数据的表示2(2018-2019)
- 格式:ppt
- 大小:378.50 KB
- 文档页数:9
装………. ………. ……….…………….….订………. ………. ……….…………….…. ………. ………. ……….…………….….线………. ………. ……….…………….….《计算机组成原理》第 1 页共 4 页此处不能书写此处不能书写此处不能书写 此处不能书写《计算机组成原理》期末试卷(A 卷)班级名称:学号:姓名:题号 一 二 三 四 五 总分 分数得 分一、填空题(每空1分,共10分)1. 计算机硬件的主要技术指标包括( )、( )、运算速度。
2. 总线的判优控制可分为( )式和( )式两种。
3.( )、( )和( )组成三级存储系统,分级的目的是提高防存速度、扩大存储容量。
4. 设形式地址为Y ,则间接寻址方式中,操作数的有效地址为( )。
5.设24位长的浮点数,其中阶符1位,介码5位,数符1位,尾数17位,阶参与和尾数均用补码表示,且尾数采用规格化形式,则它能表示的最小正数真值是( ),绝对值最小的负数真值是( )。
得 分二、单项选择题(每小题2分,共12分)C 、堆栈操作D 、存储器按内容选择地址2.系统总线中的数据线、地址线和控制线是根据( )来划分的。
A 、总线所处的位置 B 、总线的传输方向C 、总线的传输的内容D 、总线的宽度3.下述说法中( )是正确的A 、EPROM 是可改写的,因而也是随机存储器的一种。
B 、EPROM 是可改写的,但它不能作为随机存储器C 、EPROM 只能改写一次,故不能作为随机存储器D 、以上说法都不对4. 某计算机字长16位,它的存储容量是64KB ,按字编址,它的寻址范围是( )。
A 、64KB 、32KBC 、32KD 、64KB5. 指令系统中采用不同寻址方式的目的主要是( )。
A 、可降低指令译码难度B 、缩短指令字长,扩大寻址空间,提高编程灵活性C 、实现程序控制D 、以上都不对装………. ………. ……….…………….….订………. ………. ……….…………….…. ………. ………. ……….…………….….线………. ………. ……….…………….….《计算机组成原理》第 2 页共 4 页此处不能书写此处不能书写此处不能书写 此处不能书写C 、主存的存取时间D 、以上都不对得 分三、分析解答题(每小题5分,共20分)1.某机有五个中断源,按中断响应的优先顺序由高到低为L0,L1,L2,L3,L4,现在要求优先级顺序改为L0,L2,L1,L3,L4,写出各中断源的屏蔽字。
2018-2019学年广东省广州市越秀区六年级(下)期末数学试卷一.填空题。
1.据统计,至2017年末,广州市常住人口约是一千四百四十九万八千四百人,这个数写作人,省略万位后面的尾数约是万人.2.水位高于正常水位0.8m记为+0.8m那么水位低于正常水位0.5m记为;向东走15m记为+15m,那么向走10m记为﹣10m.3.把40.05、40.5%、、4.各数按从大到小的顺序排列是:>>>4.0.07:=1:==10÷=(最后一空填小数)5.一批树苗,种50棵,有10棵不成活.这批树苗的成活率是;照这样计算,若要有1200棵成活,则要种棵树苗.6.一套衣服,上衣x元,比裤子贵120元,用含有字母的式子表示,这套衣服共元;当x=300时,这套衣服共元.7.把3个棱长是2cm的正方体拼成一个长方体.拼成的长方体的体积是cm3,它的表面积比3个正方体的表面积之和少了cm2.8.在一块平地上挖一个底面半径是4m的圆柱形水池,池深1m,需要挖出m3的土;要在池底和内壁贴上瓷片,贴瓷片的面积是m2.9.如图,一个内直径是6cm的瓶里装满矿泉水,小兰喝了一些后,这时瓶里水的高度是12cm,把瓶盖拧紧后倒置放平,无水部分高8cm.小兰喝了ml水;这个瓶子的容积是ml.10.仓库里有若干棱长都是5dm的正方体纸箱,拼成了一个几何体,从上面看到的图形是,从左面看到的图形是,这堆纸箱的占地面积是二、作图、填空与解答题.11.如图,是广场附近的平面图.(1)图书馆在广场的方向,实际距离是m.(2)歌剧院在广场的西偏南30°方向150m处.在图中标出歌剧院的位置.(3)少年宫在广场正北方向100米处,小明从广场走到少年宫要2分钟,照这样计算,他从广场走到歌剧院要多少分钟?(用比例知识列方程解答)三、选择正确答案的字母编号填在括号里.12.如果m>0,那么下列各式计算结果最大的是()A.m×(1+)B.m÷(1+)C.m×(1﹣)D.m÷(1﹣)13.把4米长的绳子平均剪成5段,每段长是这条绳子的()A.B.C.D.14.甲、乙两车走同一条路从A地开往B地,甲车要6小时,乙车要4小时,那么甲车和乙车的速度比是()A.6:4B.3:2C.2:3D.无法确定15.下列说法正确的是()A.两个分数大小相等,它们的分数单位一定相同.B.如果,那么x和y成正比例关系.C.8:5的比值是.D.一个三角形,三条边的长度可以分别是3cm.5cm和7cm.16.若圆柱和圆锥等底等高,且两者体积相差9.6dm3,则圆柱体积是()dm3.A.28.8B.14.4C.48D.3.217.从完全相同的甲、乙两块正方形铁皮上分别剪出如图的圆形,比较它们剩下的废料面积是()A.甲多B.乙多C.同样多D.不能确定四、解决问题.18.六年(1 )班全体同学投票选班长,毎位同学投且只能投一票,得票数最高者当选.下面是全部候选人得票情况統汁图.(1)当选班长的同学姓名是.(2)王倩得票数占总票数的%.(3)如果张力得4票,那么吴佳得多少票?19.商店第一季度的营业额为15万元,第二季度的营业额比第一季度增长了10%.第二季度的营业额是多少万元?20.小丽借了一本故事书,若每天看21页,则8天可以看完;若要在一个星期看完,则平均每天要看多少页?(用比例知识列方程解答)21.某校六年級有三个班,在“献爱心﹣﹣为贫困地区儿童捐书“活劫中共捐书550本.其中一班捐书本数占六年級捐书总数的20%,二班和三班捐书本数之比是6:5.(1)一班捐书多少本?(2)二班捐书多少本?22.一块底面半径6cm,高12cm的圆锥形钢材,把它熔铸成一根横截面半径是1cm的圆柱形钢条,这根钢条长多少厘米?23.甲乙两个工程队合修一段公路,甲队修了全长的后,乙队接着修了4.5km,这时恰好修完全长的一半.这段公路长多少千米?参考答案与试题解析一.填空题。
