热分析实例
- 格式:ppt
- 大小:1.61 MB
- 文档页数:5
模型[1]热传导问题:如图,110R cm =,220R cm =,密度为36000/kg m ,比热容为220/()J kg K ⋅,热传导率为6/()W m K ⋅,初始温度为300℃,突然放入30℃的液体中冷却,这种液体对流换热系数2120/()h W m K =⋅。
计算:(1)第1秒和第60秒这两个时刻温度分布情况;(2)内外边在60秒内温度变化。
1.设置环境① 设置分析模块。
本例是温度分布分析,所以只需要选择热分析模块,这样就可以把结构分析模块、电磁场分析模块和流体分析模块的菜单都过滤掉。
设置如图② 设置单位在命令行输入“/units,SI ”,SI 为设定为国际单位制。
必须注意:[1] 秦宇.ANSYS 11.0基础与实例教程[M]. 北京,化学工业出版社,2009:318-330ANSYS程序不会为你的分析假定一个单位制,除了磁场分析以外,你可以使用任何单位制,只要你能保证你输入的所有数据都是按照这个单位制进行的。
也就是说,单位制在所有输入数据中应该保持一致。
使用/UNITS命令,你可以在ANSYS数据库中进行标记来表示你使用的单位制。
但是请注意,这个命令并不将一个单位转化为另一个。
它仅仅只作为对分析的一个评论记录。
什么意思呢?就是/UNITS只是个标记,告诉别人程序的单位制,即使程序中没有使用这种单位制,它也不能将这种单位制转化为自己标记的那个单位制。
所以,如果你要让ANSYS的单位为国际单位制,你在输入物理量之前,先将所有的物理量转换为国际单位制,如:原先你的图纸上均为毫米,比如一个矩形截面尺寸是400mm*500mm,那么,你在建模之前先转化为0.4m*0.5m然后输入的长度为0.4和0.5,ANSYS只知道你输入的是0.4和0.5,它不知道你的单位是什么。
2.定义单元类型和材料属性①选择单元类型。
如图:我们选择【Quad 4node 55】即选择了PLANE55单元。
下面介绍一下PLANE55单元,我们直接从ANSYS帮助文档中摘录。
第33例瞬态热分析实例——水箱本例介绍了利用ANSYS进行瞬态热分析的方法和步骤、瞬态热分析时材料模型所包含的内容,以及模型边界条件和初始温度的施加方法。
33.1概述热分析是计算热应力的基础,热分析分为稳态热分析和瞬态热分析,稳态热分析将在后面两个例子中介绍,本例介绍瞬态热分析。
33.1.1 瞬态热分析的定义瞬态热分析用于计算系统随时间变化的温度场和其他热参数。
一般用瞬态热分析计算温度场,并找到温度梯度最大的时间点,将此时间点的温度场作为热载荷来进行应力计算。
33.1.2 嚼态热分析的步骤瞬态热分析包括建模、施加载荷和求解、查看结果等几个步骤。
1.建模瞬态热分析的建模过程与其他分析相似,包括定义单元类型、定义单元实常数、定义材料特性、建立几何模型和划分网格等。
注意:瞬态热分析必须定义材料的导热系数、密度和比热。
2.施加载荷和求解(1)指定分析类型,Main Menu→Solution→Analysis Type→New Analysis,选择Transient。
(2)获得瞬态热分析的初始条件。
定义均匀的初始温度场:Main Menu→Solution→Define Loads→Settings→Uniform Temp,初始温度仅对第一个子步有效,而用Main Menu→Solution→Define Loads→Apply→Thermal→Temperature命令施加的温度在整个瞬态热分析过程中均不变,应注意二者的区别。
定义非均匀的初始温度场:如果非均匀的初始温度场是已知的,可以用Main Menu→Solution→Define Loads →Apply→Initial Condit'n→Define即IC命令施加。
非均匀的初始温度场一般是未知的,此时必须先进行行稳态分析确定该温度场。
该稳态分析与一般的稳态分析相同。
注意:要设定载荷(如已知的温度、热对流等),将时间积分关闭,选择Main Menu→Solution→Load Step Opts →Time/Frequenc→Time Integration→Amplitude Decay;设定只有一个子步,时间很短(如(0.01s)的载荷步,Main Menu→Solution→Load Step Opts→Time/Frequenc→Time→Time Step。
第10 章热分析典型工程实例本章要点拉伸特征旋转特征扫掠特征混合特征孔特征壳特征本章案例某型号手机电池的散热分析冷库复合隔热板热量流动分析电子元器件散热装置温度分析10.1 工程实例1——某型号手机电池的散热分析该算例为某型手机电池的散热分析,如图10-1为某型号手机背面的照片,图中可见手机的电池的位置。
在手机工作时,电池可向外传递热量。
使用手机的读者应该都体会过手机电池发热的现象,特别是在长时间接打电话时,这种现象尤为明显。
本实例对某型号手机进行分析,电池的标准电压为3.7V,电池容量为750mAh。
试求手机开机状态下外壳的温度分布。
手机的各部分材料性能参数如表10.1所示。
图10-1 手机背面照片在计算分析过程中我们将手机看做三个组成部分:塑料外壳、手机内部材料和手机电池。
忽略手机内部线路和芯片,可以将手机电池看做唯一热源。
简化后的手机模型如图10-2所示,图中单位均为cm。
本实例拟采用Solid Tet 10node 87单元进行分析。
