!!><"#!%!显然最优解满足约束条件"!结论遗传算法工具箱功能强大!包括了大量的算子函数!提供各种类型的选择策略!交叉’变异的方式!适用于各类不同的实际问题"由于大多数实际问题都是有约束条件的!所以!用遗传算法处理约束条件的方法仍属于难点问题!需要进一步的研究和探讨"(参考文献)(")高尚#基于$%&’%(遗传算法优化工具箱的优化计算())*微型电脑应用!+,,+!"-.-/#0+102*(+)姜阳!孔峰*基于$%&’%(遗传算法工具箱的控制系统设计仿真())*广西工学院学报!+,,"!"+.23#41-*(5)飞思科技产品研发中心*$%&’%(4*0辅助优化计算与设计($)*北京#电子工业出版社!+,,5*%编辑阳光&作者简介#于玲%A$D$Q &!女!硕士!主要从事机电液一体化的教学及科研工作"收稿日期#!""EQ "DQ "R!!!!!!!!!!初始化函数424.4:74H8,I :#/P,178..8#/2,P/’8,/S 8783.#/.,1P2S 8783.#/64/-78U,98P#/3d3743U,98P#/7428PU,98P#/7428P,PM8PU,98P#/N,12M:PdW1.:.4,2#/2,2V240W1.:.4,2#//:@’82*8P/#/,-.W:@’82*8P/#/0!N#/N!0#/变异交叉二进制格式和浮点数格式的初始化函数有序数据的初始化函数常用的轮盘赌法基于归一化的优先选择法竞争选择法二进制格式或浮点数格式的交叉函数有序数据的交叉函数!可以将演化函数组合使用浮点数格式的变异函数主程序I :#/用来判断是否满足终止条件用来计算遗传算法满足精度要求时!染色体所需要的二进制位数用来完成二进制数和浮点数之间的相互转换选择函数终止函数二进制表示函数演化函数3:73N4.6#/424.4:74H8I :#/表"。
使用MATLAB遗传算法工具实例MATLAB中提供了一种用于优化问题的遗传算法工具箱,可以帮助用户通过遗传算法来寻找最优解。
下面是一个示例,展示了如何使用MATLAB遗传算法工具箱解决一个简单的优化问题。
假设我们要求解以下函数的最大值:f(x)=x^2,其中x的取值范围在[-10,10]之间。
首先,我们需要定义适应度函数,即用来评估个体适应度的函数。
在本例中,适应度函数可以直接使用目标函数,即f(x)=x^2、在MATLAB中,我们可以使用函数句柄来定义适应度函数:```matlabfunction fitness = fitnessFunction(x)fitness = x^2;end```接下来,我们需要配置遗传算法的参数。
我们可以使用`gaoptimset`函数来创建一个参数结构体,并设置算法的各个参数:```matlaboptions = gaoptimset('PopulationSize', 50, 'Generations', 100, 'FitnessLimit', 1e-6, 'StallGenLimit', 10);```上述代码将设置种群大小为50,迭代次数为100,适应度极限为1e-6(即当适应度较小时停止迭代),最大迭代代数为10(即如果连续10代迭代没有改进,则停止迭代)。
接下来,我们需要调用`ga`函数来运行遗传算法并求解最优解。
我们可以使用以下代码来实现:```matlab```最后,我们可以打印出最优解及其目标函数值:```matlabdisp(['Optimal solution: x = ' num2str(x) ', f(x) = 'num2str(fval)]);```上述代码中,`num2str`函数用于将数字转换为字符串,然后使用`disp`函数打印出最优解和目标函数值。
遗传算法是一种模拟自然选择与遗传机制的优化算法,它模拟了生物进化的过程,通过优化个体的基因型来达到解决问题的目的。
在工程和科学领域,遗传算法被广泛应用于求解优化问题、寻找最优解、参数优化等领域。
而MATLAB作为一款强大的科学计算软件,拥有丰富的工具箱和编程接口,为实现遗传算法提供了便利。
下面将通过以下步骤介绍如何在MATLAB中实现遗传算法:1. 引入遗传算法工具箱需要在MATLAB环境中引入遗传算法工具箱。
在MATLAB命令窗口输入"ver",可以查看当前已安装的工具箱。
如果遗传算法工具箱未安装,可以使用MATLAB提供的工具箱管理界面进行安装。
2. 定义优化问题在实现遗传算法前,需要清楚地定义优化问题:包括问题的目标函数、约束条件等。
在MATLAB中,可以通过定义一个函数来表示目标函数,并且可以采用匿名函数的形式来灵活定义。
对于约束条件,也需要进行明确定义,以便在遗传算法中进行约束处理。
3. 设置遗传算法参数在实现遗传算法时,需要对遗传算法的参数进行设置,包括种群大小、交叉概率、变异概率、迭代次数等。
这些参数的设置将会直接影响遗传算法的收敛速度和优化效果。
在MATLAB中,可以通过设置遗传算法工具箱中的相关函数来完成参数的设置。
4. 编写遗传算法主程序编写遗传算法的主程序,主要包括对适应度函数的计算、选择、交叉、变异等操作。
在MATLAB中,可以利用遗传算法工具箱提供的相关函数来实现这些操作,简化了遗传算法的实现过程。
5. 运行遗传算法将编写好的遗传算法主程序在MATLAB环境中运行,并观察优化结果。
在运行过程中,可以对结果进行实时监测和分析,以便对遗传算法的参数进行调整和优化。
通过以上步骤,可以在MATLAB中实现遗传算法,并应用于实际的优化问题与工程应用中。