东华大学2018~ 2019学年第 二 学期期_末__试题踏实学习,弘扬正气;诚信做人,诚实考试;作弊可耻,后果自负。
课程名称 概率论与数理统计A(理工类)(B 卷)使用专业 全校各专业查表数据: 75.1)15(05.0 t ,74.1)16(05.0 t ,13.2)15(025.0 t ,11.2)16(025.0 t ,99.0)2.33(,89.0)2.05(,975.0)96.1(,95.0)645.1(,9.0)28.1((一) 填充题(每题4分,共5题)1.有0.005的男子与0.0025的女子是色盲,且男子与女子的总数相等,现随机地选一人,发现是色盲者,则P(男子|色盲)=______________。
2.设随机变量),3(~),,2(~p B p B ,如果95)1(P ,则 )1( P ___________. 3.设随机变量 X 与 Y 相互独立,且X~B (16,), Y 服从于参数为 9 的泊松分布,则D (X −2Y +1)=_________________。
4.设总体X 的概率密度为f (x )=e | | (−∞<x <+∞),X ,X …,X 为总体的随机简单样本,其方差为S ,则E (S )=__________________。
5. 设n ,1是从正态母体),(2a N 中抽取的简单子样, 和2n S 分别表示它的子样的均值和子样方差,又设ξ ~N(μ,α )且与n ,1独立,统计量____________~11 n n S nn .(二)选择题(每题4分,共5题,全部是单选题)1.一批产品中有30%的一级品,现进行放回抽样检查,共取4个样品,则取出的4个样品中恰有2个一级品的概率是( )(A)0.168 (B)0.2646 (C)0.309 (D)0.3602.设随机变量X~N(μ,σ ),则随σ增大,P (|X −μ|<σ)( )。
2018-2019高二下期末试题(选修2-3+4-4)一、选择题1.在极坐标系中,以极点为坐标原点,极轴为x 轴正半轴,建立直角坐标系,点M (2,)的直角坐标是( ) A .(2,1) B .(,1) C .(1,) D .(1,2)2.把语文、数学、物理、历史、外语这五门课程安排在一天的五节课里,如果数学必须比历史先上,则不同的排法有 A .48 B .24 C .60 D .1203.*N n ∈且55n <,则乘积(55)(56)(69)n n n ---等于 ( )A .5569n n A --B .1569n A -C .1555n A -D .1469n A -4.设(1+x )3+(1+x )4+(1+x )5+…+(1+x )50=a 0+a 1x +a 2x 2+a 3x 3+…+a 50x 50,则a 3的值是 ( )A .C 450B .2C 350 C .C 351D .C 451 5. 在二项式251()x x-的展开式中,含x 4的项的系数是( )A-10 B.10 C.-5 D.56.某地区空气质量监测资料表明,一天的空气质量为优良的概率为0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B.0.75C. 0.6D.0.457.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A13 B 12 C 23 D 348.学校足球赛决赛计划在周三、周四、周五三天中的某一天进行,如果这一天下雨则推迟至后一天,如果这三天都下雨则推迟至下一周,已知这三天下雨的概率均为,则这周能进行决赛的概率为A. B. C. D.9.10个球中有一个红球,有放回的抽取,每次取出一球,直到第n 次才取得()k k n ≤次红球的概率为A .2191010n k-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭B .191010k n k-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭C .11191010kn kk n C---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D .111191010k n kk n C----⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭10 投篮测试中,每人投3次,至少投中2次才能通过测试。
第八单元数据的表示和分析班级姓名得分一、选择题。
(每题2分,共20分)1.为了清楚地反映遂宁和成都两地2018年每月平均气温的变化情况,应选用()统计图。
A.单式折线B.复式折线C.单式条形D.复式条形2.要反映浙江每日新冠疫情的人数变化情况用()。
A.单式条形统计图B.单式折线统计图C.复式折线统计图3.在一分钟的跳绳比赛中,小丽前2次跳的平均个数是120下,要使前3次跳的平均个数是125下,她第3次应跳()。
A.125下B.145下C.135下4.中港小学五、六年级开展“爱心助学”捐书活动,要反映他们的捐书情况,应选用()统计图。
A.单式条形统计图B.复式条形统计图C.复式折线统计图5.下面是育英小学和西门小学四、五、六年级学生回收电池统计图。
根据统计情况估计一下,哪个学校的学生回收的电池更多?()A.西门小学B.育英小学C.两个学校一样多6.平均数容易受()的影响。
A.极端数据B.数据数量C.近似数7.计算一组数据的平均数时,如果其中一个数据变小了,那么这组数据的平均数会()。
A.变大B.不变C.变小D.无法确定8.学校男子棒球队队员的平均身高是168cm,下面关于学校男子棒球队队员身高描述正确的是()。
A.男子棒球队队员的身高都是168cmB.男子棒球队至少有一位队员的身高是168cmC.男子棒球队一半队员的身高比168cm高,另一半队员的身高比168cm低D.男子棒球队部分队员身高至少168cm9.下面的情况中, 用复式条形统计图, 用复式折线统计图来表示更能清楚地反映其中的信息。
