统计学习题区间估计与假设检验
- 格式:doc
- 大小:239.50 KB
- 文档页数:11
旗开得胜1第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。
1. u ,nx σμ0-,标准正态; ),(),(2/2/+∞--∞nz nz σσααY2. 参数检验,非参数检验3. 弃真,存伪4. 方差旗开得胜25. 卡方, F6. 方差分析7. t ,u8. nsx 0μ-,不拒绝9. 单侧,双侧10.新产品的废品率为5% ,0.01 11.相关,总变异,组间变异,组内变异12.总变差平方和=组间变差平方和+组内变差平方和 13.连续,离散 14.总体均值 15.因子,水平 16.组间,组内 17.r-1,n-r18. 正态,独立,方差齐三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。
1.B 2.B 3. B 4.A 5.C 6.B 7.C 8.A 9.D 10.A 11.D 12.C四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。
1.AC 2.A 3.B 4.BD 5. AD五、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( ×)样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t检验均可使用,且两者检验结果一致。
第5章 假设检验思考与练习参考答案一、最佳选择题1. 样本均数比较作t 检验时,分别取以下检验水准,以( E )所取Ⅱ类错误最小。
A.0.01α=B. 0.05α=C. 0.10α=D. 0.20α=E. 0.30α=2. 在单组样本均数与一个已知的总体均数比较的假设检验中,结果t =3.24,t 0.05,v =2.086, t 0.01,v =2.845。
正确的结论是( E )。
A. 此样本均数与该已知总体均数不同B. 此样本均数与该已知总体均数差异很大C. 此样本均数所对应的总体均数与该已知总体均数差异很大D. 此样本均数所对应的总体均数与该已知总体均数相同E. 此样本均数所对应的总体均数与该已知总体均数不同3. 假设检验的步骤是( A )。
A. 建立假设,选择和计算统计量,确定P 值和判断结果B. 建立无效假设,建立备择假设,确定检验水准C. 确定单侧检验或双侧检验,选择t 检验或Z 检验,估计Ⅰ类错误和Ⅱ类错误D. 计算统计量,确定P 值,作出推断结论E. 以上都不对4. 作单组样本均数与一个已知的总体均数比较的t 检验时,正确的理解是( C )。
A. 统计量t 越大,说明两总体均数差别越大B. 统计量t 越大,说明两总体均数差别越小C. 统计量t 越大,越有理由认为两总体均数不相等D. P 值就是αE. P 值不是α,且总是比α小5. 下列( E )不是检验功效的影响因素的是:A. 总体标准差σB. 容许误差δC. 样本含量nD. Ⅰ类错误αE. Ⅱ类错误β二、思考题1.试述假设检验中α与P 的联系与区别。
答:α值是决策者事先确定的一个小的概率值。
P 值是在0H 成立的条件下,出现当前检验统计量以及更极端状况的概率。
P ≤α时,拒绝0H 假设。
2. 试述假设检验与置信区间的联系与区别。
答:区间估计与假设检验是由样本数据对总体参数作出统计学推断的两种主要方法。
置信区间用于说明量的大小,即推断总体参数的置信范围;而假设检验用于推断质的不同,即判断两总体参数是否不等。
第八章1. 解:(1)假设检验的基本思想是,样本平均数与总体平均数出现差异不外乎两种可能:一是改革后的总体平均长度不变,但由于抽样的随机性使样本平均数与总体平均数之间存在抽样误差;二是由于工艺条件的变化,使总体平均数发生了显著的变化。
因此,可以这样推断:如果样本平均数与总体平均数之间的差异不大,未超出抽样误差范围,则认为总体平均数不变;反之,如果样本平均数与总体平均数之间的差异超出了抽样误差范围,则认为总体平均数发生了显著的变化。
根据样本平均数的抽样分布定理,有x Z σx μ±=或Z /σμx x ≤-。
当0=Z 时,表明样本均值等于总体均值,即μx =;当Z 很大时,表明样本均值离总体均值很远,即∆很大。
后一种情况是小概率事件。
在正常情况下,小概率事件是不会发生的,那么在一次抽样中小概率事件居然发生了,我们就有理由认为样本均值是不正常的,它与原总体相比,性质已经发生变化,应该拒绝接受原假设。
(2)假设检验的一般步骤包括:① 提出原假设和备择假设;对每个假设检验问题,一般可同时提出两个相反的假设:原假设和备择假设。
原假设又称零假设,是正待检验的假设,记为H 0;备择假设是拒绝原假设后可供选择的假设,记为H 1。
原假设和备择假设是相互对立的,检验结果二者必取其一。
接受H 0,则必须拒绝H 1;反之,拒绝H 0则必须接受H 1。
② 选择适当的统计量,并确定其分布形式;不同的假设检验问题需要选择不同的统计量作为检验统计量。