由于电池功率和环境温度均可视为恒定不变,因此分析类型为稳态。
图10-2 简化后的手机模型由电池的电压和电流可以算得电池的功率:==⨯=P UI 3.70.75 2.775W电池的体积为:3=⨯⨯=V0.040.010.050.00002m电池的发热量:3==Q P/V138750W/m——附带光盘“Ch10\实例10-1_start”——附带光盘“Ch10\实例10-1_end”——附带光盘“A VI\Ch10\10-1.avi”1、定义分析文件名1、选择Utility Menu>File>Change Jobname,在弹出的单元增添对话框中输入Example10-1,然后点击OK按钮。
2、选择Main Menu>Preferences,弹出Preferences for GUI Filtering对话框,点选Thermal复选框,单击OK按钮关闭该对话框。
实例1:某一潜水艇可以简化为一圆筒,它由三层组成,最外面一层为不锈钢,中间为玻纤隔热层,最里面为铝层,筒内为空气,筒外为海水,求内外壁面温度及温度分布。
几何参数:筒外径30 feet总壁厚2 inch不锈钢层壁厚0.75inch玻纤层壁厚 1 inch铝层壁厚0.25i nch筒长200 feet导热系数不锈钢8.27BTU/hr.ft. o F玻纤0.028 BTU/hr.ft. o F铝117.4 BTU/hr.ft. o F边界条件空气温度70 o F海水温度44.5 o F空气对流系数2.5 BTU/hr.ft 2.0F海水对流系数80 BTU/hr.ft 2.o F沿垂直于圆筒轴线作横截面,得到一圆环,取其中1度进行分析,如图示。
空气'玻璃纤维、1*:不锈钢:3/+M海水R15 feet/filename ,Steady1 /title ,Steady-state thermal analysis of submarine /units ,BFT Ro=15 !外径(ft)Rss=15-(0.75/12) ! 不锈钢层内径ft) Rins=15-(1.75/12) ! 玻璃纤维层内径(ft) Ral=15-(2/12) ! 铝层内径(ft) Tair=70 ! 潜水艇内空气温度Tsea=44.5 !海水温度Kss=8.27 ! 不锈钢的导热系数(BTU/hr.ft.oF) Kins=0.028 ! 玻璃纤维的导热系数(BTU/hr.ft.oF)Kal=117.4 ! 铝的导热系数(BTU/hr.ft.oF) Hair=2.5 ! 空气的对流系数(BTU/hr.ft2.oF) Hsea=80 ! 海水的对流系数(BTU/hr.ft2.oF) prep7et,1,plane55 !定义二维热单元mp,kxx ,1,Kss !设定不锈钢的导热系数mp,kxx ,2,Kins !设定玻璃纤维的导热系数mp,kxx ,3,Kal !设定铝的导热系数pcirc,Ro,Rss,-0.5,0.5 !创建几何模型pcirc ,Rss,Rins ,-0.5 ,0.5 pcirc ,Rins,Ral,-0.5 ,0.5 aglue,all numcmp,area lesize,1,,,16 !设定划分网格密度lesize,4,,,4 lesize,14,,,5 lesize,16,,,2 Mshape,2 ! 设定为映射网格划分mat,1 amesh,1 mat,2 amesh,2 mat,3 amesh,3 /SOLUSFL,11,CONV ,HAIR ,,TAIR ! 施加空气对流边界SFL,1,CONV ,HSEA ,,TSEA !施加海水对流边界SOLVE /POST1PLNSOL !输出温度彩色云图finish实例2一圆筒形的罐有一接管,罐外径为 3英尺,壁厚为0.2英尺,接管外径为0.5英尺,壁厚为0.1英尺,罐与接管的轴线垂直且接管远离罐的端部。
最新热分析实验报告
在本次热分析实验中,我们旨在探究不同材料在受热条件下的物理和
化学性质变化。
实验采用了差示扫描量热法(DSC)和热重分析(TGA)两种技术,对选定的样品进行了全面的热稳定性和热分解特性分析。
实验一:差示扫描量热法(DSC)分析
样品:聚合物A
实验条件:在氮气氛围下,温度范围从室温至300°C,加热速率为
10°C/min。
结果:DSC曲线显示样品在约220°C时出现一个明显的吸热峰,表明
聚合物A在此温度下发生了相变。
进一步分析推测,这可能是由于分
子链间的相互作用能在此温度下被克服,导致结构的重组。
实验二:热重分析(TGA)分析
样品:陶瓷材料B
实验条件:在空气氛围下,温度范围从室温至1000°C,加热速率为
5°C/min。
结果:TGA曲线表明,陶瓷材料B在500°C之前质量变化不大,显示
出良好的热稳定性。
然而,在500°C至700°C之间,样品质量急剧
下降,对应的热分解产物通过质谱分析确认为氧化物和水蒸气,表明
材料在此温度区间发生了分解。
结论:
通过本次热分析实验,我们对聚合物A和陶瓷材料B的热性质有了更
深入的了解。
聚合物A的相变温度为其潜在应用提供了重要参数,而
陶瓷材料B的热分解特性则为其在高温环境下的使用提供了指导。
未
来的工作将集中在优化实验条件,以及扩展对更多材料的热分析研究,以便更全面地理解材料的热行为。
第10 章热分析典型工程实例本章要点拉伸特征旋转特征扫掠特征混合特征孔特征壳特征本章案例某型号手机电池的散热分析冷库复合隔热板热量流动分析电子元器件散热装置温度分析10.1 工程实例1——某型号手机电池的散热分析该算例为某型手机电池的散热分析,如图10-1为某型号手机背面的照片,图中可见手机的电池的位置。
