动态电路暂态分析
- 格式:ppt
- 大小:1.59 MB
- 文档页数:39
实验四 一阶动态电路暂态过程的研究一. 实验目的1.研究一阶RC 电路的零输入响应、零状态响应和全响应的变化规律和特点。
2、研究一阶电路在阶跃激励和方波激励情况下, 响应的基本规律和特点。
测定一阶电路的时间常数 ,了解电路参数对时间常数的影响。
3.掌握积分电路和微分电路的基本概念。
4.研究一阶动态电路阶跃响应和冲激响应的关系。
5.学习用示波器观察和分析电路的响应。
二. 实验原理1.含有动态元件的电路, 其电路方程为微分方程。
用一阶微分方程描述的电路, 为一阶电路。
图6-1所示为一阶RC 电路。
首先将开关S 置于1使电路处于稳定状态。
在t=0时刻由1扳向2, 电路对激励Us 的响应为零状态响应, 有RCt S S C eU U t u --=)(这一暂态过程为电容充电的过程, 充电曲线如图6-2a 所示。
电路的零状态响应与激励成正比。
U U u c (t) 图6-1 图6-2(a )充电曲线 图6-2(b )放电曲线若开关S 首先置于2使电路处于稳定状态, 在t=0时刻由2扳向1, 电路为零输入响应, 有RCt S C eU t u -=)(这一暂态过程为电容放电过程, 放电曲线如图6-2b 所示。
电路的零输入响应与初始状态成正比。
动态电路的零状态响应与零输入响应之和称之为全响应,全响应与激励不存在简单的线性关系。
2.一阶RC 动态电路在一定的条件下, 可以近似构成微分电路或积分电路。
当时间常数 (=RC)远远小于方波周期T 时, 图6-3(a)所示为微分电路。
输出电压u0(t)与方波激励uS(t)的微分近似成比例, 输入输出波形如6-3(b)所示。
从中可见, 利用微分电路可以实现从方波到尖脉冲波形的转变。
+ u O_uC图6-3(a ) 图6-3(b )当时间常数 (=RC)远远大于方波周期T 时, 图6-4(a)所示为积分电路, 输出电压uO(t)与方波激励uS 的积分近似成比例。
输入、输出波形如图6-4(b)所示。
单元三动态电路分析一、过渡过程(暂态过程)1. 概念:电路从一个稳定状态过渡到另一个稳定状态,电压、电流等物理量经历一个随时间变化的过程。
2. 产生过渡过程的原因:内因:电路中含有储能元件。
外因:换路二、换路定律1. 换路:电路工作条件发生变化,如电源的接通或切断,电路连接方法或参数值的突然变化等称为换路。
2. 换路定理:电容上的电压u C 及电感中的电流i L 在换路瞬间不能发生跃变,即:t=0+换路,则注意:只有u C 、i L 受换路定理的约束而保持不变,电路中其他电压、电流都可能发生跃变。
)0()0()0()0(L L C C -+-+==i i u u 1)概念:电压、电流的0+值。
2. 分类3. 初始值独立初始值:)0(C +u )0(L +i )0(C +i )0(R +i )0(R +u )0(L +u 相关初始值:3)初始值的计算(1)在换路前的稳态电路中,求)0(-C u )0(-L i 直流电路:C 开路、L 短路稳态电路正弦交流电路:相量法计算(2)在换路瞬间,利用换路定律得)0()0()0()0(L L C C -+-+==i i u u (3)画t=0+电路,求相关初始值。
t=0+电路C 用值的电压源替代。
)0(C +u L 用值的电流源替代。
)0(L +i例:图示电路原处于稳态,t =0时开关S 闭合,求初始值u C (0+)、i C (0+)和u (0+)。
解:由于在直流稳态电路中,电感L 相当于短路、电容C 相当于开路,因此t =0-时电感支路电流和电容两端电压分别为:4ΩR 1R 22Ω+u-+C u C - +U s 12V - L i L + u L - R 36Ωi 1 i C V2.762.1)0()0()0(A2.16412)0(3L 31C 31L =⨯====+=+=----R i R i u R R U i s 在开关S 闭合后瞬间,根据换路定理有:V 2.7)0()0(A 2.1)0()0(C C L L ====-+-+u u i i由此可画出开关S 闭合后瞬间即时的等效电路,如图所示。
第五章电路的暂态过程分析初始状态过渡状态新稳态t 1U Su ct0?动态电路:含有动态元件的电路,当电路状态发生改变时需要经历一个变化过程才能达到新的稳态。
上述变化过程习惯上称为电路的过渡过程。