在例中,我们所用的统计量是Z ,在H 0为真时,N Z ~(0,1)。
③选择显著性水平α,确定临界值;显著性水平表示H 0为真时拒绝H 0的概率,即拒绝原假设所冒的风险,用α表示。
假设检验就是应用了小概率事件实际不发生的原理。
这里的小概率就是指α。
但是要小到什么程度才算小概率? 对此并没有统一的标准。
通常取α=0.1,0.05,0.01。
给定了显著性水平α,就可由有关的概率分布表查得临界值,从而确定H 0的接受区域和拒绝区域。
第五章抽样与参数估计一、单项选择题1、某品牌袋装糖果重量的标准是(500±5)克。
为了检验该产品的重量是否符合标准,现从某日生产的这种糖果中随机抽查10袋,测得平均每袋重量为498克。
下列说法中错误的是( B )A、样本容量为10B、抽样误差为2C、样本平均每袋重量是估计量D、498是估计值2、设总体均值为100,总体方差为25,在大样本情况下,无论总体的分布形式如何,样本平均数的分布都服从或近似服从趋近于( D )A、N(100,25)B、N(100,5/n)C、N(100/n,25)D、N(100,25/n)3、在其他条件不变的情况下,要使置信区间的宽度缩小一半,样本量应增加( C )A、一半B、一倍C、三倍D、四倍4、在其他条件不变时,置信度(1–α)越大,则区间估计的( A )A、误差范围越大B、精确度越高C、置信区间越小D、可靠程度越低5、其他条件相同时,要使抽样误差减少1/4,样本量必须增加( C )A、1/4B、4倍C、7/9D、3倍6、在整群抽样中,影响抽样平均误差的一个重要因素是( C )A、总方差B、群内方差C、群间方差D、各群方差平均数7、在等比例分层抽样中,为了缩小抽样误差,在对总体进行分层时,应使( B )尽可能小A、总体层数B、层内方差C、层间方差D、总体方差8、一般说来,使样本单位在总体中分布最不均匀的抽样组织方式是( D )A、简单随机抽样B、分层抽样C、等距抽样D、整群抽样9、为了了解某地区职工的劳动强度和收入状况,并对该地区各行业职工的劳动强度和收入情况进行对比分析,有关部门需要进行一次抽样调查,应该采用( A )A、分层抽样B、简单随机抽样C、等距(系统)抽样D、整群抽样10、某企业最近几批产品的优质品率分别为88%,85%,91%,为了对下一批产品的优质品率进行抽样检验,确定必要的抽样数目时,P应选( A )A、85%B、87.7%C、88%D、90%二、多项选择题1、影响抽样误差大小的因素有( ADE )A 、总体各单位标志值的差异程度B 、调查人员的素质C 、样本各单位标志值的差异程度D 、抽样组织方式E 、样本容量2、某批产品共计有4000件,为了了解这批产品的质量,从中随机抽取200件进行质量检验,发现其中有30件不合格。
区间估计与假设检验的联系与区别讲义资料
区间估计与假设检验是统计推断的两种常见方法。
它们虽然都属于推断统计,但也有明显的不同之处。
区间估计的主要目的是估计总体参数的值,也可以称作参数估计。
根据样本信息,我们可以得出一个可能的参数值范围,也就是置信区间,从而得到一个可靠的估计区间。
估计是不断变化的,每一次统计分析给出的参数估计值都可能有所变化,从而慢慢趋近真实值。
假设检验即“判断”,是统计学中比较常用的检验方法,目的是确定两个总体之间的差异是由随机因素造成的,还是由特定的因素(如环境因素)造成的。
假设检验涉及两个立场:备择假设和原假设。
假设检验的结果由抽样分布决定,不同的抽样分布对应不同的结论,比如有抽样分布下假设检验结果可能是拒绝备择假设,也可能是接受备择假设。
从概念上讲,区间估计技术计算的是一个参数的值的估计,而假设检验是用于检查参数的方法,它只检验两个总体是否具有显著的性质差异,而不会真正测量它们的差异。
总的来说,区间估计通过单组数据范围尽可能准确地估计参数的取值范围,而假设检验则是针对任何特定统计主题,利用数据样本来检验其是否与假设相符。
两者都具有自己的优点和不足,可以结合使用来为抽样荟萃而得出结论,从而更准确地了解样本的真实情况。
一、名词解释抽样误差、均数的抽样误差、标准误、可信区间二、填空题1.参数估计可分为_____点估计____ 和__区间估计______ 。
2. 在抽样研究中,当样本含量趋向无穷大时,X 趋向等于__μ___,S 趋向等于__0__,t(0.05,v) 趋向等于________ 。
3、定量资料常用的假设检验方法有 t 检验 、 u 检验 、 方差分析 。
4、方差分析可用于两个或两个以上样本均数的比较,其应用时要求,(1)正态分布;(2)方差齐。
5、标准误是 均数 的标准差,与标准差的关系可用公式 n s表示。
6、假设检验时根据检验结果作出的判断, 可能发生两种错误, 第一类错误的概率为 α,第二类错误的概率为 β , 同时减少两类错误的唯一方法是 增加样本含量 。
7、t 检验的应用条件是 正态分布 和 方差齐 。
8. 配对设计差值的t 检验无效假设是 d =0 。