在手机工作时,电池可向外传递热量。
使用手机的读者应该都体会过手机电池发热的现象,特别是在长时间接打电话时,这种现象尤为明显。
本实例对某型号手机进行分析,电池的标准电压为3.7V,电池容量为750mAh。
试求手机开机状态下外壳的温度分布。
手机的各部分材料性能参数如表10.1所示。
图10-1 手机背面照片在计算分析过程中我们将手机看做三个组成部分:塑料外壳、手机内部材料和手机电池。
忽略手机内部线路和芯片,可以将手机电池看做唯一热源。
简化后的手机模型如图10-2所示,图中单位均为cm。
本实例拟采用Solid Tet 10node 87单元进行分析。
由于电池功率和环境温度均可视为恒定不变,因此分析类型为稳态。
图10-2 简化后的手机模型由电池的电压和电流可以算得电池的功率:==⨯=P UI 3.70.75 2.775W电池的体积为:3=⨯⨯=V0.040.010.050.00002m电池的发热量:3==Q P/V138750W/m——附带光盘“Ch10\实例10-1_start”——附带光盘“Ch10\实例10-1_end”——附带光盘“A VI\Ch10\10-1.avi”1、定义分析文件名1、选择Utility Menu>File>Change Jobname,在弹出的单元增添对话框中输入Example10-1,然后点击OK按钮。
2、选择Main Menu>Preferences,弹出Preferences for GUI Filtering对话框,点选Thermal复选框,单击OK按钮关闭该对话框。
第四讲 热分析上机指导书CAD/CAM 实验室,USTC实验要求:1、通过对冷却栅管的热分析练习,熟悉用ANSYS 进展稳态热分析的根本过程,熟悉用直接耦合法、间接耦合法进展热应力分析的根本过程。
2、通过对铜块和铁块的水冷分析,熟悉用ANSYS 进展瞬态热分析的根本过程。
容1:冷却栅管问题问题描述:本实例确定一个冷却栅管〔图a 〕的温度场分布与位移和应力分布。
一个轴对称的冷却栅结构管为热流体,管外流体为空气。
冷却栅材料为不锈钢,特性如下:W/m ℃×109 MPa×10-5/℃边界条件:〔1〕管:压力:6.89 MPa流体温度:250 ℃对流系数249.23 W/m 2℃〔2〕管外:空气温度39℃对流系数:62.3 W/m 2℃假定冷却栅管无限长,根据冷却栅结构的对称性特点可以构造出的有限元模型如图b 。
其上下边界承受边界约束,管部承受均布压力。
练习1-1:冷却栅管的稳态热分析步骤:1. 定义工作文件名与工作标题1) 定义工作文件名:GUI: Utility Menu> File> Change Jobname ,在弹出的【ChangeJobname 】对话框中输入文件名Pipe_Thermal ,单击OK 按钮。
2) 定义工作标题:GUI: Utility Menu> File> Change Title ,在弹出的【Change Title 】对话框中2D Axisymmetrical Pipe Thermal Analysis ,单击OK 按钮。
3) 关闭坐标符号的显示:GUI: Utility Menu> PlotCtrls> Window Control> WindowOptions ,在弹出的【Window Options 】对话框的Location of triad 下拉列表框中选择No Shown 选项,单击OK 按钮。
/PREP7/TITLE,Steady-state thermal analysis of pipe junction/UNITS,BIN ! 英制单位;Use U. S. Customary system of units (inches)! /SHOW, ! Specify graphics driver for interactive runET,1,90 ! Define 20-node, 3-D thermal solid elementMP,DENS,1,.285 ! Density = .285 lbf/in^3MPTEMP,,70,200,300,400,500 ! Create temperature tableMPDATA,KXX,1,,8.35/12,8.90/12,9.35/12,9.80/12,10.23/12! 指定与温度相对应的数据材料属性;导热系数;Define conductivity valuesMPDATA,C,1,,.113,.117,.119,.122,.125! Define specific heat values(比热)MPDATA,HF,2,,426/144,405/144,352/144,275/144,221/144! Define film coefficient;除144是单位问题,上面的除12也是单元问题! Define parameters for model generationRI1=1.3 ! Inside radius of cylindrical tankRO1=1.5 ! Outside radiusZ1=2 ! LengthRI2=.4 ! Inside radius of pipeRO2=.5 ! Outside pipe radiusZ2=2 ! Pipe lengthCYLIND,RI1,RO1,,Z1,,90 ! 