第3章-神经元的兴奋和传导
- 格式:ppt
- 大小:556.00 KB
- 文档页数:33
⽣理课后题答案第⼆章细胞膜动⼒学和跨膜信号转导1.哪些因素影响可通透细胞膜两侧溶质的流动?脂溶性越⾼,扩散通量越⼤。
①单纯扩散:膜两侧物质的浓度梯度和物质的脂溶性。
浓度梯度越⼤蛋⽩的数量。
②易化扩散:膜两侧的浓度梯度或电势差。
由载体介导的易化扩散:载体的数量,载体越多,运输量越⼤;竞争性抑制物质,抑制物质越少,运输量越⼤。
③原发性主动转运:能量的供应,离⼦泵的多少。
④继发性主动转运:离⼦浓度的梯度,转运⑤胞膜窖胞吮和受体介导式胞吞:受体的数量,ATP的供应。
⑥胞吐:钙浓度的变化。
2.离⼦跨膜扩散有哪些主要⽅式?①易化扩散:有⾼浓度或⾼电势⼀侧向低浓度或低电势⼀侧转运,不需要能量,需要通道蛋⽩介导。
如:钾离⼦通道、钠离⼦通道等。
②原发性主动转运:由低浓度或低电势⼀侧向⾼浓度或⾼电势⼀侧转运,需要能量的供应,需要转运蛋⽩的介导。
如:钠钾泵。
③继发性主动转运:离⼦顺浓度梯度形成的能量供其他物质的跨膜转运。
需要转运蛋⽩参与。
3.阐述易化扩散和主动转运的特点。
①易化扩散:顺浓度梯度或电位梯度,转运过程中需要转运蛋⽩的介导,通过蛋⽩的构象或构型改变,实现物质的转运,不需要消耗能量,属于被动转运过程。
由载体介导的易化扩散:特异性、饱和现象和竞争性抑制。
由通道介导的易化扩散:速度快。
②主动转运:逆浓度梯度或电位梯度,由转运蛋⽩介导,需要消耗能量。
原发性主动转运:由ATP直接提供能量,通过蛋⽩质的构象或构型改变实现物质的转运。
如:NA-K泵。
继发性主动转运:由离⼦顺浓度或电位梯度产⽣的能量供其他物质逆浓度的转运,间接地消耗ATP。
如:NA-葡萄糖。
4.原发性主动转运和继发性主动转运有何区别?试举例说明。
前者直接使⽤ATP的能量,后者间接使⽤ATP。
①原发性主动转运:NA-K泵。
过程:NA-K泵与⼀个ATP结合后,暴露出NA-K泵上细胞膜内侧的3个钠离⼦⾼亲结合位点;NA-K泵⽔解ATP,留下具有⾼能键的磷酸基团,将⽔解后的ADP 游离到细胞内液;⾼能磷酸键释放的能量,改变了载体蛋⽩的构型。
神经元兴奋传导机制神经元是构成神经系统的基本功能单位,它们负责接收、处理和传递神经信号。
神经元的兴奋传导机制是神经信号从一个神经元传递到另一个神经元的过程,它涉及到离子通道的打开和关闭,并涉及离子的流动。
神经元的兴奋传导机制主要涉及到细胞膜的电位变化。
在正常状态下,细胞膜内外的离子分布有一定的差异,内部为负电位,外部为正电位。
当神经元受到外部刺激时,细胞膜上的离子通道会打开,使离子开始流动。
在神经元的兴奋传导过程中,关键的离子通道包括钠离子通道和钾离子通道。
当神经元受到刺激时,刺激引起细胞膜上的钠离子通道打开,使细胞内的钠离子流入细胞内。
这导致细胞内的电位发生变化,从而形成兴奋电位。
兴奋电位的形成使得细胞膜电位逐渐变得更加正电位,直至达到临界点。
一旦达到临界点,发生“全或无”的现象,即产生动作电位。
动作电位是一个瞬时的、自我传导的电位变化,它以高速传播沿着神经元的轴突。
动作电位的传导过程涉及到离子通道的打开和关闭。
在动作电位的传导过程中,钠离子通道在刺激后迅速打开,并且大量的钠离子进入细胞内部,使得电位迅速变正。
随后,钾离子通道打开,使得大量钾离子从细胞内外流出,电位再次变负。
这个过程称为复极化,使得电位恢复到正常状态。
在兴奋传导过程中,神经元之间的联系主要是通过化学递质来实现的。
当动作电位到达神经元的末端部位,它会刺激细胞内的突触小泡释放化学递质到突触间隙。
化学递质与相应的受体结合后,触发下一个神经元的兴奋传导过程。
总结起来,神经元的兴奋传导机制是一个复杂而精密的过程。
它涉及到多个离子通道的打开和关闭,离子的流动以及化学递质的释放。
这个过程的正常进行对于神经系统的功能正常发挥至关重要。
对于理解神经系统的工作原理以及研究神经相关疾病,我们需要深入了解神经元的兴奋传导机制。
