[首发]山东省临清市2017-2018学年八年级下学期期中考试数学试题(图片版)
- 格式:pdf
- 大小:1.98 MB
- 文档页数:7
山东省聊城市临清市2023-2024学年八年级下学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在π-,227,0 5.6&, 2.5656656665-⋯(相邻两个5之间6的个数逐次加1),其中无理数的个数为( )A .3个B .4个C .5个D .6个2.已知a b <,则下列各式中一定成立的是( )A .0a b ->B .22ac bc <C .1122a b ->-D .33a b ->- 3.在ABCD Y 中,对角线AC 、BD 交于点O ,若5AD =,10AC =,6BD =,BOC V 的周长为( )A .13B .16C .18D .214.在ABC V 中,BC a AB c AC b ===,,,则不能作为判定ABC V 是直角三角形的条件的是( )A .ABC ∠=∠-∠ B .2()()a b a b c +-= C .::1:2:3a b c = D .::3:4:7A B C ∠∠∠=5.如图,在矩形OABC 中,点B 的坐标是()1,3,则AC 的长是( )A .3BC .D .46.如图,长方形ABCD 中,3cm AB =,9cm AD =,将此长方形折叠,使点D 与点B 重合,折痕为EF ,则ABE V 的面积为( )A .23cmB .24cmC .26cmD .212cm7.近几年,临清胡同游让更多百姓了解了临清运河文化,也成为外地朋友了解临清运河文化的一扇窗口.五一期间胡同游计划全程4000米,途经多个景点.刘爷爷为熟悉活动路线,沿活动路线先以55米/分的平均速度行走了半小时,路过某景点后,加快了速度.若刘爷爷走完全程的时间少于60分钟,则他后半程的平均速度x (米/分)满足的不等式为( ) A .()553060304000x ⨯+-≤B .()553060304000x ⨯+-≥C .()553060304000x ⨯+-<D .()553060304000x ⨯+->8.如图,四边形ABCD 是正方形,以CD 为边作等边三角形CDE ,BE 与AC 相交于点M ,则∠AMD 的度数是( )A .75°B .60°C .54°D .67.5°9.定义:对于实数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]5.75,55,4π==-=-如果132x +⎡⎤=⎢⎥⎣⎦,则x 的取值范围是( ) A .57x ≤< B .57x << C .57x <≤ D .57x ≤≤10.如图,ABC V 中,8AB =,AD 为BAC V 的外角平分线,且AD CD ⊥于点D ,E 为BC 的中点,若10DE =,则AC 的长为( )A .12B .14C .16D .18二、填空题11.若一个正数的平方根是1a +和3a -,则这个正数是 .12.已知关于x 的方程349k x -=-的解是非负数,则k 的最小值为 .13.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、6、18,则正方形B 的面积为 .14.如图,数轴上点A 所表示的数为1,点B ,C ,D 是44⨯的正方形网格上的格点,以点A 为圆心,AD 长为半径画圆交数轴于M ,N 两点,则M 点所表示的数为 .15.关于x 的不等式组23x x x a <-+⎧⎨<⎩有且只有三个整数解,则a 的取值范围是 . 16.如图,以ABC V 的三边为边在BC 上方分别作等边ACD V ,ABE V ,BCF △,且点A 在BCF △内部.给出以下结论:①四边形ADFE 是平行四边形;②当AB AC =时,四边形ADFE 是菱形;③当90BAC ∠=︒时,四边形ADFE 是矩形;④当AB AC =,且90BAC ∠=︒时,四边形ADFE 是正方形.其中正确结论有 (填上所有正确结论的序号).三、解答题17.按要求解答:(1)求下列各式中的x :①2425x =;②3216x =-.(2)2.18.解不等式(组):(1)解不等式()()3423332x x --≥-,并把它的解集在数轴上表示出来.(2)解不等式组:512151132x x x x -≥+⎧⎪-+⎨-<⎪⎩. 19.为进一步落实立德树人的根本任务,培养德智体美劳全面发展的社会主义接班人,某校开展劳动教育课程,并取得了丰硕成果.如图是该校开垦的一块作为学生劳动实践基地的四边形荒地.经测量,13m,8m,6m,AB AD BC CD ====且10m BD =.该校计划在此空地(阴影部分)上种植花卉,若每种植21m 花卉需要花费100元,则此块空地全部种植花卉共需花费多少元?20.材料1:因为无理数是无限不循环小数,所以无理数的小数部分我们不可能全部写出来,比如:π“…”或者“≈”的表示方法都不够百分百准确.材料2:任何一个无理数,都夹在两个相邻的整数之间,如23<<.22.根据上述材料,回答下列问题:______,小数部分是______;(2)若5+a ,小数部分是b ,求2a b +的值.21.如图,已知菱形ABCD 中,60B ∠=︒,E ,F 分别是,BC AD 的中点,连接,AE CF .求证:四边形AECF 是矩形.22.某仓库放置若干个A 型部件和B 型部件.已知1个A 型部件和2个B 型部件的总质量为2.8吨,2个A 型部件和3个B 型部件的质量刚好相等.(1)求1个A 型部件和1个B 型部件的质量各是多少?(2)来自工业和信息化部公布的数据,2023年我国汽车出口首次跃居全球第一.