90 degree cylindrical volume for tankWPROTA,0,-90 ! 旋转当前工作的平面;从Y到Z旋转-90度;;Rotate working plane to pipe axisCYLIND,RI2,RO2,,Z2,-90 ! 角度选择在了第四象限;90 degree cylindrical volume for pipeWPSTYL,DEFA ! 重新安排工作平面的设置;另外WPSTYL,STAT to list the status of the working plane;;Return working plane to default settingBOPT,NUMB,OFF ! 关掉布尔操作的数字警告信息;Turn off Boolean numbering warningVOVLAP,1,2 ! 交迭体;Overlap the two cylinders/PNUM,VOLU,1 ! 体编号打开;Turn volume numbers on/VIEW,,-3,-1,1/TYPE,,4 ! 精确面的显示;Precise hidden display/TITLE,Volumes used in building pipe/tank junctionVPLOTVDELE,3,4,,1 ! 修剪一些体与体相关的体的因素都删掉;Trim off excess volumes! Meshing 网格划分ASEL,,LOC,Z,Z1 ! Select area at remote Z edge of tankASEL,A,LOC,Y,0 ! Select area at remote Y edge of tankCM,AREMOTE,AREA ! 为面建立数组;Create area component called AREMOTE/PNUM,AREA,1/PNUM,LINE,1/TITLE,Lines showing the portion being modeledAPLOT/NOERASE ! 预防抹去LPLOT ! Overlay line plot on area plot/ERASEACCAT,ALL ! 连接面和线的准备映射;Concatenate areas and lines at remote tank edgesLCCAT,12,7LCCAT,10,5LESIZE,20,,,4 ! 4 divisions through pipe thicknessLESIZE,40,,,6 ! 6 divisions along pipe lengthLESIZE,6,,,4 ! 4 divisions through tank thicknessALLSEL ! Restore full set of entitiesESIZE,.4 ! Set default element size线的默认划分数MSHAPE,0,3D ! Choose mapped brick meshMSHKEY,1 ! 映射网格SAVE ! Save database before meshingVMESH,ALL ! Generate nodes and elements within volumes/PNUM,DEFA ! 重新安排数字规格/TITLE,Elements in portion being modeledEPLOTFINISH/COM, *** Obtain solution ***/SOLUANTYPE,STATIC ! Steady-state analysis typeNROPT,AUTO ! 自动选择牛顿-拉普森Program-chosenNewton-Raphson optionTUNIF,450 ! 给结点统一的温度;Uniform starting temperature at all nodesCSYS,1 ! 1 —Cylindrical with Z as the axis of rotation NSEL,S,LOC,X,RI1 ! Nodes on inner tank surfaceSF,ALL,CONV,250/144,450 ! 为结点指定表面载荷;对流;Convection(对流);load at all nodesCMSEL,,AREMOTE ! 选择子集组合;Select AREMOTE component NSLA,,1 ! Nodes belonging to AREMOTED,ALL,TEMP,450 ! 设定边界温度条件Temperature constraints at those nodesWPROTA,0,-90 ! Rotate working plane to pipe axisCSWPLA,11,1 ! 在工作区声明本地的圆柱体系;Define local cylindrical c.s at working planeNSEL,S,LOC,X,RI2 ! Nodes on inner pipe surfaceSF,ALL,CONV,-2,100 ! 这里的-2表示材料2;;Temperature-dep. convection load at those nodesALLSEL/PBC,TEMP,,1 ! 