()①嘉敏一家12个月用水量的增减变化情况②学校兴趣小组男生、女生的具体人数③两个商店上半年各月销售额的变化情况④张兰一家一年中每个月电话使用的具体费用A.①②B.②③C.③④D.④③10.学校书法兴趣小组的同学身高情况如下表,学校书法兴趣小组的同学平均身高的范围是()。
A.125cm以下B.147cm以上C.125cm到147cm之间D.以上三种情况都有可能二、填空题。
2018-2019学年人教版小学数学二年级下册数学第1单元《数据收集整理》测试卷2(含答案)一、我来填一填。
1、16名学生平均分成若干个小组,可以多少人一组?在正确答案的括号里画“√”。
2人()3人()4人() 5人()6人() 8人()2、下面是张老师调查本班同学最喜欢的业余生活情况统计表。
活动项目看书看电视旅游体育运动其他业余活动人数14 10 8 4 2(1)最喜欢()的人多,最喜欢()的人少。
(2)最喜欢看书的比最喜欢旅游的多()人。
(3)最喜欢看电视的比最喜欢体育运动的多()人。
(4)这个班一共有()人。
3.丁丁调查班里同学们最喜欢吃的水果,除了丁丁每位同学都选择了一张水果卡片。
(1)数一数,填一填。
水果苹果橘子梨西瓜草莓人数(2)喜欢()的人数最多,喜欢()的人数最少。
(3)丁丁的班级一共有()人。
二、我来选一选。
下面是二年级学生喜欢的图书人数调查表。
1.喜欢()的人最多。
A.连环画B.故事书C.科技书D.其他书2.喜欢()的人最少。
A.连环画B.故事书C.科技书D.其他书3.喜欢故事书的人数比喜欢连环画的少()人。
A.10B.6C.4D.84.喜欢连环画的和喜欢科技书的一共有()人。
A.30B.20C.26D.12三、统计小能手。
1.气象小组把9月份的天气作了如下记录:晴天:雨天:阴天:(1)把晴天、雨天、阴天的天数分别填在下面的统计表中。
天气名称晴天雨天阴天天数(2)从上表中可以看出:这个月中()的天数最多,()的天数最少。
(3)这个月中阴天有()天,晴天比雨天多()天,阴天比雨天多()天。
(4)你还能提出什么问题并解答。
2.下面是调查二(1)班学生喜欢的课外书的情况。
(1)根据上面的信息填写下面的统计表。
课外书宠物小精灵少儿百科全书奥特曼人数(2)喜欢()的学生最多,有()人。
(3)喜欢《宠物小精灵》的比喜欢《少儿百科全书》的多()人。
(4)喜欢《奥特曼》和《宠物小精灵》的学生一共有多少人?3.动物学校二(1)班正在竞选班长。
2018-2019学年第二学期《数据库高级》期末考试适用班级: 1801、1802、1803、18041.下列数据类型,在定义时需要指出数据长度的是( ) A 、int B 、text C 、char D 、money2.若定义一个学生的出生日期,则应该选用( )类型。
A 、datetime B 、char C 、int D 、text3. SQL 语言中,删除表中数据的命令是( )。
A 、delete B 、drop C 、clearD 、remove4.如果想求最高成绩,可以使用( )函数 。
A 、SUM B 、COUNT C 、MIN D 、MAX5.下列哪个不是数据库对象?( ) A 、数据模型 B 、视图 C 、表 D 、用户6.下列哪个既不是SQL 数据文件也不是日志文件的后缀( ) A 、mdf B 、ldf C 、ndf D 、docx7.下面字符串能与通配符表达式“China%”进行匹配的是 ( )。
A 、ina B 、C_hina C 、ChinaXIAN D 、Chin%F8.SQLserver 安装程序创建了四个系统数据库,下列哪个不是系统数据 库?( )A 、STUDB B 、masterC 、modelD 、msdb9.若想限定某列在表中不允许出现重复的数据且不能为空值,应当使用 ( )约束完成。
A 、CHECKB 、PRIMARY KEYC 、FOREIGN KEYD 、UNIQUE10.每个数据库有且只有一个( )。
A 、主要数据文件 B 、次要数据文件 C 、日志文件 D 、索引文件11.数据库系统的日志文件可用于记录下述哪类内容( ) A 、程序运行结果 B 、数据查询操作 C 、数据更新操作 D 、以上全部操作12.以下关于外键和相应的主键之间的关系正确的是( ) A 、外键不一定要与相应的主键同名 B 、外键一定要与相应的主键同名C 、外键一定与相应的主键同名且唯一D 、外键一定与相应主键同名,但不一定唯一13.在SQL 查询语句中,from 子句中可以出现( ) A 、数据库名 B 、表名 C 、列名 D 、表达式14.在使用聚合函数时,把空值计算在内的函数是( ) A 、COUNT (*) B 、SUM C 、MAX D 、AVG15.关于索引的说法错误的是( )。
泰安镇小学2018-2019学年三年级下学期数学模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)洗衣粉2元6角,毛巾4元8角,衣刷1元9角,妈妈大约带多少元去付款就够了?()A. 7 B. 8 C. 9 D. 10【答案】D【考点】一位小数的加法和减法【解析】【解答】2元6角=2.6元,4元8角=4.8元,1元9角=1.9元,2.6+4.8+1.9=7.4+1.9=9.3(元)大约带10元就够了.故答案为:D.【分析】根据题意可知,先将单位化成元,然后用加法求出一共用去的钱数,然后对比各选项,选出合适的钱数即可.2.(2分)被除数的末尾有几个0,商的末尾()。
A. 一定有几个0B. 一定没有0C. 不一定有几个0【答案】C【考点】两、三位数除以一位数【解析】【解答】被除数的末尾有几个0,商的末尾不一定有几个0.故答案为:C.【分析】被除数末尾有几个零,不能确定商的末尾就有几个零,例如100÷25=4,被除数有2个0,而商的末尾没有0,据此解答.3.(2分)60÷4的商是()位数。
A. 1B. 2C. 3D. 4【答案】B【考点】两位数除以一位数的除法【解析】【解答】60÷4的商是2位数。
【分析】两位数除以一位数,被除数最高位上是大于除数的数,商是两位数,被除数的最高位是小于除数的数,商是一位数,据此解答。
4.(2分)下面图形中,()绕着中心O点旋转60 º后能和原图重合。