9、两样本比较t 检验要求资料(1) 正态分布 ;(2) 方差齐 。
10、样本量较小的二组数值变量资料进行t 检验时,要求二组资料呈 正态分布; 方差齐。
11、数值变量数据常用的参数统计方法有 t 检验、u 检验和方差分析。
三、是非题1.在假设检验中,无论是否拒绝H 0,都有可能犯错误。
( V )2.同类研究的两组资料,n 1=n 2,则标准差大的那一组 ,μ的95%可信区间范围也一定小。
( X )3.两个同类资料的t 检验,其中P 1<0.01, 0.01﹤P 2<0.05,说明前者两样本均数之差大于后者。
( X )4.均数比较的u 检验的应用条件是n 较大或n 虽小但σ已知。
(V )5.标准误越小,表示用样本均数估计总体均数的可靠性越大。
( V )6.统计的假设是对总体特征的假设,其结论是概率性的,不是绝对的肯定或否定。
( V )7.成组设计的两样本几何均数的比较;当n 足够大时,也可以用u 检验。
(V )8.在配对T 检验中,用药前数据减去用药后的数据和用药后的数据减去用药前的数据,作T 检验后的结论是相同的。
统计学学习题及解答统计学学习题及解答⼀、填空题:1、“统计”⼀词,⼀般有三种涵义,即统计资料、统计⼯作和统计学。
2、统计指标按其反映的总体内容不同,可分为数量指标与质量指标;按其作⽤和表现形式不同,可分为总量指标、相对指标和平均指标。
结构相对指标是部分(或各组)总量与总体总量之⽐。
3、总量指标时间数列是基本的时间数列,它有时期数列和时点数列两种。
4、当我们研究某个班学⽣的学习情况时,某个班的学⽣便构成总体,⽽这个班的每⼀名学⽣则是总体单位。
5、可变的数量标志称为变量,⽽数量标志的表现则称标志值。
6、标志是⽤来说明总体单位特征的名称,⽽指标是说明总体的综合数量特征的。
7、⼈⼝按性别、民族、职业分组,属于按品质标志分组,⽽⼈⼝按年龄、⼯资、⾝⾼分组,则属于按数量标志分组。
8、⽅差分析中,如果在实验中变化的因素只有⼀个,这时的⽅差分析称为单因素⽅差分析。
9、直线相关系数等于0,说明两变量之间⽆线性相关关系;直线相关系数等于1,说明两变量之间完全线性正相关。
直线相关系数越接近于1,说明两变量之间相关关系越密切;直线相关系数越接近于0,说明两变量之间相关关系越不密切。
10、相关系数的取值在-1 和 1 之间,即[-1,1]。
11、从内容上看,统计表由主词栏和宾词栏两部分组成。
12、假设检验分为两类:参数假设检验和⾮参数假设检验。
p13、是⾮标志的平均数等于,是⾮标志的标准差等于14、统计调查按调查对象所包括的范围不同,可分为全⾯调查和⾮全⾯调查。
15、按照说明现象的范围不同,统计指数可分为个体指数和总指数。
16、保证时间数列中各个指标数值的可⽐性是编制时间数列的基本原则。
17、组中值是各组上限和下限的简单平均。
18、投资额与消费额的⽐例为1:3(A)。
投资额占国内⽣产总值使⽤额的25%(B)。
在这⼀资料中,A为⽐例相对指标,B为结构相对指标。
19、统计数据的表现形式有绝对数、相对数和平均数三种。
20、相关关系按相关的⽅向可分为正相关和负相关。
假设检验与区间估计的关系假设检验和区间估计是统计学中两个重要的概念和方法。
它们在数据分析和推断中经常被使用,并且有密切的关联。
假设检验假设检验是统计学中一种通过样本数据对总体参数进行推断的方法。
它的基本思想是,我们根据样本数据得到的统计量,与我们对总体参数的假设进行比较,从而判断这个假设是否合理。
在假设检验中,我们通常会提出一个原假设(null hypothesis)和一个备择假设(alternative hypothesis)。
原假设是我们要进行推断的对象,备择假设则是原假设不成立时所代表的情况。
然后,我们根据样本数据计算得到一个统计量,并且利用该统计量对原假设进行检验。
这个统计量通常会服从某种已知或近似已知的概率分布。
最后,根据统计量在概率分布中所处位置的概率来决定是否拒绝原假设。
如果这个概率非常小(小于显著性水平),则我们有充分的证据拒绝原假设;反之,如果这个概率较大,则我们没有充分的证据拒绝原假设。
总结一下,假设检验的步骤如下:1.提出原假设和备择假设;2.根据样本数据计算得到一个统计量;3.假设这个统计量服从某种概率分布;4.利用概率分布来计算统计量在概率分布中所处位置的概率;5.根据这个概率来决定是否拒绝原假设。
区间估计区间估计是统计学中一种通过样本数据对总体参数进行估计的方法。
它的基本思想是,我们根据样本数据得到的统计量,以及该统计量的抽样分布特性,构建一个区间,这个区间可以包含真实总体参数的真值。
在区间估计中,我们通常会选择一个置信水平(confidence level),表示我们对该区间包含真实总体参数的程度的置信程度。
常用的置信水平有95%和99%。
然后,我们根据样本数据计算得到一个统计量,并且利用该统计量和抽样分布特性来构建一个置信区间。
这个置信区间具有以下特点:如果我们重复使用相同方法对不同样本进行估计,那么约有95%(或99%)的置信区间会包含真实总体参数的真值。