iRU SKCu C +_R i +_U S t =0一、什么是电路的暂态过程K 未动作前i = 0u C = 0i = 0u C = U s K 接通电源后很长时间C u C +_R i+_U S二、过渡过程产生的原因。
(1). 电路内部含有储能元件L 、M 、C能量的储存和释放都需要一定的时间来完成(2). 电路结构、状态发生变化支路接入或断开,参数变化(换路)三、动态电路与稳态电路的比较:换路发生后的整个变化过程动态分析微分方程的通解任意激励微分方程稳态分析换路发生很长时间后重新达到稳态微分方程的特解恒定或周期性激励代数方程一、电容元件§5-1 电容与电感元件uCi+_q i)()(t Cu t q =dtdu Cdt dq i ==任何时刻,通过电容元件的电流与该时刻的电压变化率成正比。
电荷量q 与两极之间电压的关系可用在q -u 平面上可用一条曲线表示,则称该二端元件称为电容元件。
二、电感元件+–u (t)i (t)Φ(t)N uLi+_()()()()t Li t d di t u t Ldt dtψψ===任何时刻,电感元件两端的电压与该时刻的电流变化率成正比。
Φi交链的磁通链与产生该磁通的电流的关系可用在Ψ-i 平面上可用一条曲线表示,则称该二端元件为电感元件。
§5-2 换路定则与初值的确定t = 0+与t = 0-的概念设换路在t =0时刻进行。
0-换路前一瞬间0+ 换路后一瞬间00(0)lim ()t t f f t -→<=00(0)lim ()t t f f t +→>=初始条件为t = 0+时u ,i 及其各阶导数的值。
0-0+0tf (t )基本概念:一、换路定则1()()d tC u t i C ξξ-∞=⎰0011()d ()d t i i C C ξξξξ---∞=+⎰⎰01(0)()d tC u i C ξξ--=+⎰t = 0+时刻001(0)(0)()d C C u u i C ξξ++--=+⎰当i (ξ)为有限值时u C (0+) = u C (0-)电荷守恒结论:换路瞬间,若电容电流保持为有限值,则电容电压(电荷)换路前后保持不变。
第三章 动态电路的暂态分析 3-1-1 电路如图3-1所示,在t = 0时合上开关,已知u C (0-) =0,i L (0-)=0,则u C (0+)、i L (0+)、u L (0+)、u R (0+)各为多少?[答] 根据换路定律:u C (0+) = u C (0-) =0,;i L (0+)=i L (0-)=0。
在开关合上的一瞬间,电容相当于短路,电感相当于开路,故u L (0+)=U S ;u R (0+)=0。
3-1-2 在图3-2中,如果U =10V ,R =5Ω,设二极管的正向电阻为零,反向电阻为无穷大。
则在开关S打开瞬间电感两端的电压是多少?[答] 由于开关S打开瞬i L (0+)=i L (0-)=R U =510A=2A ,根据基尔霍夫电压定律可得电感两端的电压是u L (0+)= u D (0+)+ u R (0+)= i L (0+)×R D + i L (0+)×R =0+2A ×5Ω=10V3-3-1 电容的初始电压越高,是否放电的时间越长?[答] 不对,电容放电时间的长短只与时间常数τ=RC 有关,而与电容初始电压的高低无关。
3-3-2 已测得某电路在换路后的输出电流随时间变化曲线如图3-3所示。
试指出该电路的时间常数τ大约是多少。
[答] 这是一条电流从初始值按指数规律衰减而趋于零的曲线,其时间常数τ等于初始值思考题解答 图3-3 0 2 4 6 8 2 46810i /mAt /s (a) 02 4 6 8 24 6 8 10 i /mA t /s τ 3.68(b) ii iii L 图3-1 图3-2下降了总变化量的63.2%所需的时间。
电流初始值为10mA,故下降到3.68 mA所需的时间即为时间常数τ。
据此作图如图3-3(b)所示,可知τ大约为2.7s左右。
3-3-3 在图3-4中,开关长期合在A上,如在t=0时把它合到B上。
动态电路暂态分析是指对电路中含有非恒定电信号(如脉冲、方波等)时的电路响应进行分析和计算的过程。
三要素法是动态电路暂态分析中常用的一种方法,它主要基于电路元件的三个特性进行分析,即电阻、电感和电容。
具体来说,三要素法将电路元件的三个特性组合在一起,考虑它们对电路响应的贡献。
这三个特性在非恒定电信号下会导致电路响应的不同,分别代表电路响应的三个部分:电阻成分(R),电感成分(L)和电容成分(C)。