A.B.C.【答案】C【考点】旋转与旋转现象【解析】【解答】解:A、绕着中心O点旋转120°能和原图重合;B、绕着中心点旋转90°能和原图重合;C、绕着中心点旋转60°能和原图重合。
故答案为:C。
【分析】A是三角形,360°÷3=120°;B是正方形,360°÷4=90°;C是正六边形,360°÷6=60°;由此确定旋转的度数即可。
2018-2019学年四川省成都七中育才学校七年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.用一个平面去截圆柱体,则截面形状不可能是()A.正方形B.三角形C.长方形D.圆2.一条信息在一周内被转发了2 180 000次,将数据2 180 000用科学记数法表示为()A.2.18×105B.2.18×106C.21.8×106D.21.8×1053.下列各式中,不是同类项的是()A.2ab2与﹣3b2a B.2πx2与x2C.m2n2与5n2m2D.与6yz24.下列等式变形中,错误的是()A.由a=b,得a+5=b+5B.由﹣3x=﹣3y,得x=yC.由x+m=y+m,得x=y D.由a=b,得5.从n边形的一个顶点出发可以连接8条对角线,则n=()A.8B.9C.10D.116.下列调查中,适宜采用普查方式的是()A.调查日照电视台节目《社会零距离》的收视率B.调查日照市民对京剧的喜爱程度C.调查全国七年级学生的身高D.调查我国首艘宇宙飞船“天舟一号”的零部件质量7.如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.若∠DOC =70°,则∠BOE的度数是()A.30°B.40°C.25°D.20°8.一种商品进价为每件100元,按进价增加20%出售,后因库存积压降价,按售价的九折出售,每件还能盈利()A.8元B.15元C.12.5元D.108元9.已知a、b两数在数轴上对应的点如图所示,下列结论不正确的是()A.a﹣b>0B.|a|>|b|C.ab<0D.a+b<0 10.下列说法正确的个数是()①射线AB与射线BA是同一条直线;②两点确定一条直线;③两点之间直线最短;④若AB=BC,则点B是AC的中点.A.1个B.2个C.3个D.4个二、填空题(每小题4分,共16分)11.﹣的相反数是,倒数是,绝对值是.12.若x=1是方程a(x﹣2)=a+2x的解,则a=.13.单项式﹣πx2y的系数为,次数为.14.如图,OA是北偏东30°一条射线,若∠AOB=90°,则OB的方向角是.三、解答题(共54分)15.(1)计算:﹣12+16÷(﹣2)3×|﹣3﹣1|(2)解方程:7x﹣3(3x+2)=6(3)解方程:﹣x=16.先化简,再求值:2(ab+3a2)﹣[5a2﹣(3ab﹣b2)],其中a=,b=1.17.由7个棱长为1的正方体组成如图所示的几何体.(1)画出该几何体的主视图和左视图;(2)求该几何体的表面积.18.列方程解应用问题:一个车间加工轴杆和轴承,平均每人每天可以加工轴杆12根或轴承15个.该车间共有90人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套(1根轴杆与1个轴承为一套)?19.某中学为了了解七年级学生体能状况,从七年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图:(1)这次抽样调查的样本容量是,请补全条形图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中B等级所对应的圆心角为.(3)该校九年级学生有1600人,请你估计其中A等级的学生人数.20.如图①,已知线段CD在线段AB上运动,线段AB=10cm,CD=2cm,点E、F分别是AC、BD的中点.(1)若AC=3cm,求EF的长.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD,则∠EOF、∠AOB和∠COD有何关系,请直接写出.一、填空题(每小题4分,共20分)21.已知2(x﹣1)2+3|y+3|=0,那么代数式x﹣y=.22.如图,数a,b,c所表示的数如图所示:化简代数式的结果为:|a+b﹣c|﹣2|b﹣a|+|2c|=.23.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2016次跳后它停的点所对应的数为.24.数学中有很多奇妙现象,比如:关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”.例如:2x=4的解为2,且2=4﹣2,则该方程2x=4是差解方程.若关于x的一元一次方程5x﹣m+1=0是差解方程,则m=.25.长方形ABCD中,AB=DC=6cm,AD=BC=12cm.有一动点P从A出发以3cm/s的速度沿A﹣B﹣C运动到C时停止,动点Q从C点出发以2cm/s的速度在线段CB上沿C ﹣B方向向B运动.P,Q同时出发,当一点停止时另一个点同时停止运动,设运动的时间是t(s).当t=时,能使|PQ﹣CQ|=2cm.二、解答题(8+10+12,共30分)26.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC中,∠ACB=90°,若AC=b,BC=a,请你利用这个图形解决下列问题:(1)试说明a2+b2=c2;(2)如果大正方形的面积是10,小正方形的面积是2,求(a+b)2的值.27.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000m3海水,淡化率为70%.每淡化1m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?28.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.2018-2019学年四川省成都七中育才学校七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.用一个平面去截圆柱体,则截面形状不可能是()A.正方形B.三角形C.长方形D.圆【解答】解:用平面截圆柱,横切就是圆,竖切就是长方形,如果底面圆的直径等于高时,是正方形,不论怎么切不可能是三角形.