遗传算法的实现将大大提高问题的求解效率与精度,为工程领域带来更多的便利与可能性。
总结:遗传算法在MATLAB中的实现涉及到了引入遗传算法工具箱、定义优化问题、设置算法参数、编写主程序和运行算法等步骤。
实验一利用MATLAB完成遗传算法一、实验目的1、熟悉MATLAB言语编程环境2、掌握MATLAB言语命令3、学会利用MATLAB编程完成遗传算法二、实验原理MATLAB是美国Math Works公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算言语和交互式环境,MATLAB可以进行矩阵运算、绘制函数和数据、完成算法、创立用户界面、连接其他编程言语的程序等,主要应用于工程计算、操纵设计等领域。
通过学习遗传算法原理,使用MATLAB编写程序,完成其求解策略。
三、实验内容通过MATLAB编程,利用遗传算法求解:xx=求[-2,2]f-)(f.x,max∈exp05xsin(),.0)(x)200(三、实验要求1、程序设计2、调试3、实验结果4、撰写实验汇报实验二 MATLAB神经网络工具箱的使用一、实验目的1、掌握MATLAB言语命令2、提高MATLAB程序设计能力3、学会使用MATLAB神经网络工具箱二、实验原理MATLAB言语是Math Works公司推出的一套高性能计算机编程言语,集数学计算、图形显示、言语设计于一体,其强大的扩展功能为用户提供了广阔的应用空间。
它附带有30多个工具箱,神经网络工具箱就是其中之一。
利用该工具箱可以方便的构建神经网络的结构模型、设计、训练等,完成神经网络算法。
三、实验内容通过MATLAB编程,利用神经网络工具箱预测公路运量:公路运量主要包含公路客运量和公路货运量两个方面。
据研究,某地区的公路运量主要与该地区的人数、机动车数量和公路面积有关,上表给出了该地区20年的公路运量相关数据。
依据有关部门数据,该地区202X和202X年的人数分别为73.39和75.55万人,机动车数量分别为3.9635和4.0975万辆,公路面积分别为0.9880和1.0268万平方千米。
请利用BP网络预测该地区202X和202X 年的公路客运量和公路货运量。
GADS--Matlab遗传算法工具箱使用总结e-mail:978299005@一、GADS简介与启动MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
在Matlab平台上主要有三个遗传算法(GA)的工具箱,分别是:GAOT,美国北卡罗来纳大学开发;GATBX,英国谢菲尔德大学开发;GADS,Matlab7以后的版本中自带的。
GATBX可以包含GAOT,而GADS显然年代又近了一些。
这里主要讲的是GADS。
GADS(Genetic Algorithm and Direct Search Toolbox)遗传算法与直接搜索工具箱。
可以在命令行中直接使用,在M文件的程序中调用ga函数,或在GUI 界面中使用它来解决实际问题。
在不同的Matlab版本中启动方法稍有区别。
以笔者的Matlab 2010b为例,启动有两种方法:1、在Matlab命令行中输入optimtool回车,在出现的对话框左上角找到Solver,选择ga- Genetic Algorithm即可。
2、Matlab界面中单击左下角Start,选择toolboxes,选择其中的optimization再点击optimization tool即可打开对话框,然后如1中,选择ga即可。
二、GADS的具体使用【1】先介绍ga函数的格式。
Ga函数可以在命令行中直接使用。
在命令行中键入命令type ga可以打印出ga函数的代码。
键入help ga,就打印出ga函数的帮助提示。
以下是help ga的输出:GA Constrained optimization using genetic algorithm.GA attempts to solve problems of the form:min F(X) subject to: A*X <= B, Aeq*X = Beq (linear constraints)X C(X) <= 0, Ceq(X) = 0 (nonlinear constraints)LB <= X <= ubX = GA(FITNESSFCN,NVARS) finds a local unconstrained minimum X to theFITNESSFCN using GA. NVARS is the dimension (number of designvariables) of the FITNESSFCN. FITNESSFCN accepts a vector X of size1-by-NVARS, and returns a scalar evaluated at X.X = GA(FITNESSFCN,NVARS,A,b) finds a local minimum X to the functionFITNESSFCN, subject to the linear inequalities A*X <= B. Linearconstraints are not satisfied when the PopulationType option is set to'bitString' or 'custom'. See the documentation for details.X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq) finds