现有一种我国自产的卡车,最大额定载重质量为15吨,要用一辆这种卡车运输16个两种部件去往某地,由于其它方面都满足运输要求,只需考虑所载部件的总质量不能超过汽车的最大额定载重量.求这辆卡车最少要运输多少个B 型部件?23.在Rt ABC V 中,90BAC ∠=︒,D 是BC 的中点,E 是AD 的中点,过点A 作AF BC ∥交BE 的延长线于点F .(1)证明四边形ADCF是菱形;(2)若3AC=,4AB=,求菱形ADCF的面积.24.综合与实践【问题情境】数学综合与实践活动课上,老师提出如下问题:一个三级台阶,它每一级的长、宽、高分别为20、3、2,A和B是一个台阶两个相对的端点.【探究实践】老师让同学们探究:如图①,若A点处有一只蚂蚁要到B点去吃可口的食物,那么蚂蚁沿着台阶爬到B点的最短路程是多少?(1)同学们经过思考得到如下解题方法:如图②,将三级台阶展开成平面图形,可得到长为20,宽为15的长方形,连接AB,经过计算得到AB长度为______,就是最短路程.【变式探究】(2)如图③,是一只圆柱形玻璃杯,该玻璃杯的底面周长是30 cm,高是8 cm,若蚂蚁从点A出发沿着玻璃杯的侧面到点B,则蚂蚁爬行的最短距离为______.【拓展应用】(3)如图④,圆柱形玻璃杯的高9 cm,底面周长为16 cm,在杯内壁离杯底4 cm的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在外壁上,离杯上沿1 cm,且与蜂蜜相对的点B处,则蚂蚁从外壁B处到内壁A处所爬行的最短路程是多少?(杯壁厚度不计)。
山东临清市2017-2018八年级数学上册期末试题(带答案新人教版)2017-2018学年八年级上学期期末检测数学试题(时间120分钟满分120分)一、单选题(共12题:每小题3分,共36分)1.下列图形中,是轴对称图形的是()ABCD2.等腰三角形有一个角等于70°,则它的底角是()A.70°B.55°C.60°D.70°或55°3.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.5D.64.如图,在△ABC中,BO,CO分别平分∠ABC和∠ACB,则∠BOC与∠A的大小关系是()A.∠BOC=2∠AB.∠BOC=90°+∠AC.∠BOC=90°+∠AD.∠BOC=90°-∠A5.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+bc)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;是真命题的有()个A.1B.2C.3D.46.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DBB.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠DD.AB=DC,∠ACB=∠DBC7.如图,在△ABC中,AB=AC,∠A=30°,以C为圆心,CB的长为半径作圆弧,交AB于点D,连接CD,则∠ACD 等于()A.30°B.45°C.60°D.75°8.若关于x的分式方程无解,则m的值为()A.-1.5B.1C.-1.5或2D.-0.5或-1.59.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A'处,点B落在点B'处,若∠2=40°,则图中∠1的度数为A.115°B.120°C.130°D.140°10.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图:编号12345方差平均成绩得分3834■3740■37那么被遮盖的两个数据依次是()A.352B.364C.353D.36311.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD 的面积是()A.15B.30C.45D.6012.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x个零件,那么下面所列方程中正确的是()A.B.C.D.二、填空题(共5小题:每小题3分,共15分)13.如图,C、D点在BE上,∠1=∠2,BD=EC.请补充一个条件:__________,使△ABC≌△FED.14.若点P1(a+3,4)和P2(-2,b-1)关于x轴对称,则a=__________,b=__________.15.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.16.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男生100米自由泳训练,他们成绩的平均数及其方差S2如下表所示:甲乙丙丁1'05"331'04"261'04"261'07"29S21.11.11.31.6如果选拨一名学生去参赛,应派__________去.17.如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y轴的正半轴上,以AA1=2为边长画等边△AA2C2;以AA2=4为边长画等边△AA2C3,…,按此规律继续画等边三角形,则点的坐标为__________.三、解答题(共8题,共69分)18.(每小题4分,共8分)(1)(2)19.(7分)先化简,再求值:,并从-1,0,2中选一个合适的数作为a的值代入求值.20.(6分)当a=2017,b=2018时,代数式的值为.21.(8分)如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△每小问4分,共8分)如图,在△ABC中,BC边的垂直平分线交AC边于点D,连接BD.(1)如图CE=4,△BDC的周长为18,求BD的长.(2)求∠ADM=60°,∠ABD=20°,求∠A的度数.23.(每小问4分,共8分)某汽车站站北广场将于2018年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵。