故选:B.2.一条信息在一周内被转发了2 180 000次,将数据2 180 000用科学记数法表示为()A.2.18×105B.2.18×106C.21.8×106D.21.8×105【解答】解:2 180 000=2.18×106,故选:B.3.下列各式中,不是同类项的是()A.2ab2与﹣3b2a B.2πx2与x2C.m2n2与5n2m2D.与6yz2【解答】解:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.故选:D.4.下列等式变形中,错误的是()A.由a=b,得a+5=b+5B.由﹣3x=﹣3y,得x=yC.由x+m=y+m,得x=y D.由a=b,得【解答】解:A、两边都加5,故A正确;B、两边都除以同一个不为零的数,故B正确;C、两边都加m,故C正确;D、当m=0时,两边都除以m无意义,故D错误;故选:D.5.从n边形的一个顶点出发可以连接8条对角线,则n=()A.8B.9C.10D.11【解答】解:由题意得:n﹣3=8,解得n=11,故选:D.6.下列调查中,适宜采用普查方式的是()A.调查日照电视台节目《社会零距离》的收视率B.调查日照市民对京剧的喜爱程度C.调查全国七年级学生的身高D.调查我国首艘宇宙飞船“天舟一号”的零部件质量【解答】解:A、调查日照电视台节目《社会零距离》的收视率适合抽样调查;B、调查日照市民对京剧的喜爱程度适合抽样调查;C、调查全国七年级学生的身高适合抽样调查;D、调查我国首艘宇宙飞船“天舟一号”的零部件质量适合全面调查;故选:D.7.如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.若∠DOC =70°,则∠BOE的度数是()A.30°B.40°C.25°D.20°【解答】解:∵OD是∠AOC的平分线,∴∠AOC=2∠COD=140°,∴∠BOC=180°﹣∠AOC=40°,∵OE是∠COB的平分线,∴∠BOE=∠BOC=20°,故选:D.8.一种商品进价为每件100元,按进价增加20%出售,后因库存积压降价,按售价的九折出售,每件还能盈利()A.8元B.15元C.12.5元D.108元【解答】解:由题意可得,每件还能盈利为:100×(1+20%)×0.9﹣100=8(元),故选:A.9.已知a、b两数在数轴上对应的点如图所示,下列结论不正确的是()A.a﹣b>0B.|a|>|b|C.ab<0D.a+b<0【解答】解:∵a<﹣1<0<b,∴a﹣b<0,|a|>|b|,ab<0,a+b<0.故选:A.10.下列说法正确的个数是()①射线AB与射线BA是同一条直线;②两点确定一条直线;③两点之间直线最短;④若AB=BC,则点B是AC的中点.A.1个B.2个C.3个D.4个【解答】解:①射线AB与射线BA不是同一条射线,故①错误;②两点确定一条直线,故②正确;③两点之间线段最短,故③错误;④若AB=BC,则点B不一定是AC的中点,故④错误.故选:A.二、填空题(每小题4分,共16分)11.﹣的相反数是,倒数是﹣,绝对值是.【解答】解:﹣的相反数是,倒数是﹣,绝对值是,故答案为:,﹣,.12.若x=1是方程a(x﹣2)=a+2x的解,则a=﹣1.【解答】解:x=1是方程a(x﹣2)=a+2x的解,将x=1代入该方程,得:a(1﹣2)=a+2,是一个关于a为未知数的一元一次方程,去括号得:﹣a=a+2,移项得:﹣a﹣a=2,合并同类项得:﹣2a=2,两边同除以﹣2得:a=﹣1,∴a=﹣1.故填:﹣1.13.单项式﹣πx2y的系数为﹣π,次数为3.【解答】解:单项式﹣πx2y的系数为﹣π,次数为2+1=3.故答案为:﹣π,3.14.如图,OA是北偏东30°一条射线,若∠AOB=90°,则OB的方向角是北偏西60°.【解答】解:如图所示:∵OA是北偏东30°方向的一条射线,∠AOB=90°,∴∠1=90°﹣30°=60°,∴OB的方向角是北偏西60°.故答案为:北偏西60°.三、解答题(共54分)15.(1)计算:﹣12+16÷(﹣2)3×|﹣3﹣1|(2)解方程:7x﹣3(3x+2)=6(3)解方程:﹣x=【解答】解:(1)﹣12+16÷(﹣2)3×|﹣3﹣1|=﹣1+16÷(﹣8)×4=﹣1﹣8=﹣9;(2)去括号,得7x﹣9x﹣6=6移项,得7x﹣9x=6+6合并同类项,得﹣2x=12,系数化为1,得x=﹣6;(3)去分母,得x﹣6﹣4x=2(x+5)去括号,得x﹣6﹣4x=2x+10移项,得x﹣4x﹣2x=10+6,合并同类项,得﹣5x=16系数化为1,得x=﹣.16.先化简,再求值:2(ab+3a2)﹣[5a2﹣(3ab﹣b2)],其中a=,b=1.【解答】解:原式=2ab+6a2﹣5a2+3ab﹣b2=5ab+a2﹣b2,当a=,b=1时,原式=5××1+()2﹣1=+﹣1=.17.由7个棱长为1的正方体组成如图所示的几何体.(1)画出该几何体的主视图和左视图;(2)求该几何体的表面积.【解答】解:(1)该几何体的左视图,主视图如图所示.(2)每个小正方体的每个表面积为1,共计28个,故表面积为28.18.列方程解应用问题:一个车间加工轴杆和轴承,平均每人每天可以加工轴杆12根或轴承15个.该车间共有90人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套(1根轴杆与1个轴承为一套)?【解答】解:设安排x人生产轴杆,则(90﹣x)人生产轴承,根据题意得:12x=15(90﹣x),解得:x=50,∴90﹣x=40.答:安排50人生产轴杆、40人生产轴承,才能使每天生产的轴杆和轴承正好配套.19.某中学为了了解七年级学生体能状况,从七年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图:(1)这次抽样调查的样本容量是50,请补全条形图;(2)D等级学生人数占被调查人数的百分比为8%,在扇形统计图中B等级所对应的圆心角为144°.(3)该校九年级学生有1600人,请你估计其中A等级的学生人数.