第7章 扭转的强度和刚度计算
- 格式:ppt
- 大小:779.00 KB
- 文档页数:27
材料力学扭转刚度知识点总结材料力学是力学的一个重要分支,主要研究材料的物理性质和机械行为。
扭转刚度是材料力学中的一个重要概念,用来描述材料对扭转加载的响应。
本文将对材料力学扭转刚度的相关知识点进行总结。
一、扭转刚度的定义扭转刚度是指材料在扭转加载下对外部力矩的抵抗能力。
扭转刚度直接与材料的几何形状、材料的性质以及加载方式有关。
二、扭转刚度的计算方法在计算扭转刚度时,需要考虑两个主要参数:扭转角度和转矩。
扭转角度是指材料在加载时发生的旋转变形,常用弧度来表示。
转矩是施加在材料上的力矩,用来产生扭转变形。
计算扭转刚度的方法有多种,常用的方法包括静态法、动态法和半经验法。
静态法是将扭转过程建模为刚性体的旋转问题,并应用牛顿第二定律进行分析。
动态法则是通过测量材料在一定频率下的振动响应来计算扭转刚度。
半经验法是将理论分析与试验数据相结合进行计算,通常用于复杂加载条件下的扭转刚度计算。
三、影响扭转刚度的因素1. 几何形状:扭转刚度与材料的几何形状密切相关。
例如,圆形截面材料相对于矩形截面材料来说,具有更高的扭转刚度。
2. 材料的性质:不同材料具有不同的扭转刚度。
例如,钢材相对于铝材来说,由于其高强度和高刚度,具有较高的扭转刚度。
3. 载荷方式:不同的加载方式会对扭转刚度产生不同的影响。
例如,纯扭转加载方式下的扭转刚度与剪切加载方式下的扭转刚度不同。
4. 温度:温度对材料的性能有很大影响,进而会影响材料的扭转刚度。
四、应用领域扭转刚度的概念在工程领域有广泛应用。
例如,在建筑结构设计中,需要考虑材料的扭转刚度来保证结构的稳定性和安全性。
同时,在机械工程中,考虑到机械零件的扭转刚度可以帮助设计出更耐用和可靠的机械设备。
另外,扭转刚度还在材料疲劳寿命、材料可塑性等方面具有重要作用。
对于疲劳寿命的预测和控制,了解材料的扭转刚度是至关重要的。
结论材料力学扭转刚度是材料力学中的重要内容,它描述了材料在扭转加载下的变形行为。
第7章 圆轴扭转主要知识点:(1)圆轴扭转的概念、扭矩和扭矩图;(2)圆轴扭转时的应力和强度计算;(3)圆轴扭转时的变形和刚度计算。
圆轴扭转的概念、扭矩和扭矩图1. 已知圆杆横截面上的扭矩,试画出截面上与T 对应的切应力分布图。
解:截面上与T 对应的切应力分布图如下:2. 用截面法求下图所示各杆在1-1、2-2、3-3截面上的扭矩。
图7-2解:a)采用截面法计算扭矩(见图7-2a )。
取1-1截面左侧外力偶矩计算,可得m kN T ⋅-=-311。
取2-2截面左侧外力偶矩计算,由平衡方程062122=+⋅-+-T m kN )(,可得m kN T ⋅=-322。
取3-3截面右侧外力偶矩计算,可得m kN T ⋅=-133。
b) 采用截面法计算扭矩(见图7-2b )。
取1-1截面左侧外力偶矩计算,可得m kN T ⋅-=-511。
取2-2截面左侧外力偶矩计算,由平衡方程05522=+⋅+-T m kN )(,可得m kN T ⋅-=-1022。
取3-3截面右侧外力偶矩计算,由平衡方程03333=+⋅+-T m kN )(,可得m kN T ⋅-=-633。
3. 作下图各杆的扭矩图。
解:a)采用截面法计算扭矩(见图7-3a )。
取1-1截面左侧外力偶矩计算,可得m kN T ⋅=-411。
取2-2截面右侧外力偶矩计算,可得m kN T ⋅-=-222。
作出扭矩图。
a) b)图7-3b) 由力矩平衡方程可得e A M M 2-=(负号表示与图中假设方向相反)。
采用截面法计算扭矩(见图7-3b )。
取1-1截面左侧外力偶矩计算,可得e M T 211-=-。
取2-2截面右侧外力偶矩计算,可得e M T -=-22。
作出扭矩图。
圆轴扭转时的应力和强度计算4. 实心圆轴和空心轴通过牙嵌离合器而连接,如图所示。
已知轴的转速n =100r/min ,传递的功率P=7.5kW ,材料的许用应力][τ=40MP a ,试通过计算确定(1) 采用实心轴时,直径d 1和的大小;(2) 采用内外径比值为1/2的空心轴时,外径D 2的大小。
抗扭强度和抗扭刚度计算公式抗扭强度和抗扭刚度是材料强度和刚度的两个重要参数之一。
抗扭强度指材料在扭转过程中所能承受的最大扭转应力,抗扭刚度则是指材料在扭转过程中所表现出的抵抗扭转的能力。