在应用三要素法进行动态电路暂态分析时,首先需要对电路中各元件的三要素进行分解,在不同的时间段内计算各成分的响应,然后将它们组合在一起得到整个电路的响应。
这个过程包括以下几个步骤:
1. 对电路进行分解:将电路中各元件分解成三个部分,即电阻成分、电感成分和电容成分。
2. 计算每个部分在不同时间段内的响应:对于每个成分,在不同的时间段内根据相应的公式进行计算。
3. 组合各个部分:将各个成分的响应组合在一起,得到整个
电路的响应。
三要素法适用于分析复杂的动态电路响应,特别是在非恒定电信号下。
它通过将电路元件的电阻、电感和电容特性组合在一起,较为准确地描述了动态电路的响应过程。
由于三要素法的计算较为复杂,通常使用电路模拟软件进行计算。
电学中动态电路分析动态电路分析是电学中的一种重要方法,用于研究电路元件在时间变化过程中的响应。
在电子技术和电力系统等领域,动态电路分析是解决电路设计和故障诊断等问题的基础。
动态电路分析的基本原理是根据电路元件的特性和电路方程,通过求解微分方程来得到电路中电流和电压随时间变化的规律。
在动态电路分析中,常见的分析方法有直流分析、交流分析和暂态分析。
直流分析是指在稳态条件下,对电路中的电流和电压进行分析。
直流分析是动态电路分析的基础,主要用于计算稳态电流和电压值。
在直流分析中,可以根据欧姆定律和基尔霍夫电压定律进行分析,应用节点分析和支路分析等方法求解电路中的未知电流和电压。
交流分析是指在交流电路中,对电流和电压进行分析。
交流分析中,一般以复数形式的电压和电流进行分析,使用相量图法、复数阻抗法和拉普拉斯变换法研究电路中的交流响应。
交流分析对于理解电路中的频率特性和幅频特性等问题十分重要。
暂态分析是指在电路开关、电源切换等瞬间发生变化时,对电路中的电流和电压进行分析。
暂态分析研究电路中瞬间变化时的响应,可应用微分方程进行数学建模。
在暂态分析中,常见的方法有基本微分方程法、功率耐受方程法和矩阵方程法等。
动态电路分析在实际工程和科学研究中有着广泛的应用。
在电子电路设计中,动态电路分析可以研究电路的稳定性、频率响应和幅频特性,对于优化电路设计十分重要。
在电力系统中,动态电路分析可以用于分析电力系统的稳定性和瞬时过电压、过电流等暂态问题,对于提高电力系统运行的稳定性和可靠性具有重要意义。
总之,动态电路分析是电学中重要的研究方法,可用于研究电路中的电流和电压的时间响应。
通过直流分析、交流分析和暂态分析等方法,可以解决电路设计和故障诊断等实际问题。
动态电路分析在电子技术和电力系统等领域有着广泛的应用,对于优化电路设计和提高电力系统的稳定性具有重要意义。
电路稳态与暂态电路稳态和暂态是电路分析中的两个重要概念。
稳态是指电路的行为在时间上不随时间变化而保持恒定的状态,而暂态是指电路在经历突变或初始条件改变后的短暂过程。
本文将介绍电路稳态和暂态的概念、特征和分析方法。
一、电路稳态在电路分析中,稳态是指电路中各个元件的电流和电压值处于恒定状态的情况。
在稳态下,电路中的电流和电压不随时间变化,可以用恒定的数值表示。
稳态的存在是由电路的周期性和对称性决定的。
1.1 稳态的特征稳态的特征包括以下几点:1.1.1 电压和电流值不随时间变化。
在稳态下,电路中各个元件的电流和电压保持不变,可以用恒定的数值表示。
1.1.2 稳态是电路在长时间运行后的状态。
当电路达到稳态时,其运行时间足够长,各个元件的电流和电压稳定在恒定值上。
1.1.3 稳态通常与周期性和对称性有关。
在周期性和对称性电路中,稳态是周期性变化的电流和电压值在一个周期内的平均值。
1.2 稳态的分析方法为了分析电路的稳态特性,可以采用以下方法:1.2.1 直流分析法。
直流分析法适用于直流电路,通过应用基尔霍夫定律和欧姆定律,可以求解电路中各个元件的电流和电压值。
1.2.2 复数分析法。
复数分析法适用于交流电路,将电路中的电流和电压表示为复数形式,利用复数的代数运算和欧姆定律,可以求解电路的稳态特性。
1.2.3 相量分析法。
相量分析法是一种图解分析方法,通过绘制电流和电压的相量图,可以直观地分析电路的稳态特性。
二、电路暂态电路暂态是指电路在经历突变或初始条件改变后的短暂过程。
在暂态过程中,电路的电流和电压会发生瞬时变化,然后逐渐趋于稳定态。
2.1 暂态的特征暂态的特征包括以下几点:2.1.1 电路响应有限时间内的短暂过程。
在暂态过程中,电路的电流和电压会发生瞬时变化,但随着时间的推移会逐渐趋于稳态。
2.1.2 暂态过程具有动态性。
在暂态过程中,电路的电流和电压会随时间的变化而变化,可以通过微分方程进行描述。