【解答】解:(1)样本容量为16÷32%=50,B等级人数为50﹣16﹣10﹣4=20,如图所示:故答案为:50;(2)D等级学生人数占被调查人数的百分比为×100%=8%;B等级所对应的圆心角为×360°=144°;故答案为:8%,144°;(3)全校A等级的学生人数约有×1600=512(人).20.如图①,已知线段CD在线段AB上运动,线段AB=10cm,CD=2cm,点E、F分别是AC、BD的中点.(1)若AC=3cm,求EF的长.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD,则∠EOF、∠AOB和∠COD有何关系,请直接写出∠EOF=(∠AOB+∠COD).【解答】解:(1)∵AB=10cm,CD=2cm,AC=3cm,∴DB=5cm,∵E、F分别是AC、BD的中点,∴CE=AC=1.5cm,DF=DB=2.5cm,∴EF=1.5+2+2.5=6cm;(2)EF的长度不变.∵E、F分别是AC、BD的中点∴EC=AC,DF═DB,∴EF=EC+CD+DF═AC+CD+DB=+CD═(AB﹣CD)+CD=,∵AB=10cm,CD=2cm,∴EF=6cm;(3)∠EOF=(∠AOB+∠COD)..理由:∵OE、OF分别平分∠AOC和∠BOD,∴∠COE=∠AOC,∠DOF=∠BOD,∴∠EOF=∠COE+∠COD+∠DOF=∠AOC+∠COD+∠BOD=(∠AOC+∠BOD)+∠COD=(∠AOB﹣∠COD)+∠COD=(∠AOB+∠COD).故答案∠EOF=(∠AOB+∠COD).一、填空题(每小题4分,共20分)21.已知2(x﹣1)2+3|y+3|=0,那么代数式x﹣y=4.【解答】解:∵2(x﹣1)2+3|y+3|=0,∴x=1,y=﹣3,则x﹣y=1﹣(﹣3)=4,故答案为:4.22.如图,数a,b,c所表示的数如图所示:化简代数式的结果为:|a+b﹣c|﹣2|b﹣a|+|2c|=3b﹣a﹣3c.【解答】解:由数轴可知,c<b<0<a,∴b﹣c>0,a+b﹣c>0,b﹣a<0,2c<0,∴|a+b﹣c|﹣2|b﹣a|+|2c|=a+b﹣c﹣2(﹣b+a)+(﹣2c)=a+b﹣c+2b﹣2a﹣2c=﹣a+3b﹣3c.故答案为﹣a+3b﹣3c.23.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2016次跳后它停的点所对应的数为1.【解答】解:第1次跳后落在3上;第2次跳后落在5上;第3次跳后落在2上;第4次跳后落在1上;第5次跳后落在3上;…4次跳后一个循环,依次在3,5,2,1这4个数上循环,∵2016÷4=504,∴应落在1上.故答案为:1.24.数学中有很多奇妙现象,比如:关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”.例如:2x=4的解为2,且2=4﹣2,则该方程2x=4是差解方程.若关于x的一元一次方程5x﹣m+1=0是差解方程,则m=.【解答】解:∵5x﹣m+1=0,∴5x=m﹣1,解得:x=,∵关于x的一元一次方程5x﹣m+1=0是差解方程,∴m﹣1﹣5=,解得:m=,故答案为.25.长方形ABCD中,AB=DC=6cm,AD=BC=12cm.有一动点P从A出发以3cm/s的速度沿A﹣B﹣C运动到C时停止,动点Q从C点出发以2cm/s的速度在线段CB上沿C ﹣B方向向B运动.P,Q同时出发,当一点停止时另一个点同时停止运动,设运动的时间是t(s).当t=或或时,能使|PQ﹣CQ|=2cm.【解答】解:当点P在AB上时,即0≤t≤2,∴CQ≤4cm,BQ≥8cm,∵PQ>BQ,∴PQ﹣CQ>2cm,∴当点P在AB上时,不存在|PQ﹣CQ|=2cm.当点P在BC上时,即2<t≤6,∴CQ=2t,BQ=3t﹣6,当P,Q相遇前,PQ=12﹣(3t﹣6)﹣2t=18﹣5t,∵|PQ﹣CQ|=2cm.∴|18﹣5t﹣2t|=2∴t=或,当P,Q相遇后,PQ=3t﹣6+2t﹣12=5t﹣18,∵|PQ﹣CQ|=2cm.∴|5t﹣18﹣2t|=2∴t=或(不合题意舍去)故答案为:或或.二、解答题(8+10+12,共30分)26.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC中,∠ACB=90°,若AC=b,BC=a,请你利用这个图形解决下列问题:(1)试说明a2+b2=c2;(2)如果大正方形的面积是10,小正方形的面积是2,求(a+b)2的值.【解答】解:(1)∵大正方形面积为c2,直角三角形面积为ab,小正方形面积为(b ﹣a)2,∴c2=4×ab+(a﹣b)2=2ab+a2﹣2ab+b2即c2=a2+b2.;(2)由图可知,(b﹣a)2=2,4×ab=10﹣2=8,∴2ab=8,∴(a+b)2=(b﹣a)2+4ab=2+2×8=18.27.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000m3海水,淡化率为70%.每淡化1m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?【解答】解:(1)设年降水量为x万m3,每人年平均用水量为ym3,由题意得,解得:.答:年降水量为200万m3,每人年平均用水量为50m3.(2)设该镇居民人均每年用水量为zm3水才能实现目标,由题意得,12000+25×200=20×25z,解得:z=34,50﹣34=16m3.答:该镇居民人均每年需节约16m3水才能实现目标.(3)该企业n年后能收回成本,由题意得,[3.2×5000×70%﹣(1.5﹣0.3)×5000]×300n﹣400000n≥10000000,解得:n≥8.答:至少9年后企业能收回成本.28.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=10,线段AB的中点表示的数为3;②用含t的代数式表示:t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.【解答】解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.。