a local minimum X to thefunction FITNESSFCN, subject to the linear equalities Aeq*X = beq aswell as A*X <= B. (Set A=[] and B=[] if no inequalities exist.) Linearconstraints are not satisfied when the PopulationType option is set to'bitString' or 'custom'. See the documentation for details.X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub) defines a set of lower andupper bounds on the design variables, X, so that a solution is found inthe range lb <= X <= ub. Use empty matrices for lb and ub if no boundsexist. Set lb(i) = -Inf if X(i) is unbounded below; set ub(i) = Inf ifX(i) is unbounded above. Linear constraints are not satisfied when thePopulationType option is set to 'bitString' or 'custom'. See thedocumentation for details.X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON) subjects theminimization to the constraints defined in NONLCON. The functionNONLCON accepts X and returns the vectors C and Ceq, representing thenonlinear inequalities and equalities respectively. GA minimizesFITNESSFCN such that C(X)<=0 and Ceq(X)=0. (Set lb=[] and/or ub=[] ifno bounds exist.) Nonlinear constraints are not satisfied when thePopulationType option is set to 'bitString' or 'custom'. See thedocumentation for details.X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON,options) minimizeswith the default optimization parameters replaced by values in thestructure OPTIONS. OPTIONS can be created with the GAOPTIMSET function.See GAOPTIMSET for details.X = GA(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a structurethat has the following fields:fitnessfcn: <Fitness function>nvars: <Number of design variables>Aineq: <A matrix for inequality constraints>bineq: <b vector for inequality constraints>Aeq: <Aeq matrix for equality constraints>beq: <beq vector for equality constraints>lb: <Lower bound on X>ub: <Upper bound on X>nonlcon: <nonlinear constraint function>options: <Options structure created with GAOPTIMSET>rngstate: <State of the random number generator>[X,FVAL] = GA(FITNESSFCN, ...) returns FVAL, the value of the fitnessfunction FITNESSFCN at the solution X.