神经元的结构与兴奋传导例题和知识点总结一、神经元的结构神经元,也叫神经细胞,是神经系统最基本的结构和功能单位。
它就像一个个小小的信息处理站,负责接收、传递和处理神经信号。
神经元主要由细胞体、树突和轴突三部分组成。
细胞体是神经元的核心部分,里面包含着细胞核和各种细胞器,就像一个小小的“指挥中心”,负责控制神经元的各种活动和代谢。
树突则像是从细胞体伸出来的许多“小树枝”,它们的数量众多,形状短而粗,主要负责接收来自其他神经元的信息。
这些树突上布满了许多突触,就像一个个小小的“接收器”,能够捕捉到其他神经元传递过来的化学信号,并将其转化为电信号,然后传递给细胞体。
轴突则是神经元的“输出管道”,通常只有一条,而且比较长。
轴突的表面覆盖着一层髓鞘,就像给电线包上了一层绝缘皮一样,能够加快神经信号的传导速度。
轴突的末端分成许多小分支,每个小分支的末端都有一个突触小体,突触小体里面含有许多突触小泡,里面装着神经递质。
当神经信号传递到轴突末端时,突触小泡就会释放出神经递质,通过突触间隙传递给下一个神经元的树突或细胞体,从而实现信息的传递。
二、兴奋传导兴奋在神经元内的传导是通过电信号的形式进行的,也称为神经冲动。
当神经元受到刺激时,细胞膜上的离子通道会打开,导致钠离子内流,使细胞膜电位发生变化,从原来的外正内负变为外负内正,这个过程称为去极化。
当去极化达到一定阈值时,就会产生动作电位,也就是神经冲动。
神经冲动产生后,会沿着轴突迅速传播。
由于轴突上的细胞膜具有良好的导电性,而且轴突上的髓鞘能够减少电流的泄漏,所以神经冲动能够以很快的速度传导。
兴奋在神经元之间的传递则是通过化学信号的形式进行的。
当神经冲动传递到轴突末端时,突触小泡会释放出神经递质,神经递质通过突触间隙扩散到下一个神经元的突触后膜上,与突触后膜上的受体结合,从而引起突触后膜电位的变化,实现信息的传递。
三、例题分析接下来,我们通过一些例题来加深对神经元结构与兴奋传导的理解。
神经元的结构与兴奋传导例题和知识点总结神经元是神经系统的基本结构和功能单位,它们负责传递和处理信息。
理解神经元的结构以及兴奋在其中的传导机制对于学习神经生物学和生理学至关重要。
接下来,让我们通过一些例题来深入探讨这部分知识。
一、神经元的结构神经元由细胞体、树突和轴突三部分组成。
细胞体是神经元的代谢和营养中心,包含细胞核、细胞质和细胞器等。
树突通常较短而分支多,像树枝一样从细胞体向外伸展,其作用是接收来自其他神经元的信息。
轴突则一般较长,一个神经元通常只有一个轴突。
轴突的末端会分成许多分支,其末梢膨大部分称为突触小体,通过突触与其他神经元或效应器细胞相接触,传递神经冲动。
例题 1:下列关于神经元结构的描述,错误的是()A 神经元由细胞体、树突和轴突组成B 树突可以将神经冲动传向细胞体C 轴突的长度一般比树突长D 一个神经元只有一个树突答案:D解析:一个神经元通常有多个树突,用于接收来自多个方向的信息,选项 D 错误。
二、兴奋在神经元上的传导兴奋在神经元上以电信号的形式传导,这种电信号也称为神经冲动。
当神经元受到刺激时,细胞膜的通透性会发生改变,导致钠离子内流,产生动作电位,从而形成神经冲动。
神经冲动在轴突上的传导具有双向性,但在生理状态下,通常是从轴突的起始部位向末梢方向传导。
例题 2:在兴奋的传导过程中,动作电位的产生是由于()A 钠离子内流B 钠离子外流C 钾离子内流D 钾离子外流答案:A解析:当神经元受到刺激时,细胞膜对钠离子的通透性增加,钠离子迅速内流,导致膜电位去极化,产生动作电位。
三、兴奋在神经元之间的传递兴奋在神经元之间通过突触传递。
突触前膜、突触间隙和突触后膜共同构成突触结构。
当兴奋传到突触前膜时,突触小泡会释放神经递质到突触间隙,神经递质通过扩散作用与突触后膜上的受体结合,引起突触后膜电位的变化,从而实现兴奋的传递。
由于神经递质的存在和释放需要一定的时间,以及神经递质与受体结合后的反应过程,兴奋在神经元之间的传递具有单向性,即只能从突触前膜传递到突触后膜。