边界符号的显示Temperature b.c. symbols on/PSF,CONV,,2 ! Convection symbols on 箭头显示/TITLE,Boundary conditionsNPLOTWPSTYL,DEFACSYS,0AUTOTS,ON ! Automatic time steppingNSUBST,50 ! Number of substepsKBC,0 ! Ramped loading (default)OUTPR,NSOL,LAST ! 显示最后一次的结点约束;Optional command for solution printoutSOLVEFINISH/COM, *** Review results ***/POST1/EDGE,,1 ! Displays only the "edges(刀口, 利刃, 锋, 优势, 边缘, 优势, 尖锐)" of an object;Edge display/PLOPTS,INFO,ON ! Legend column on/PLOPTS,LEG1,OFF ! Legend header off 圆柱数列的头部/WINDOW,1,SQUARE ! SQUA, form largest square window within the current graphics area;Redefine window size/TITLE,Temperature contours at pipe/tank junctionPLNSOL,TEMP ! Plot temperature contoursCSYS,11NSEL,,LOC,X,RO2 ! Nodes and elements at outer radius of pipeESLN ! 选择单元NSLE ! 选择结点/SHOW,,,1 ! 向量显示;Vector mode/TITLE,Thermal flux vectors at pipe/tank junctionPLVECT,TF ! Plot thermal flux(热通量)vectorsFINISH。
热化学计算的实例分析与问题解决热化学计算是研究化学反应中吸热或放热过程的热学性质的一部分。
通过计算化学反应的热力学参数,我们可以了解反应的热学特性,进而指导实际化学反应的设计与优化。
本文将通过几个实例的详细分析,来介绍热化学计算的相关知识和解决实际问题的方法。
一、实例一:燃烧反应的热化学计算燃烧反应是指物质与氧气发生氧化反应,产生大量的热能。
通过对燃烧反应的热化学计算,我们可以估算燃料的热值和燃烧产物的生成热。
以甲烷燃烧反应为例,其反应方程式如下:CH4(g) + 2O2(g) → CO2(g) + 2H2O(g)根据反应方程式,我们可以得知反应的配平系数:CH4(g)的配平系数为1,O2(g)的配平系数为2,CO2(g)的配平系数为1,H2O(g)的配平系数为2。
在计算燃烧反应的焓变时,我们需要知道不同物质的标准摩尔焓变。
常用的标准摩尔焓变可以通过参考文献或专业计算软件获取。
通过使用标准摩尔焓变的数值,我们可以计算出甲烷燃烧反应的焓变。
假设甲烷燃烧反应的标准摩尔焓变分别为:ΔH°f(CH4) = -74.9kJ/mol、ΔH°f(CO2) = -393.5kJ/mol、ΔH°f(H2O) = -241.8kJ/mol。
根据定义,焓变(ΔH)可以通过产物的摩尔焓减去反应物的摩尔焓获得。
根据标准符号约定,反应物的摩尔焓为正值,而产物的摩尔焓为负值。
因此,甲烷燃烧反应的焓变计算如下:ΔH = ΔH°(CO2) + 2ΔH°(H2O) - ΔH°(CH4)= -393.5kJ/mol + 2(-241.8kJ/mol) - (-74.9kJ/mol)= -891.0kJ/mol根据计算结果,甲烷燃烧反应的焓变为-891.0kJ/mol。
这意味着每摩尔的甲烷燃烧反应放出891.0千焦的热能。
除了计算焓变,热化学计算还可以用于计算反应的焓变变化(ΔΔH)和熵变(ΔS)。
/BATCH!!/GRA,POWER/GST,ON/filnam,flywheel ! specify jobnamerad1 = 0.010 ! define inside radius (1 cm)rad2 = 0.050 ! define hub outside radius (5 cm)rad3 = 0.175 ! define inside radius of rim (17.5 cm)rad4 = 0.200 ! define outside radius of rim (20 cm)radf = 0.010 ! define radius of fillet at rim ( 1 cm)hgt1 = 0.015 ! define 1/2 thickness of hub (1.5 cm)hgt2 = 0.050 ! define 1/2 thickness of rim (5 cm)hgt3 = 0.003 ! define 1/2 thickness of disk at rim (0.3 cm)radm = 0.250 ! define radius of the sand mold (25 cm)hgtm = 0.100 ! define 1/2 height of the sand mold (10 cm)hside = 7.50 ! define outside wall film coefficienthtop = 5.75 ! define outside top film coefficient/prep7 ! enter