[X,FVAL,EXITFLAG] = GA(FITNESSFCN, ...) returns EXITFLAG whichdescribes the exit condition of GA. Possible values of EXITFLAG and thecorresponding exit conditions are1 Average change in value of the fitness function overoptions.StallGenLimit generations less than options.TolFun andconstraint violation less than options.TolCon.3 The value of the fitness function did not change inoptions.StallGenLimit generations and constraint violation lessthan options.TolCon.4 Magnitude of step smaller than machine precision and constraintviolation less than options.TolCon. This exit condition appliesonly to nonlinear constraints.5 Fitness limit reached and constraint violation less thanoptions.TolCon.0 Maximum number of generations exceeded.-1 Optimization terminated by the output or plot function.-2 No feasible point found.-4 Stall time limit exceeded.-5 Time limit exceeded.[X,FVAL,EXITFLAG,OUTPUT] = GA(FITNESSFCN, ...) returns astructure OUTPUT with the following information:rngstate: <State of the random number generator before GA started>generations: <Total generations, excluding HybridFcn iterations>funccount: <Total function evaluations>maxconstraint: <Maximum constraint violation>, if anymessage: <GA termination message>[X,FVAL,EXITFLAG,OUTPUT,POPULATION] = GA(FITNESSFCN, ...) returns thefinal POPULATION at termination.[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORES] = GA(FITNESSFCN, ...) returnsthe SCORES of the final POPULATION.Example:Unconstrained minimization of 'rastriginsfcn' fitness function ofnumberOfVariables = 2x = ga(@rastriginsfcn,2)Display plotting functions while GA minimizesoptions = gaoptimset('PlotFcns',...{@gaplotbestf,@gaplotbestindiv,@gaplotexpectation,@gaplotstopping});[x,fval,exitflag,output] = ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options)An example with inequality constraints and lower boundsA = [1 1; -1 2; 2 1]; b = [2; 2; 3]; lb = zeros(2,1);% Use mutation function which can handle constraintsoptions = gaoptimset('MutationFcn',@mutationadaptfeasible);[x,fval,exitflag] = ga(@lincontest6,2,A,b,[],[],lb,[],[],options);FITNESSFCN can also be an anonymous function:x = ga(@(x) 3*sin(x(1))+exp(x(2)),2)If FITNESSFCN or NONLCON are parameterized, you can use anonymousfunctions to capture the problem-dependent parameters. Suppose you wantto minimize the fitness given in the function myfit, subject to thenonlinear constraint myconstr, where these two functions areparameterized by their second argument a1 and a2, respectively. Heremyfit and myconstr are MATLAB file functions such