最后,我们根据置信区间来进行参数估计。
1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量nx t /0σμ-=。
查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。
667.116/60800820=-=t 。
因为t <2.131<2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=。
查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
第七章参数估计和假设检验一、填空题1.在抽样推断中,常用的总体指标有、和。
2.在抽样推断中,按随机原则从总体中抽取的部分单位叫,这部分单位的数量叫。
3.整群抽样是对总体中群内的进行的抽样组织形式。
4.若总体单位的标志值不呈正态分布,只要,全部可能样本指标也会接近于正态分布。
5.抽样估计的方法有和两种。
6.扩大误差范围,可以推断的可靠程度,缩小误差范围则会推断的可靠程度。
7.对总体的指标提出的假设可以分为和。
8.如果提出的原假设是总体参数等于某一数值,这种假设检验称为,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为。
二、单项选择题1.所谓大样本是指样本单位数在()及以上。
A.50个B.30个C.80个D.100个2.总体平均数和样本平均数的关系是()。
A.总体平均数是确定值,样本平均数是随机变量B.总体平均数是随机变量,样本平均数是确定值C.总体平均数和样本平均数都是随机变量D.总体平均数和样本平均数都是随机变量3.先对总体按某一标志分组,然后再在各组中按随机原则抽取一部分单位构成样本,这种抽样组织方式称为()。
A.简单随机抽样B.机械抽样C.类型抽样D.整群抽样4.用样本指标对总体指标作点估计时,应满足4点要求,其中无偏性是指()。
A.样本平均数等于总体平均数B.样本成数等于总体成数C.样本指标的平均数等于总体的平均数 D.样本指标等于总体指标5.在其它条件不变的情况下,提高抽样估计的可靠程度,其精确度将()。
A.保持不变B.随之扩大C.随之缩小D.无法确定6.在抽样估计中,样本容量()。
A.越小越好B.越大越好C.有统一的抽样比例D.取决于抽样估计的可靠性要求。
7.假设检验中的临界区域是指()。
A.接受域B.拒绝域C.检验域D.置信区间三、多项选择题1.在抽样推断中,抽取样本单位的具体方法有()。
A.重复抽样B.不重复抽样C.分类抽样D.等距抽样E.多阶段抽样2.在抽样推断中,抽取样本的组织形式有()。
第十章 双样本假设检验及区间估计第一节 两总体大样本假设检验两总体大样本均值差的检验·两总体大样本成数差的检验 第二节 两总体小样本假设检验两总体小样本均值差的检验·两总体小样本方差比的检验 第三节 配对样本的假设检验单一试验组的假设检验·一试验组与一控制组的假设检验·对实验设计与相关检验的评论第四节 双样本区间估计σ12和σ22已知,对双样本均数差的区间估计·σ12和σ22未知,对对双样本均值差的区间估计·大样本成数差的区间估计·配对样本均值差的区间信计一、填空1.所谓独立样本,是指双样本是在两个总体中相互( )地抽取的。
2.如果从N (μ1,σ12)和N (μ2,σ22)两个总体中分别抽取容量为n 1和n 2的独立随机样本,那么两个样本的均值差(1X ―2X )的抽样分布就是N ( )。
3.两个成数的差可以被看作两个( )差的特例来处理。
4.配对样本,是两个样本的单位两两匹配成对,它实际上只能算作( )样本,也称关联样本。
5.配对样本均值差的区间估计实质上是( )的单样本区间估计6.当n 1和n 2逐渐变大时,(1X ―2X )的抽样分布将接近( )分布。
7.使用配对样本相当于减小了( )的样本容量。
8. 在配对过程中,最好用( )的方式决定“对”中的哪一个归入实验组,哪一个归入控制组。
9. 单一实验组实验的逻辑,是把实验对象前测后测之间的变化全部归因于( )。
10. 方差比检验,无论是单侧检验还是双侧检验,F 的临界值都只在( )侧。
二、单项选择1.抽自两个独立正态总体样本均值差(1X ―2X )的抽样分布是( )。
A N (μ1―μ2,121n σ―222n σ) B N (μ1―μ2,121n σ+222n σ)C N (μ1+μ2,121n σ―222n σ) D N (μ1+μ2,121n σ+222n σ)2.两个大样本成数之差的分布是( )。
第五章练习题一、单项选择题1、假设检验中,显著性水平表示()。
①为真时接受的概率② 为真时拒绝的概率③不真时接受的概率④ 不真时拒绝的概率2、假设检验中,第二类错误的概率表示()。
①为真时接受的概率② 为真时拒绝的概率③不真时接受的概率④ 不真时拒绝的概率3、假设检验的P值表示()。
①观察到的显著性水平②给定的显著性水平③正确决策的概率④错误决策的概率4、在左侧检验中,利用P值进行检验时,拒绝原假设的条件是()。