the preprocessor/title, Chapter 9 - Phase Change - Sand Casting of a Flywheelet,1,plane55,,,1 ! define element type 1, PLANE55, axisymmetricmp,kxx,1,0.346 ! define thermal conductivity of sandmp,dens,1,1520 ! define specific heat of sandmp,c,1,816 ! define specifi heat of sandmptemp ! clear the temperature tablemptemp,1,100,200,300,400,530,800 ! define temperature table mpdata,kxx,2,1,206,215,228,249,268,290 ! define thermal conductivity of Al mptemp ! clear the temperature tablemptemp,1,0,695,697,1000 ! define a temperature tablealdens = 2707 ! density of ALalcs = 896 ! specific heat of solid ALallat = 395441 ! latent heat of ALalcl = 1050 ! specific heat of liquid ALcavg = (alcs+alcl)/2 ! average specific heatcstar = cavg+allat/(697-695) ! cstarhs = aldens*alcs*(695-0) ! enthaply of solid AL at melting temphl = hs+aldens*cstar*(697-695) ! enthalpy of liquid AL at melting temph1 = 0 ! enthalpy at 0 degrees Ch2 = hs ! enthalpy at 695 degrees Ch3 = hl ! enthalpy at 697 degrees Ch4 = hl+aldens*alcl*(1000-697) ! enthalpy at 1000 degrees C!mpdata,enth,2,1,h1,h2,h3,h4 ! define material property, enthalpy mpplot,kxx,2 ! plot KXX versus temperaturempplot,enth,2 ! plot enthalpy versus temperature !k,1,rad1 ! create flywheel geometryk,2,rad4k,3,rad4,hgt2k,4,rad3,hgt2k,5,rad3,hgt3k,6,rad2,hgt1k,7,rad1,hgt1l,2,3*repeat,5,1,1l,1,7k,8,rad2k,9,rad3-radfl,1,8l,8,9l,9,2LFILLT,3,4,radf/pnum,kp,1lplot/pnum,kp,0a,1,8,6,7 ! define areasa,8,9,11,6a,9,2,10,11a,10,2,3,4ARSYM,Y,ALL ! reflect geometry across x axis nummrg,kp ! merge coincident keypoints RECTNG,0,radm,0,hgtm ! create sand mold areas rectng,0,radm,0,-hgtmRECTNG,0,rad1,0,hgt1RECTNG,0,rad1,0,-hgt1RECTNG,rad4,radm,0,hgt2RECTNG,rad4,radm,0,-hgt2RECTNG,0,radm,hgt2,hgtmRECTNG,0,radm,-hgtm,-hgt2AOVLAP,ALLnummrg,kp ! merge coincident keypoints numcmp,all ! compress numbers/pnum,line,1lplot/pnum,line,0/pnum,area,1aplot/pnum,area,0eshape,2 ! specify quad element shapesesize,rad1/2 ! set element sizemat,2 ! set attributes for ALreal,2type,1amesh,1,8 ! mesh flywheel areasmat,1 ! set attributes for sandreal,1type,1amesh,10,11 ! mesh the sand areas in the hole of the flywheel esize,rad1 ! set new element sizeamesh,9,12,3 ! mesh areas outside rimlsel,s,,,2 ! select and concatenate lines for quad meshing lsel,a,,,27lsel,a,,,36lccat,alllsel,s,,,23lsel,a,,,35lsel,a,,,39lccat,allallsel!amesh,13,14 ! mesh remaining areaseshape,0 ! set element shape for mixed quad/triamesh,15,16 ! mesh remaining areasfinish ! exit the preprocessor!