这两个参数的测量和计算都是非常重要的,因为它们对人们所关心的材料结构和性能均有着很大的影响。
在实际工程应用中,抗扭强度和抗扭刚度常常是决定材料使用和结构设计的关键因素之一。
例如,在机械制造和汽车工业中,材料的抗扭强度和抗扭刚度对于机器、发动机组件和汽车轮毂等大型结构件来说显得尤其重要。
计算抗扭强度和抗扭刚度可以使用以下的公式。
假设材料的截面形状是圆形,并且应力分布沿圆心方向均匀,那么:1. 抗扭强度公式:T = (π/2) × τ_max × R^3,其中,T是抗扭强度,τ_max是最大扭转应力,R是圆柱的半径。
2. 抗扭刚度公式:K = G × I,其中,K是抗扭刚度,G是剪切模量,I是截面惯性矩。
下面就计算材料的抗扭强度和抗扭刚度为例,进行简单的说明。
假设我们有一个直径为10 cm,长度为20 cm的纯铝杆,想计算它的抗扭强度和抗扭刚度。
首先,我们需要测量铝杆的圆柱半径R,它等于直径的一半,所以R=5 cm。
然后,我们需要确定材料的剪切模量G和截面惯性矩I。
对于铝杆这种确定奇形参数比较麻烦,我们可以选择一种计算常规圆形杆的抗扭刚度公式:K = (π/32) × d^4,其中,d是圆柱的直径。
将直径d=10 cm代入该公式中,我们得到K = 12.27 × 10^9 N·m^2。
然后,我们可以计算铝杆的抗扭强度T。
假设最大扭转应力τ_max = 80 MPa,将这个值和铝杆的半径R = 5 cm代入上述公式中,我们得到T = 15708 N·m。
这个数值告诉我们,在最大扭转应力为80 MPa的情况下,铝杆能够承受15708 N·m的扭矩。
7.7 梁的刚度7.7.1 梁的刚度条件计算梁的变形的主要目的是为了判别梁的刚度是否足够以及进行梁的设计。
工程中梁的刚度主要由梁的最大挠度和最大转角来限定,因此,梁的刚度条件可写为:⎩⎨⎧≤≤][][maxmax θθw w (7-10) 其中,m a x)(m a x x w w =,max)(max x θθ=分别是梁中的最大挠度和最大转角,][w ,][θ分别是许可挠度和许可转角,它们由工程实际情况确定。
工程中][θ通常以度()表示,而许可挠度通常表示为:mlw =][ 是大的自然数)是梁长,m l ( 上述两个刚度条件中,挠度的刚度条件是主要的刚度条件,而转角的刚度条件是次要的刚度条件。
7.7.2 刚度条件的应用与拉伸压缩及扭转类似,梁的刚度条件有下面三个方面的应用。
(1)校核刚度给定了梁的载荷,约束,材料,长度以及截面的几何尺寸等,还给定了梁的许可挠度和许可转角。
计算梁的最大挠度和最大转角,判断其是否满足梁的刚度条件式(7-15)和式(7-16),满足则梁在刚度方面是安全的,不满足则不安全。
很多时候工程中的梁只要求满足挠度刚度条件式(7-15)即可,而梁的最大转角由于很小,一般情况下不需要校核。
(2)计算许可载荷给定了梁的约束,材料,长度以及截面的几何尺寸等,根据梁的挠度刚度条件式(7-15)可确定梁的载荷的上限值。
如果还要求转角刚度条件满足的话,可由式(7-16)确定出梁的另一个载荷的上限值,两个载荷上限值中最小的那个就是梁的许可载荷。
(3)计算许可截面尺寸给定了梁的载荷,约束,材料以及长度等,根据梁的挠度刚度条件式(7-15)可确定梁的截面尺寸的下限值。
如果还要求转角刚度条件满足的话,可由式(7-16)确定出梁的另一个截面尺寸的下限值,两个截面尺寸下限值中最大的那个就是梁的许可截面尺寸。
例7-21 如图7-41(a )所示的梁,其长度为m 1=L ,抗弯刚度为25Nm 109.4⨯=EI ,当梁的最大挠度不超过梁长的300/1时,试确定梁的许可载荷。
扭转刚度计算公式-回复
扭转刚度计算公式是k=P/δ。
刚度是指材料或结构在受力时抵抗弹性变形的能力。
是材料或结构弹性变形难易程度的表征。
材料的刚度通常用弹性模量E来衡量。
在宏观弹性范围内,刚度是零件荷载与位移成正比的比例系数,即引起单位位移所需的力,也就是说刚度是使物体产生单位变形所需的外力值。
它的倒数称为柔度,即单位力引起的位移。
刚度可分为静刚度和动刚度。
“我国的扭转刚度单位是N 我国的扭转刚度单位是N。
1N,指的是相对磁导率在1 时的扭转角。
工程中常用的材料,例如不锈钢和铝合金等其物理性能都符合这个规定。
有时为了描述强烈变形时所感受到的应力,可以把单位换算成mPa。
我们使用的1NN/m 是强度单位,实际应用时常简化为N/m。