固相有机合成.ppt
- 格式:ppt
- 大小:1.12 MB
- 文档页数:96
高等有机合成固相有机合成有机合成化学固相有机合成高等有机合成概述合化1001班主讲:于振宁小组人员:王玮宁锐马庆超王小磊崔恩峰于振宁有机合成化学固相有机合成高等有机合成布鲁斯·梅里菲尔德(R.B.Merrifield)博士是世界著名的生物化学家,是Merrifield固相法的创始人。
他由于发明了固相多肤合成法而荣获1984年度诺贝尔化学奖。
科学界对梅里菲尔德给予了众多的荣誉。
1984年,梅里菲尔德由于固相蛋白质化学合成方法的建立而独享了该年度的诺贝尔化学奖。
瑞典皇家科学院在授予诺贝尔奖时对他的成就评价为梅里菲尔德固相化学方法在多肽和蛋白质化学领域带来了一场革命,没有梅里菲尔德的研究,今天一些几天就可以完成的实验或过程可能花费几年甚至几十年。
认真是能力,规范是水平有机合成化学固相有机合成高等有机合成固相合成技术(olid-phaeynthei)就是把底物或催化剂锚合在某种固体载体上,再与其他试剂反应;生成的化合物连同载体过滤、淋洗,与试剂及副产物分离,这个过程能够多次重复,可以连接多个重复单元或不同单元,最终产物通过解脱试剂从载体上解脱下来,固相合成采用过量的反应试剂使反应进行完全,所以即使反应不完全(20%~30%)也可以进行,并且通过简单过滤就能分离纯化产物。
1963年Merrifield发明了多肽的固相合成法,为有机合成史揭开了新的一页。
固相有机合成反应产物分离、提纯方法简单,环境污染小,是一种较理想的合成方法。
近年来,随着对连接分子和切割方法研究的不断深入以及各种新型树脂的发明,固相有机合成技术得到了迅速的发展和广泛的应用,成为目前有机化学的重要领域之一。
因此,研究固相有机合成具有重大的理论意义和实践意义,为发展绿色化学与技术开拓了新途径。
认真是能力,规范是水平有机合成化学固相有机合成高等有机合成固相有机合成(olid-phaeorganicynthei,简称SPOS)涉及的主要反应是将反应物或催化剂键合于高分子载体上,应用所需的反应试剂与键合于高分子载体上的反应物进行反应,最后选择适当的试剂将目标产物从树脂上断裂下来。
实验 2 纳米氧化锆的固相合成一、目的和要求1、通过锆盐与氢氧化钠的固相反应,了解固相合成法的特点。
2、掌握固相合成纳米氧化锆的基本原理和制备过程。
二、实验原理氧化锆由于其固有的化学成分、晶体结构、粒度等基本性质,因而具有化学稳定性好、热传导系数小、硬度大等优点,是一种重要的结构和功能陶瓷材料。
普通氧化锆在常温至1170C 以单斜相存在,加热到1170C〜2370E时转变为四方相,2370C以上时由四方相转变成立方相(2700C左右熔融)。
由于纯氧化锆的高温相(立方相或四方相)随着温度的降低会转变成低温相(单斜相)。
要获得室温下稳定的高温相氧化锆,就需要在氧化锆中掺杂某些其它氧化物,如氧化钇、氧化钙、氧化镁、氧化钪等,形成复合氧化物。
这种掺杂的四方相部分稳定或全稳定的氧化锆在相变增韧和微裂纹增韧方面性能优良,具有极高的室温强度和断裂韧性。
用氧化钇稳定的四方相氧化锆(Y-TZP),当晶体粒度控制在纳米级(小于100nm)时,可能带来材料性能的突变,如材料强度和断裂韧性的显著提高等。
同时,氧化钇稳定的氧化锆还是一种优良的气敏材料(用于氧气传感器)和固体电池材料。
目前制备纳米氧化锆粉体的方法分液相法和气相法。
其中液相法有共沉淀法、水热法、溶胶-凝胶法、微乳液法等。
这些方法各有其特点,但也存在很多不足。
如共沉淀法一般是以氧氯化锆为原料,在锆盐溶液中加入沉淀剂,得到氢氧化物沉淀,再经过滤、洗涤、干燥、煅烧、研磨得到氧化锆粉体。
这种方法比较简单易行,可制得粒度小、成分较易控制的多组分纳米粉末,不足之处是制得的粉体往往存在较多的硬团聚体,影响制品的烧结温度和力学性能。
为了解决粉体的团聚问题,采用加入分散剂并控制温度在乙醇中陈化的方法,可制备出低温可烧结的纳米氧化锆粉体。
水热法制备纳米氧化锆一般以锆的无机或有机化合物为原料,可制得粒径小、高分散的粉体。
水热法的不足之处是制备条件较苛刻,成本较高,产量较低。
溶胶-凝胶法和醇盐水解法使用锆的有机化合物,同样存在着原料来源困难,价格较高,水解法反应时间长、产率过低、难以工业化生产等缺陷。