asfunction f = myfit(x,a1)f = exp(x(1))*(4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + a1);andfunction [c,ceq] = myconstr(x,a2)c = [1.5 + x(1)*x(2) - x(1) - x(2);-x(1)*x(2) - a2];% No nonlinear equality constraints:ceq = [];To optimize for specific values of a1 and a2, first assign the valuesto these two parameters. Then create two one-argument anonymousfunctions that capture the values of a1 and a2, and call myfit andmyconstr with two arguments. Finally, pass these anonymous functions toGA:a1 = 1; a2 = 10; % define parameters first% Mutation function for constrained minimizationoptions = gaoptimset('MutationFcn',@mutationadaptfeasible);x = ga(@(x)myfit(x,a1),2,[],[],[],[],[],[],@(x)myconstr(x,a2),options)解释如下:ga函数最完整的格式是[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORES]= GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON,options)。
matlab遗传算法ga工具箱调用gpu运算标题:利用Matlab遗传算法GA工具箱调用GPU运算随着科技的飞速发展,计算能力的需求也在不断提高。
特别是对于那些需要大量计算的任务,如机器学习、深度学习和大数据分析等,传统的CPU已经无法满足需求。
在这种情况下,GPU(图形处理器)作为一种并行处理的强大工具,受到了越来越多的关注。
本文将详细介绍如何在Matlab中使用遗传算法GA工具箱调用GPU进行运算。
首先,我们需要了解什么是遗传算法。
遗传算法是一种模拟自然选择和遗传机制的优化算法。
它通过模拟生物进化过程中的“适者生存”和“遗传变异”机制,在求解复杂问题时能够找到全局最优解或近似最优解。
Matlab GA工具箱是Matlab 提供的一个用于实现遗传算法的工具箱,其提供了丰富的函数和接口,使得用户可以方便地实现各种遗传算法。
然而,遗传算法通常需要处理大量的数据和复杂的运算,这使得其计算效率成为了一个关键问题。
为了解决这个问题,我们可以利用GPU强大的并行计算能力来加速遗传算法的运算。
Matlab GA工具箱支持调用GPU进行运算,只需要简单的设置即可实现。
在Matlab中,我们可以通过以下步骤来调用GPU进行运算:1. 首先,我们需要确认计算机是否安装了GPU以及CUDA驱动程序。
CUDA 是NVIDIA公司推出的一种编程模型,可以让开发者直接访问GPU的硬件资源。
只有安装了CUDA驱动程序,才能在Matlab中使用GPU进行运算。
2. 然后,我们需要在Matlab中设置工作区为GPU。
这可以通过以下命令实现:```matlabg = gpuDevice();set(g,'ExecutionMode','manual');```3. 接下来,我们需要将数据从CPU复制到GPU。
这可以通过以下命令实现:```matlabd_X = gpuArray(X);```其中,X是我们需要复制到GPU的数据。
如何在Matlab中进行遗传算法和优化问题求解遗传算法是一种模拟生物进化过程的智能优化算法,常用于解决复杂的优化问题。
在Matlab中,我们可以利用遗传算法工具箱(GA Toolbox)来实现遗传算法求解优化问题。
本文将介绍如何在Matlab中使用遗传算法解决优化问题,并探讨一些优化技巧和应用案例。
第一章:背景介绍遗传算法是通过模拟生物进化过程,利用自然选择、交叉和变异等操作来搜索问题的最优解。
它的应用涵盖了许多领域,如工程设计、组合优化、机器学习等。
在Matlab中,我们可以借助GA Toolbox提供的函数和工具来灵活地实现遗传算法的求解过程。
第二章:遗传算法基本原理遗传算法的基本原理包括个体表示、适应度评估、选择、交叉和变异等操作。
在Matlab中,我们可以使用二进制、实数、整数等不同的编码方案来表示个体。
适应度评估是根据问题的优化目标,对每个个体进行评估和排序。
选择操作通过一定的策略选择优秀个体,并进行复制和保留。
交叉操作模拟生物的基因交叉过程,通过交换基因片段来产生新个体。
变异操作通过改变个体的某些基因值来增加多样性和搜索空间。
第三章:遗传算法的实现步骤在Matlab中,我们可以按照以下步骤实现遗传算法的求解过程:初始化种群、适应度评估、选择操作、交叉和变异操作、更新种群。
在这个过程中,我们可以根据具体问题设计合适的参数设置,如种群大小、进化代数、交叉和变异的概率等。
第四章:遗传算法的优化技巧在使用遗传算法求解优化问题时,有一些技巧可以提高算法的效率和收敛性。