①P值> ② P值< ③P值> ④ P值<5、在假设检验中,若其他条件相同,则在下列多个P值中对原假设有利的是()。
①5% ② 15% ③ 45% ④65%6、在假设检验中,当我们作出接受原假设的结论时,表示()。
①原假设必定是正确的②没有充足的理由否定原假设③备择假设必定是正确的④备择假设必定是错误的7、设总体分布形式和总体方差都未知,对总体均值进行假设检验时,若抽取一个容量为100的样本,则可采用()。
① t检验法② Z检验法③ 检验法④ F检验法8、设总体服从正态分布,总体方差未知,现抽取一容量为20的样本,拟对总体均值进行假设检验,检验统计量是()。
① ② ③ ④9、已知总体服从正态分布,总体方差为1,现抽取一容量为10的样本,拟对总体均值进行假设检验,:;。
=0.01,则原假设的拒绝区域为()。
① (3.25,+ )②(2.82,+ )③ (2.33,+ ) ④(2.58,+ )10、已知总体服从正态分布,现抽取一容量为16的样本,拟对总体方差进行假设检验,:=1;。
=0.05,则原假设的拒绝区域为()。
① (0,26.296)②(0,24.996)③ (0,7.962) ④(0,7.261)11、已知总体服从正态分布,现抽取一容量为50的样本,拟对总体方差进行假设检验,可近似采用()。
① t检验法② Z检验法③ 检验法④ F检验法12、在方差分析中,组间平方和反映的是()。
第五章 假设检验一、单项选择题1、假设检验是检验( )的假设是否成立:A 、样本指标B 、总体指标C 、样本容量D 、总体单位数 2、第二类错误是指总体的:A 、真实状况B 、真实状况检验为非真实状况C 、非真实状况D 、非真实状况检验为真实状况 3、假设检验中的临界区域是:A 、接受域B 、拒绝域C 、置信区域D 、检验域 4、在显著性水平α下,经过检验而原假设0H 没有被拒绝:A 、原假设0H 一定是正确的B 、备选假设1H 一定是错误的C 、0H 是正确的可能性为α-1D 、原假设0H 可能是正确的 5、经过显著性检验,原假设0H 被拒绝了,则:A 、原假设0H 一定是错误的B 、备选假设1H 一定是正确的C 、0H 是正确的可能性为αD 、原假设0H 可能是正确的 6、在假设检验中,一般情况下,( )错误。
A 、只犯第1类错误B 、只犯第2类错误C 、不犯第1、2类错误D 、可能犯第1、2类错误 7、双侧检验的原假设通常是:A 、0H :0X X =B 、0H :0X X ≥C 、0H :0X X ≤D 、0H :0X X ≠ 8、下列说法正确的是:A 、若备选假设是正确的,作出的决策是拒绝备选假设,则犯了弃真错误B 、若备选假设是错误的,作出的决策是接受备选假设,则犯了纳伪错误C 、若原假设是正确的,作出的决策是接受备选假设,则犯了弃真错误D 、若原假设是错误的,作出的决策是接受备选假设,则犯了纳伪错误 9、假设检验时,若增大样本容量,则犯两类错误的可能性:A 、都增大B 、都缩小C 、都不变D 、一个增大,一个缩小 10、若总体为非正态分布,则在( )情况下,也可选用z 统计量: A 、样本容量大于或等于30 B 、样本容量小于30 C 、任意的样本容量 D 、总体单位数很大 11、在假设检验中,显著性水平α表示:A 、{}α=假接受00/H H P B 、{}α=真拒绝00/H H P C 、{}α=真接受00/H H P D 、{}α=假拒绝00/H H P 12、在一项假设中,显著性水平05.0=α,下面表述正确的是:A 、接受0H 的可靠性为95%B 、接受1H 的可靠性为95%C 、0H 为假被接受的概率为5%D 、1H 为真时被拒绝的概率为5% 13、下列结论中,不正确的是:A 、假设检验的依据是小概率原理B 、若{}α=真拒绝00/H H P ,则α为犯第1类错误的概率 C 、α小则β也小 D 、尽量增大样本容量可以减小αβ 14、设X ~()2,σX N ,且2σ已知,从中抽取一样本,检验假设0H :0X X =采用z 检验法,则其拒绝域与( )有关。
本讲自测(占一定期末成绩)1【单选题】在均数为μ,方差为σ^2的正态总体中随机抽样,每组样本含量n相等,z=(X-μ)/σx,则z≥1.96的概率是•A、P>0.05•B、P≤0.05•C、P≥0.025•D、P≤0.025正确答案:D 我的答案:C得分:0.0分2【单选题】下列 ______公式可用于估计95%样本均数分布范围。
•A、±1.96S•B、±1.96•C、μ±1.96•D、±t0.05正确答案:C 我的答案:C得分:3.3分3【单选题】将同类高血压病患者若干随机分成两组,一组给予传统医疗方法,另一组给予新医疗方法,以各组治疗前后血压的平均下降值为指标,比较两种医疗方法的效果。