唐山丰润区2018-2019学度初一上年末数学试卷含解析解析【一】选择题:本大题共12个小题,每题2分,共24分,在每题给出旳四个选项中,只有一项为哪一项符合题目要求旳,请把正确旳选项填在括号内、1、||旳值是()A、 B、C、﹣2 D、22、数据2500000用科学记数法表示为()A、25×105B、2.5×105C、2.5×106D、2.5×1073、方程3x﹣6=9旳解是()A、5B、1C、D、﹣24、以下说法中正确旳选项是()A、射线AB和射线BA是同一条射线B、延长线段AB和延长线段BA旳含义是相同旳C、延长直线ABD、通过两点能够画一条直线,同时只能画一条直线5、以下计算中,正确旳选项是()A、﹣2〔a+b〕=﹣2a+bB、﹣2〔a+b〕=﹣2a﹣b2C、﹣2〔a+b〕=﹣2a﹣2bD、﹣2〔a+b〕=﹣2a+2b6、如图,从正面看由相同旳小正方体搭成旳几何体,所得到旳平面图形是()A、B、C、D、7、:当x=2时,多项式x4﹣bx2+c旳值为2016,当x=﹣2时,多项式x4﹣bx2+c旳值为()A、﹣2016B、﹣2018C、2016D、20188、如图,将一个直角三角形板AOB旳顶点O放在直线CD上,假设∠AOC=35°,那么∠BOD 等于()A、155°B、145°C、65°D、55°9、几个人共同种一批树苗,假如每人种5棵,那么剩下3棵树苗未种;假如每人种6棵,那么缺4棵树苗、假设设参与种树旳人数为x人,那么下面所列方程中正确旳选项是() A、5x+3=6x﹣4 B、5x+3=6x+4 C、5x﹣3=6x﹣4 D、5x﹣3=6x+410、计算﹣1+〔﹣1〕2+〔﹣1〕3+〔﹣1〕4+…+〔﹣1〕2018旳值,结果正确旳选项是()A、1B、﹣1C、0D、﹣1或011、如图,在数轴上有a,b两个有理数,假设表示数a,b旳点到原点旳距离相等,那么以下结论中,不正确旳选项是()A、a+b=0B、a﹣b=2bC、ab=﹣b2D、12、如图,OA旳方向是北偏东15°,OB旳方向是西北方向,假设∠AOC=∠AOB,那么OC旳方向是()A、北偏东75°B、北偏东60°C、北偏东45°D、北偏东15°【二】填空题:本大题共8个小题,每题3分,共24分、13、计算:﹣2×3=﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、14、某天最低气温是﹣5℃,最高气温比最低气温高8℃,那么这天旳最高气温是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏℃、15、假设∠A=45°30′,那么∠A旳补角等于﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、16、假设﹣3x2m y3与2x4y n是同类项,那么|m﹣n|旳值是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、17、假设关于x旳方程3x﹣7=2x+a旳解与方程4x+3=7旳解相同,那么a旳值为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、18、a+2b=3,那么5﹣a﹣2b=﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、19、线段AB=5cm,点C在直线AB上,且BC=3cm,那么线段AC=﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、20、如图,∠AOC和∠DOB差不多上直角,假如∠DOC=35°,那么∠AOB旳度数为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、【三】解答题:本大题共7小题,共52分。
湖北省麻城市(思源实验学校)2018-2019学年第一学期(期末)数学学科试题1.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>32.如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A .B .C .D .3.如图,直线AB、AD与⊙O相切于点B、D,C为⊙O上一点,且∠BCD=140°,则∠A的度数是()A.70°B.105°C.100°D.110°4.关于x的方程(a﹣1)x2+x+1=0是一元二次方程,则a的取值范围是()A.a≠1 B.a>﹣1且a≠1 C.a≥﹣1且a≠1 D.a为任意实数5.已知⊙O的直径为8cm,P为直线l上一点,OP=4cm,那么直线l与⊙O的公共点有()A.0个B.1个C.2个D.1个或2个6.若一个直角三角形的两边分别为6和8,则这个直角三角形外接圆直径是()A.8 B.10 C.5或4 D.10或87.已知x1,x2是方程x2﹣x+1=0的两根,则x12+x22的值为()A.3 B.5 C.7 D.48.如图,在⊙O内有折线OABC,点B、C在圆上,点A在⊙O内,其中OA=4cm,BC=10cm,∠A=∠B=60°,则AB的长为()A.5cm B.6cm C.7cm D.8cm9.已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a﹣b+c<0;⑤3a+c>0;则正确的结论是()A.①②⑤ B.③④⑤ C.②③④ D.①④⑤10.如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A.3 B.4 C .D .③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A.①②④B.①④C.①②③D.③④12.二次函数y=x2+bx+c的图象向左平移2个单位,再向上平移3个单位,得到函数解析y=x2﹣2x+1则b与c分别等于()A.2,﹣2 B.﹣8,14 C.﹣6,6 D.﹣8,1813.关于二次函数y=ax2+bx+c的图象有下列命题:①当c=0时,函数的图象经过原点;②当c>0,且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根;③函数图象最高点的纵坐标是;④当b=0时,函数的图象关于y轴对称.