例如,选择合适的编码方案和适应度函数,设计高效的选择策略,引入精英保留机制等。
此外,选取合适的参数设置和优化策略也是非常重要的。
第五章:遗传算法在工程设计中的应用遗传算法在工程设计中有广泛的应用,如优化控制器参数、电路布局优化、结构设计优化等。
本章将以一个典型的结构优化问题为例,介绍如何利用遗传算法在Matlab中进行工程设计的优化。
(实例)matlab遗传算法工具箱函数及实例讲解matlab遗传算法工具箱函数及实例讲解核心函数:(1)function[pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数【输出参数】pop--生成的初始种群【输入参数】num--种群中的个体数目bounds--代表变量的上下界的矩阵eevalFN--适应度函数eevalOps--传递给适应度函数的参数options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如precision--变量进行二进制编码时指定的精度F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)(2)function [x,endPop,bPop,traceInfo] =ga(bounds,evalFN,evalOps,startPop,opts,...termFN,termOps,selectFN,selectOps,xOverFNs,xOverO ps,mutFNs,mutOps)--遗传算法函数【输出参数】x--求得的最优解endPop--最终得到的种群bPop--最优种群的一个搜索轨迹【输入参数】bounds--代表变量上下界的矩阵evalFN--适应度函数evalOps--传递给适应度函数的参数startPop-初始种群opts[epsilon prob_ops display]--opts(1:2)等同于initializega 的options参数,第三个参数控制是否输出,一般为0。
如[1e-6 1 0] termFN--终止函数的名称,如['maxGenTerm']termOps--传递个终止函数的参数,如[100]selectFN--选择函数的名称,如['normGeomSelect']selectOps--传递个选择函数的参数,如[0.08]xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'] mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]matlab遗传算法工具箱附件【注意】matlab工具箱函数必须放在工作目录下【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08【程序清单】%编写目标函数function[sol,eval]=fitness(sol,options)x=sol(1);eval=x+10*sin(5*x)+7*cos(4*x);%把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代运算结果为:x =7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。
matlab遗传算法ga工具箱调用gpu运算1. 引言1.1 背景介绍在传统的遗传算法中,遗传算法能够有效地解决一些复杂的优化问题。
随着问题规模的增大和复杂度的提高,传统的遗传算法在计算效率上显得有些力不从心。
为了提高遗传算法的计算速度和效率,研究者们开始探索将图形处理器(GPU)应用于遗传算法中,以加速计算过程。
GPU是一种高度并行化的处理器,适合处理大规模的并行计算任务。
相比于传统的中央处理器(CPU),GPU具有更多的处理单元和更快的计算速度。
通过利用GPU的并行计算能力,可以显著加速遗传算法的计算过程,从而提高算法的效率和性能。
在MATLAB中,有专门的遗传算法GA工具箱,可以方便地实现遗传算法。
结合GPU加速计算的技术,可以进一步提高遗传算法在复杂优化问题上的求解能力。
本文将介绍如何使用MATLAB遗传算法GA工具箱调用GPU进行计算,并通过实验设计和结果分析来验证其优化效果。
通过本文的研究,可以更好地了解遗传算法在GPU加速计算下的应用和优化效果,为未来的研究提供参考。
1.2 研究目的研究目的是为了探讨在遗传算法中利用GPU加速运算的优势和应用。
由于遗传算法是一种基于群体搜索的优化算法,通常需要进行大量的迭代计算以找到最优解。
而传统的CPU计算在处理大规模问题时往往效率较低,因此利用GPU进行并行计算能够显著提高算法的运行速度和效率。
通过调用MATLAB遗传算法GA工具箱,并结合GPU加速运算,可以加快算法的收敛速度,提高搜索效率,同时也能够处理更复杂的优化问题。
研究的目的是为了验证在实际应用中,利用GPU进行计算对遗传算法的性能和效果的提升程度,并进一步分析其在不同类型问题上的适用性和优势。
通过本研究的实验设计与结果分析,可以对比传统CPU计算和GPU加速计算的效果差异,评价加速计算技术在遗传算法中的实际应用效果,为进一步优化遗传算法的设计和改进提供参考依据。
2. 正文2.1 GPU加速在遗传算法中的应用遗传算法是一种通过模拟自然选择与遗传机制来搜索最优解的优化算法,然而遗传算法在处理复杂问题时往往需要大量的计算资源来进行演化计算,而传统的CPU计算速度往往难以满足需求。