关于该研究的设计要求,下列除以____外•A、两组受试对象相同•B、两组治疗方法不同•C、两组治疗效果不同•D、两组观察指标相同正确答案:C 我的答案:C得分:3.3分4【单选题】抽样误差主要指:•A、个体值和总体参数值之差•B、个体值和样本统计量值之差•C、样本统计量值和总体参数值之差•D、样本统计量值和样本统计量值之差•E、总体参数值和总体参数值之差正确答案:C 我的答案:C得分:3.3分5【单选题】假设检验的一般步骤中不包括以下哪一条•A、选定检验方法和计算检验统计量•B、确定P值和作出推断性结论•C、对总体参数的范围作出估计•D、计算P值•E、建立假设和确定检验水准正确答案:C 我的答案:C得分:3.3分6【单选题】要减少抽样误差,最切实可行的方法是•A、增加观察对象(样本含量)•B、控制个体变异•C、遵循随机化原则抽样•D、严格挑选研究对象正确答案:A 我的答案:A得分:3.3分7【单选题】下面哪一指标较小时可说明用样本均数估计总体均数的可靠性大?•A、变异系数•B、标准差•C、标准误•D、极差•E、四分位数间距正确答案:C 我的答案:C得分:3.3分8【单选题】在标准差与标准误的关系中,•A、二者均反映抽样误差大小•B、总体标准差增大时,总体标准误肯定也增大•C、样本例数增大时,样本标准差和标准误都减小•D、可信区间大小与标准差有关,而参考值范围与标准误有关•E、总体标准差一定时,增大样本例数会减小标准误正确答案:E 我的答案:E得分:3.3分9【单选题】两样本比较作z检验,差别有统计学意义时,P值越小说明•A、两样本均数差别越大•B、两总体均数差别越大•C、越有理由认为两总体均数不同越有理由认为两样本均数不同正确答案:C 我的答案:C得分:3.3分10【单选题】标准误越大,则表示此次抽样得到的样本均数•A、系统误差越大•B、可靠程度越高•C、抽样误差越大•D、可比性越差•E、代表性越好正确答案:C 我的答案:C得分:3.3分11【单选题】要减小抽样误差,通常的做法是()。
区间估计与假设检验在统计学中,区间估计和假设检验是两个常用的推断方法,用于对总体参数进行估计和推断。
本文将对区间估计和假设检验进行介绍,并讨论它们的应用和差异。
一、区间估计区间估计是用样本数据来推断总体参数的取值范围。
它通过计算估计值以及与之相关的置信水平,给出一个参数的范围估计。
这个范围被称为置信区间。
置信区间常用于描述一个参数的不确定性。
例如,我们要估计某种药物的平均效果。
通过对随机抽取的样本进行实验,我们可以得到样本均值和标准差。
然后,结合样本容量和置信水平,可以计算出药物平均效果的置信区间。
例如,我们可以得出一个95%置信区间为(0.2, 0.6),表示我们有95%的置信水平相信真实的平均效果在这个区间内。
二、假设检验假设检验是用于判断总体参数是否符合某种假设的统计方法。
假设检验通常分为两类:单样本假设检验和双样本假设检验。
1. 单样本假设检验单样本假设检验用于推断一个总体参数与某个特定值之间是否存在显著差异。
它包括以下步骤:(1)建立原假设(H0)和备择假设(H1),其中原假设是要进行检验的假设,备择假设是对原假设的补充或对立的假设。
(2)选择合适的显著性水平(α),表示我们接受原假设的程度。
(3)计算样本数据的检验统计量,例如t值或z值。
(4)根据显著性水平和检验统计量,判断是否拒绝原假设。
2. 双样本假设检验双样本假设检验用于比较两个总体参数之间是否存在显著差异。
常见的双样本假设检验包括独立样本t检验和配对样本t检验。
独立样本t检验用于比较两个独立样本的均值是否有差异,而配对样本t检验用于比较同一样本的两个相关变量的均值是否有差异。
三、区间估计与假设检验的差异区间估计和假设检验都是推断总体参数的方法,但它们的应用和目的略有不同。
区间估计主要关注参数的范围估计,给出了参数估计值的不确定性范围。
它强调了估计的稳定性和精确度,但不直接涉及参数的显著性判断。
因此,区间估计对于参数的精确度提供了一个相对准确的度量。
第五章抽样与参数估计一、单项选择题1、某品牌袋装糖果重量的标准是(500±5)克。
为了检验该产品的重量是否符合标准,现从某日生产的这种糖果中随机抽查10袋,测得平均每袋重量为498克.下列说法中错误的是( B )A、样本容量为10B、抽样误差为2C、样本平均每袋重量是估计量D、498是估计值2、设总体均值为100,总体方差为25,在大样本情况下,无论总体的分布形式如何,样本平均数的分布都服从或近似服从趋近于( D )A、N(100,25)B、N(100,5/n)C、N(100/n,25)D、N(100,25/n)3、在其他条件不变的情况下,要使置信区间的宽度缩小一半,样本量应增加( C )A、一半B、一倍C、三倍D、四倍4、在其他条件不变时,置信度(1–α)越大,则区间估计的( A )A、误差范围越大B、精确度越高C、置信区间越小D、可靠程度越低5、其他条件相同时,要使抽样误差减少1/4,样本量必须增加( C )A、1/4B、4倍C、7/9D、3倍6、在整群抽样中,影响抽样平均误差的一个重要因素是( C )A、总方差B、群内方差C、群间方差D、各群方差平均数7、在等比例分层抽样中,为了缩小抽样误差,在对总体进行分层时,应使( B )尽可能小A、总体层数B、层内方差C、层间方差D、总体方差8、一般说来,使样本单位在总体中分布最不均匀的抽样组织方式是( D )A、简单随机抽样B、分层抽样C、等距抽样D、整群抽样9、为了了解某地区职工的劳动强度和收入状况,并对该地区各行业职工的劳动强度和收入情况进行对比分析,有关部门需要进行一次抽样调查,应该采用( A )A、分层抽样B、简单随机抽样C、等距(系统)抽样D、整群抽样10、某企业最近几批产品的优质品率分别为88%,85%,91%,为了对下一批产品的优质品率进行抽样检验,确定必要的抽样数目时,P 应选( A )A、85%B、87。