其中正确命题的个数是()A.1个B.2个C.3个D.4个14.若A(﹣4,y l),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y l,y2,y3的大小关系是.(用<号连接)15.抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),若平移该抛物线使其顶点移动到点P1(2,﹣2),那么得到的新抛物线的一般式是.16.抛物线y=2x2+3上有两点A(x1,y1)、B(x2,y2),且x1≠x2,y1=y2,当x=x1+x2时,y=.17.若关于x的方程x2+(k﹣2)x+k2=0的两根互为倒数,则k=.18.如图,矩形纸片ABCD,BC=2,∠ABD=30度.将该纸片沿对角线BD翻折,点A落在点E处,EB交DC于点F,则点F到直线DB的距离为.19.已知二次函数y=(x﹣1)2+4,若y随x的增大而减小,则x的取值范围是.20.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为.21.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?22.小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?23.某加油站销售一批柴油,平均每天可售出20桶,每桶盈利40元,为了支援我市抗旱救灾,加油站决定采取降价措施.经市场调研发现:如果每桶柴油降价1元,加油站平均每天可多售出2桶.(1)假设每桶柴油降价x 元,每天销售这种柴油所获利润为y 元,求y 与x 之间的函数关系式;(2)每桶柴油降价多少元后出售,农机服务站每天销售这种柴油可获得最大利润?此时,与降价前比较,每天销售这种柴油可多获利多少元?(3)请分析并回答该种柴油降价在什么范围内,加油站每天的销售利润不低于1200元?24.如图,在△ABC 中,AB=AC ,以AB 为半径的⊙O 交AC 于点E ,交BC 于点D ,过点D 作⊙O的切线DF ,交AC 于点F .(1)求证:DF ⊥AC ;(2)若CE=2,CD=3,求AB 的长;(3)若⊙O 的半径为4,∠CDF=22.5°,求阴影部分的面积.25.如图,以等腰△ABC 的一腰AB 上的点O 为圆心,以OB 为半径作圆,⊙O 交底边BC 于点D .过D 作⊙O 的切线DE ,交AC 于点E .(1)求证:DE ⊥AC ;(2)若AB=BC=CA=2,问圆心O 与点A 的距离为多少时,⊙O 与AC 相切?26.某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm )在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm 2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价(1)(2)40cm 的薄板,获得的利润是26元(利润=出厂价﹣成本价). ①求一张薄板的利润与边长之间满足的函数关系式; ②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少? 27.如图,在平面直角坐标系中,二次函数y=x 2+bx+c 的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,﹣3)点,点P是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式. (2)连接PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C ,那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由. (3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积. 28.如图,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点. (1)求抛物线的解析式; (2)点M 是线段BC 上的点(不与B ,C 重合),过M 作NM∥y 轴交抛物线于N ,若点M 的横坐标为m ,请用含m 的代数式表示MN 的长; (3)在(2)的条件下,连接NB ,NC ,是否存在点m ,使△BNC 的面积最大?若存在,求m 的值;若不存在,说明理由.29.如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连结AD,作BE⊥AD,垂足为E,连结CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)若∠A=45°,试判断四边形ACFE的形状,并说明理由;(3)当∠A在什么范围取值时,线段DE上存在点G,满足条件DG=DA.30.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)31.某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的销售和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图1);一件商品的成本Q(元)与时间t (月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图2).(1)一件商品在3月份出售时的利润是多少元?(利润=售价﹣成本)(2)求图2中表示一件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30 000件,请你计算一下该公司在一个月内最少获利多少元?32.如图,已知抛物线y=﹣x2+bx+c与坐标轴分别交于点点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.(1)求该抛物线的解析式及点E的坐标;(2)若D点运动的时间为t,△CED的面积为S,求S关于t的函数关系式,并求出△CED的面积的最大值.。