GAOT遗传算法解方程组
例子:
A = [1 2 3; 4 5 6;7 8 9;10 11 12]; %自变量值矩阵
b = [3;5;7;9]; %目标值
lb = zeros(3,1); %系数矩阵大小
[x,fval,exitflag] = ga(@lincontest6,3,A,b,[],[],lb) %调用遗传算法
%x:实际上就是系数a0、a1、a2
%fval:拟合程度
%exitflag:用数字表示输出状态:
%1、一阶最优性条件满足容许范围
%2、X的变化小于容许范围
%3、目标函数的变化小于容许范围
%4、重要搜索方向小于规定的容许范围并且约束违背小于options.TolCon %5、重要方向导数小于规定的容许范围并且约束违背小于options.TolCon %0、到达最大迭代次数或到达函数评价
%-1、算法由输出函数终止
%-2、无可行点
%ga():调用遗传算法
%@lincontest6:将A、b、lb存到函数lincontest6中
%3:指3个待求系数
%A:自变量值矩阵[x1 x2 x3;…]
%b:目标值y
%[]:Aeq,线性等式约束矩阵
%[]:Beq,线性等式约束的向量
%lb: 系数矩阵大小
%完整表达式[x,fval,exitflag]= ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB)
%也可以:
[x]= ga(@lincontest6,3,A,b,[],[],lb)。
matlab工具箱遗传算法使用方法简单的遗传算法可以使用Matlab自带的遗传算法工具箱,但是要从Matlab2021版本之后才会自带这个工具箱,且调用命令也有变化,分别是gatool和optimtool。
GUI界面如下图所示:1、problem setup and results设置与结果(1)Solver:求解程序,选择要用的求解程序(遗传算法,遗传算法多目标等)(2)problem:1)fitness function适应度函数,求最小,这里的使用度函数要自己编写,书写格式是“@函数名”。
2)number of variable变量数,必须是整数,即,使用这个GUI界面的适应度函数的变量必须是[1*n]的向量,而不能是[m*n]的矩阵。
3)constraints约束4)linear inequalities线性不等式,A*x<=b形式,其中A是矩阵,b是向量 5)linear equalities线性等式,A*x=b形式,其中A是矩阵,b是向量6)bounds定义域,lower下限,upper上限,列向量形式,每一个位置对应一个变量7)nonlinear constraint function非线性约束,用户定义,非线性等式必须写成c=0形式,不等式必须写成c<=0形式8)integer variable indices整型变量标记约束,使用该项时Aeq和beq必须为空,所有非线性约束函数必须返回一个空值,种群类型必须是实数编码举例,若是想让第一个、第三个、第五个变量保持是整数的话,则直接在此处填写[1 3 5] 9)run solver and view results求解use random states from previous run使用前次的状态运行,完全重复前次运行的过程和结果2、population(1)population type编码类型1)double vector实数编码,采用双精度。
matlab遗传算法ga工具箱调用gpu运算全文共四篇示例,供读者参考第一篇示例:Matlab是一个强大的科学计算工具,而遗传算法(Genetic Algorithm,GA)被广泛应用于优化问题的求解。
在大规模优化问题中,GA的求解速度往往是一个瓶颈,为了加速GA的求解过程,可以利用GPU进行并行计算。
在Matlab中,可以通过GPU进行加速的工具箱,称为Parallel Computing Toolbox。
本文将介绍如何利用Matlab的Parallel Computing Toolbox和GA工具箱结合起来,实现GPU加速GA的求解过程。
我们需要在Matlab中安装Parallel Computing Toolbox和GA 工具箱。
在安装完成后,就可以开始编写适用于GPU加速的GA程序了。
在编写程序时,需要注意以下几点:1. 设定GA参数:一般来说,可以设置GA的种群大小、迭代次数、交叉概率、变异概率等参数。
这些参数的设定将直接影响到GA的求解效果和速度。
2. 定义适应度函数:在GA中,适应度函数决定了个体的适应程度,从而影响被选择的几率。
在编写适用于GPU加速的适应度函数时,要注意将计算过程向量化,以便GPU并行计算。
3. 设置GPU运算环境:在Matlab中,可以通过parallel.gpu.GPUDevice函数获取当前可用的GPU设备列表,并选择一个合适的设备进行计算。
在进行GPU计算时,需要将待处理的数据转换为GPU数组,以便GPU并行计算。
4. 调用GA函数并启用GPU加速:在进行GA求解过程中,可以通过设置options参数启用GPU加速。
在调用GA函数时,可以通过设定eParallel参数为true,来启用GPU加速。
下面,我们来看一个简单的例子,演示如何利用Parallel Computing Toolbox和GA工具箱结合GPU加速GA的求解过程。
假设我们要求解一个简单的函数f(x) = x^2 + 5,在区间[-10, 10]内的最小值。