7%C、88%D、90%二、多项选择题1、影响抽样误差大小的因素有( ADE )A 、总体各单位标志值的差异程度B 、调查人员的素质C 、样本各单位标志值的差异程度D 、抽样组织方式E 、样本容量2、某批产品共计有4000件,为了了解这批产品的质量,从中随机抽取200件进行质量检验,发现其中有30件不合格.根据抽样结果进行推断,下列说法正确的有( ADE )A 、n=200B 、n=30C 、总体合格率是一个估计量D 、样本合格率是一个统计量E 、合格率的抽样平均误差为2。
52%3、用样本成数来推断总体成数时,至少要满足下列哪些条件才能认为样本成数近似于正态分布( BCE )A 、np ≤5B 、np ≥5C 、n (1–p)≥5D 、p ≥1%E 、n ≥30三、填空题1、对某大学学生进行消费支出调查,采用抽样的方法获取资料.请列出四种常见的抽样方法: 、 、 、 ,当对全校学生的名单不好获得时,你认为 方法比较合适,理由是 。
四、简答题1、分层抽样与整群抽样有何异同?它们分别适合于什么场合?2、解释抽样推断的含义。
五、计算题1、某糖果厂用自动包装机装糖,每包重量服从正态分布,某日开工后随机抽查10包的重量如下:494,495,503,506,492,493,498,507,502,490(单位:克).对该日所生产的糖果,给定置信度为95%,试求: (1)平均每包重量的置信区间,若总体标准差为5克; (2)平均每包重量的置信区间,若总体标准差未知; (8125.1,8331.1,2281.2,2622.210,05.09,05.010,025.09,025.0====t t t t );2、某广告公司为了估计某地区收看某一新电视节目的居民人数所占比例,要设计一个简单随机样本的抽样方案.该公司希望有90%的信心使所估计的比例只有2个百分点左右的误差。
为了节约调查费用,样本将尽可能小,试问样本量应该为多大?3、为调查某单位每个家庭每天观看电视的平均时间是多长,从该单位随机抽取了16户,得样本均值为6.75小时,样本标准差为2.25小时。
(1)试对家庭每天平均看电视时间进行区间估计。
(2)若已知该市每个家庭看电视时间的标准差为2.5小时,此时若再进行区间估计,并且将边际误差控制在(1)的水平,问此时需要调查多少户才能满足要求?(α=0。
05)答案:一、B ,D,C,A ,C ;C ,B ,D ,A ,A 。
二、ADE ,ADE ,BCE.三、简单随机抽样,分层抽样,等距抽样,整群抽样,分层抽样,不用调查单位的名单,以院系为单位,而且各院系的消费差异也大,不宜用整群抽样。
四、1、答:都要事先按某一标志对总体进行划分的随机抽样。
不同在于:分层抽样的划分标志与调查标志有关,而整群抽样不是;分层抽样在层内随机抽取一部分,而整群抽样对一部分群做全面调查。
分层抽样用于层间差异大而层内差异小,以及为了满足分层次管理决策时;而整群抽样用于群间差异小而群内差异大时,或只有以群体为抽样单位的抽样框时。
2、答:简单说,就是用样本中的信息来推断总体的信息。
总体的信息通常无法获得或者没有必要获得,这时我们就通过抽取总体中的一部分单位进行调查,利用调查的结果来推断总体的数量特征. 五、1、解:n=10,小样本(1)方差已知,由x ±z α/2nσ得,(494.9,501.1)(2)方差未知,由x ±t α/2ns 得,(493。
63,502.37)2、解:n=222/1xp p z ∆-⨯⨯)(α=2202.05.05.01.6448⨯⨯=16913、解:(1)x ±t α/2ns =6.75±2。
131×1625.2=(5。
55,7。
95)(2)边际误差E= t α/2ns =2.131×1625.2=1。
2n=2222/E z σα⨯=2222.15.21.96⨯=17第六章假设检验练习题一、单项选择题1、按设计标准,某自动食品包装及所包装食品的平均每袋中量应为500克。
若要检验该机实际运行状况是否符合设计标准,应该采用( C ).A 、左侧检验B 、右侧检验C 、双侧检验D 、左侧检验或右侧检验2、假设检验中,如果原假设为真,而根据样本所得到的检验结论是否定元假设,则可认为( C )。
A、抽样是不科学的B、检验结论是正确的C、犯了第一类错误D、犯了第二类错误3、当样本统计量的观察值未落入原假设的拒绝域时,表示(B )。