第三章神经元的兴奋和传导1、静息电位:细胞在没有受到外来刺激时,即处于静息状态下的细胞膜内、外侧所存在的电位差称为静息膜电位。
静息电位的基础:离子在膜内外的不均等分布和选择性通透2、极化:大多数细胞只要处于静息状态,维持正常的新陈代谢,其膜电位总是稳定在一定的水平,细胞膜内外存在电位差的现象称为极化。
细胞膜外电位定为零电位(内负外正)3、平衡电位:当膜两侧的电势梯度和某离子的浓度梯度相等时,离子的跨膜净移动停止,此时在膜两侧建立的电位称为该离子的平衡电位4、细胞膜电位:由于细胞膜内外存在的带电离子不均等分布在膜的两侧,细胞膜内、外存在一定的电位差,称为细胞膜电位5、兴奋:可兴奋组织或细胞接受刺激后产生动作电位的过程,称为兴奋6、兴奋性:可兴奋组织或细胞具有发生兴奋即产生动作电位的能力,称为兴奋性7、反应:由刺激而引起的机体活动状态的改变,称为反应8、阈强度:刚能引起组织兴奋的临界刺激强度称为阈强度9、阈刺激:达到阈强度的刺激是引起细胞产生动作电位的有效刺激,称为阈刺激10、阈上刺激:高于阈强度的刺激当然也是有效的,称为阈上刺激(产生动作电位)11、阈下刺激:低于阈强度的刺激则不能引起兴奋,称为阈下刺激(产生分级电位)12、去极化(除极化):膜极化状态变小的变化过程称为除极化13、超极化:膜极化状态变大的变化过程称为超极化14、分级电位(局部电位):给予细胞膜一个较小的刺激,膜将产生一个较小的电位变化,不断增加刺激强度,则电位的幅值也逐渐增大,这种具有不同幅值的电位称为分级电位15、动作电位:给细胞膜一个较强的刺激,细胞膜将产生一个短暂、快速而连续的膜电位的变化,称为动作电位。
每一次电位波动称为一次动作电位,传导幅度不随距离的增加而衰减16、细胞膜的生物电现象:细胞对不同刺激的特异性反应,在反应的初始阶段,表现为细胞膜的电学性质发生变化,细胞膜受刺激后产生的这种电的变化称为细胞膜的生物电变化17、细胞膜电位:由于细胞膜内外存在的带电离子不均等分布在膜的两侧,导致膜内外存在电位差,即细胞膜电位。
神经传导速度和神经元兴奋性的关系神经传导速度和神经元兴奋性之间存在着紧密的关联。
神经元是构成神经系统的基本单元,而神经传导速度是指神经信号在神经元之间传递的速度。
神经元的兴奋性则决定了神经传导速度的快慢。
本文将探讨神经传导速度和神经元兴奋性之间的关系,并探讨一些影响因素以及其对神经系统功能的影响。
神经元兴奋性指的是神经元在受到刺激后被激活的能力。
神经元兴奋性的高低直接影响着神经传导速度。
一般来说,神经元兴奋性越高,神经传导速度就越快。
这是因为在神经元内部,当兴奋性较高时,细胞膜上的离子通道开放程度增加,使得离子在神经元内部迅速传播。
这种快速传播促使神经信号快速传达给下一个神经元,从而提高神经传导速度。
然而,神经元兴奋性的高低不仅受到内源性因素的调节,也受到外源性因素的影响。
一些外部刺激可以改变神经元的兴奋性水平,从而影响神经传导速度。
例如,一些神经递质如多巴胺和去甲肾上腺素可以增加神经元的兴奋性,从而加速神经传导速度。
相反,一些药物或毒素如镁离子可以减少神经元的兴奋性,导致神经传导速度变慢。
除了神经元兴奋性外,神经传导速度还受到神经髓鞘的影响。
神经髓鞘是由多层胶质细胞包裹的神经纤维,可以提高神经信号的传导速度。
神经髓鞘的存在减少了神经信号跳跃传导的过程,使得信号传递更为迅速。
因此,神经髓鞘的形成对于神经传导速度的提高至关重要。
除了神经元兴奋性和神经髓鞘的影响外,神经传导速度还受到温度、离子浓度和神经纤维直径等因素的影响。
例如,较高的温度和适当的离子浓度可以减少电阻,促进神经信号的传导速度。
此外,神经纤维的直径越大,电信号的传导速度就越快。
这是因为较大的纤维直径意味着更多的神经元和细胞膜可以参与信号传导,从而提高传导速度。
总之,神经传导速度和神经元兴奋性密切相关。
神经元兴奋性的高低直接影响着神经传导速度的快慢。
不仅神经元兴奋性本身,还有神经髓鞘的存在,温度、离子浓度和神经纤维直径等因素都对神经传导速度有一定影响。