/solu ! Enter Solutionantype,trans ! specify transient analysistimint,off ! turn off time integrationtime,1e-3 ! use a small value of time for this load step deltim,1e-3 ! run one substep to initialize temperature esel,s,mat,,1 ! select sand elements and nodesnsle,s,1d,all,temp,25 ! set initial temperature of sandesel,s,mat,,2 ! select all aluminum elements and nodes nsle,s,1d,all,temp,750 ! set initial temperature of aluminumlsel,s,loc,x,radm ! select lines on OD for convection loading sfl,all,conv,hside,,30 ! specify outside wall convectionlsel,s,loc,y,hgtm ! select lines for top convection loadingsfl,all,conv,htop,,30 ! specify top convection loadallsel ! select everything!solve ! solveddele,all,temp ! delete initial temperature specstimint,on ! turn on time integrationtintp,,,,1 ! specify use EULER bakward diff. integrationlnsrch,on ! turn on linesearchautots,on ! auto time stepping onneqit,99 ! limit number of equilibrium iterations to 99time,2400 ! set final time to 40 minutesdeltim,0.01,0.0001,100 ! use small initial time stepoutres,all,1 ! store all solutions on the results filesolve ! solve the transient load step/psf,conv,,2 ! turn on plotting of convectioneplot ! plot elements/psf,default ! reset plottingfinishsave ! save the database!/post26 ! enter the time-history postprocessorsolu,2,dtime,,deltime ! DELTIM for each step!nsol,3,node((rad1+rad2)/2,0,0,),temp,,T1 ! define checking points T1-T4 nsol,4,node(rad2,0,0),temp,,T2nsol,5,node(rad3,0,0),temp,,T3nsol,6,node((rad3+rad4)/2,0,0),temp,,T4nsol,7,node(0,hgtm,0),temp,,SandTOP ! define checking points for mold nsol,8,node(radm,hgtm,0),temp,,SandCRNRnsol,9,node(0,-hgtm,0),temp,,SandBOT!plvar,2 ! plot results variables defined aboveplvar,3,4,5,6plvar,7,8,9*GET,nsets,VARI,,NSET ! get the number of datasets on the results file !finish ! exit the time-history postprocessor!/post1 ! enter the postprocessorset,first ! read in first set of results!esel,s,mat,,2 ! select AL elements and nodesnsle,s!/cval,1,695,900 ! set two uneven contours, at 695 and 900!*do,i,2,nsets ! use a do loop to view results set,nextplnsol,temp*enddo!finish ! exit the postprocessor! /exit,nosa。