A、可以放心地接受原假设B、没有充足的理由否定与原假设C、没有充足的理由否定备择假设D、备择假设是错误的4、进行假设检验时,在其它条件不变的情况下,增加样本量,检验结论犯两类错误的概率会( A )。
A、都减少B、都增大C、都不变D、一个增大一个减小5、关于检验统计量,下列说法中错误的是(B ).A、检验统计量是样本的函数B、检验统计量包含未知总体参数C、在原假设成立的前提下,检验统计量的分布是明确可知的D、检验同一总体参数可以用多个不同的检验统计量二、多项选择题1、关于原假设的建立,下列叙述中正确的有( CD )。
A、若不希望否定某一命题,就将此命题作为原假设B、尽量使后果严重的错误成为第二类错误C、质量检验中若对产品质量一直很放心,原假设为“产品合格(达标)”D、若想利用样本作为对某一命题强有力的支持,应将此命题的对立命题作为原假设E、可以随时根据检验结果改换原假设,以期达到决策者希望的结论2、在假设检验中,α与β的关系是( CE )。
A、α和β绝对不可能同时减少B、只能控制α,不能控制βC、在其它条件不变的情况下,增大α,必然会减少βD、在其它条件不变的情况下,增大α,必然会增大βE、增大样本容量可以同时减少α和β三、判断分析题(判断正误,并简要说明理由)1、对某一总体均值进行假设检验,H0:X=100,H1:X≠100。
检验结论是:在1%的显著性水平下,应拒绝H0.据此可认为:总体均值的真实值与100有很大差异。
2、有个研究者猜测,某贫困地区失学儿童中女孩数是男孩数的3倍以上(即男孩数不足女孩数的1/3)。
为了对他的这一猜测进行检验,拟随机抽取50个失学儿童构成样本。
那么原假设可以为:H0:P≤1/3。
四、简答题1、采用某种新生产方法需要追加一定的投资。
但若根据实验数据,通过假设检验判定该新生方法能够降低产品成本,则这种新方法将正式投入使用。
(1)如果目前生产方法的平均成本是350元,试建立合适的原假设和备择假设。
(2)对你所提出的上述假设,发生第一、二类错误分别会导致怎样的后果?五、计算题1、某种感冒冲剂的生产线规定每包重量为12克,超重或过轻都是严重的问题。
从过去的资料知σ是0。
6克,质检员每2小时抽取25包冲剂称重检验,并做出是否停工的决策。
假设产品重量服从正态分布。
(1)建立适当的原假设和备择假设。
(2)在α=0.05时,该检验的决策准则是什么? (3)如果x =12。
25克,你将采取什么行动? (4)如果x =11。
95克,你将采取什么行动?答案:一、1、C 2、C 3、B 4、A 5、B 二、1、CD 2、CE三、1、错误.“拒绝原假设”只能说明统计上可判定总体均值不等于100,但并不能说明它与100之间的差距大。
2、错误。
要检验的总体参数应该是一个比重,因此应该将男孩和女孩的人数的比率转换为失学儿童中女孩所占的比例P(或男孩所占的比例P*)所以原假设为:H 0:P=3/4(或P ≤3/4);H 1:P >3/4。
也可以是:H 0:P*=1/4(或P ≥1/4);H 1:P *<1/4. 四、1、(1)H 0:x ≥350;H 1:x <350。
(2)针对上述假设,犯第一类错误时,表明新方法不能降低生产成本,但误认为其成本较低而被投入使用,所以此决策错误会增加成本.犯第二类错误时,表明新方法确能降低生产成本,但误认为其成本不低而未被投入使用,所以此决策错误将失去较低成本的机会。
五、1、(1)H 0:μ=120;H 1:μ≠12。
(2)检验统计量:Z=nx /0σμ-.在α=0.05时,临界值z α/2=1。
96,故拒绝域为|z |>1。
96。
(3) 当x =12。
25克时,Z=nx /0σμ-=25/0.61212.25-=2。
08。
由于|z|=2。
08>1.96,拒绝H 0:μ=120;应该对生产线停产检查。
(4) 当x =11.95克时,Z=nx /0σμ-=25/0.61211.95-=-0。
42。
由于|z |=-0.42<1.96,不能拒绝H 0:μ=120;不应该对生产线停产检查。
第七章相关与回归分析一、单项选择题1、下面的关系中不是相关关系的是( D )A 、身高与体重之间的关系B 、工资水平与工龄之间的关系C 、农作物的单位面积产量与降雨量之间的关系D 、圆的面积与半径之间的关系2、具有相关关系的两个变量的特点是( A )A 、一个变量的取值不能由另一个变量唯一确定B 、一个变量的取值由另一个变量唯一确定C 、一个变量的取值增大时另一个变量的取值也一定增大D 、一个变量的取值增大时另一个变量的取值肯定变小 3、下面的假定中,哪个属于相关分析中的假定( B )A 、两个变量之间是非线性关系B 、两个变量都是随机变量C 、自变量是随机变量,因变量不是随机变量D 、一个变量的数值增大,另一个变量的数值也应增大4、如果一个变量的取值完全依赖于另一个变量,各观测点落在一条直线上,则称这两个变量之间为( A )A 、完全相关关系B 、正线性相关关系C 、非线性相关关系D 、负线性相关关系 5、根据你的判断,下面的相关系数取值哪一个是错误的( C )A 、–0.86B 、0.78C 、1。