山东省临清市八年级下学期期中考试数学考试卷(初二)期中考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】9的算术平方根是()A. -3B. 3C.D. ±3【答案】B【解析】9的算术平方根是,故选B.【题文】在▱ABCD中,若∠A+∠C=200°,则∠B的大小为()A. 160°B. 100°C. 80°D. 60°【答案】C【解析】解:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∵∠A+∠C=200°,∴∠A=100°,∴∠B=180°﹣∠A=80°.故选C.【题文】实数,,0,-π,,,0.1010010001…(相连两个1之间依次多一个0),其中无理数有()个.A. 1B. 2C. 3D. 4【答案】C【解析】,,0.1010010001…(相连两个1之间依次多一个0)是无理数;评卷人得分38,0,,是有理数;故选C.【题文】在ABCD中,对l【解析】A. ,,故正确;B. ,,故正确;C. 当,时,,但,故不正确;D. ,,,故正确;故选C.【题文】已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为()A. 96cm2 B. 48cm2 C. 24cm2 D. 12cm2【答案】A【解析】如图,设, .∵菱形的周长为40cm,.有勾股定理得,,,,,,故选A.【题文】x的2倍减去7的差不大于-1,可列不等式为()A. 2x-7≤-1B. 2x-7<-1C. 2x-7>-1D. 2x-7≥-1【答案】A【解析】由题意得,,故选A .【题文】已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:(1)以点C为圆心,AB长为半径画弧;(2)以点A为圆心,BC长为半径画弧;(3)两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1)乙:(1)连接AC,作线段AC的垂直平分线,交AC于点M;(2)连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).对于两人的作业,下列说法正确的是()A. 两人都对B. 两人都不对C. 甲对,乙不对D. 甲不对,乙对【答案】A【解析】由甲的画法可知, , , ∴四边形是平行四边形., ∴四边形是矩形.故甲的画法正确.有乙的画法可知, , , ∴四边形是平行四边形., ∴四边形是矩形.故乙的画法正确.故选A.【点睛】本题考查了平行四边形的判定方法和矩形的判定方法,已知条件已经有一个直角了,所以只要能判断出四边形是平行四边形就行了,甲的画法符合两组对边相等的四边形是平行四边形,乙的画法符合对角线互相平分的四边形是平行四边形,故甲和乙的画法都符合题意.【题文】下列说法确的是()A. -9的立方根是-3B. -7是49的平方根C. 有理数与数轴上的点一一对应D. 的算术平方根是9【答案】B【解析】A. -9的立方根是,故不正确;B. ,∴ -7是49的平方根,故正确;C. ∴实数与数轴上的点一一对应,故不正确;D. ,9的算术平方根是3,故不正确;故选B.【题文】关于x的不等式组的解集为x>1 ,则a的取值范围是()A. a>1B. a<1C. a≥1D. a≤1【答案】D.【解析】试题解析:由关于x的不等式组的解集为x>1,得a≤1故选D.考点:不等式的解集.【题文】如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A. 72B. 52C. 80D. 76【答案】D【解析】由题意得, .由勾股定理得, .,∴这个风车的外围周长是19×4=76.故选D.【题文】如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC时,四边形AEFD是菱形;④当∠BAC=90°时,四边形AEFD是矩形.其中正确的结论有()个A. 1B. 2C. 3D. 4【答案】C【解析】 , 为等边三角形,,,,∵,,∴,在和中,,所以,同理,即。
山东省临清市2015-2016学年八年级数学下学期期末考试试题2015-2016学年度第二学期期末学业水平测试 八年级数学答案 一、选择题 (共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D D A A D B B C B C C A 填空题(本题共5个小题,每小题3分,共15分,只要求写出最后结果)x ≥2且x ≠3 14. 7 15. (5,2) 16.b 17. B ,C ,A三、解答题(本大题共8小题,共69分.解答要写出必要的文字说明、证明过程或演算步骤.)18.(本题8分,每小题4分)解:(1)2257- …………………………4分(2)x 5 …………………………8分19. (本题7分)解:解不等式①,得x≥﹣1.解不等式②,得x <3.∴原不等式组的解集是﹣1≤x<3. ………………………5分 ∴正整数解为x=1,2. ………………………7分(本题8分)(1)7,5,42a b c === ………………………3分(2)∵7542a b +=+>∴能构成三角形 ………………………5分∵2272532a b +=+=,232c = ∴222a b c +=∴此三角形是直角三角形. ………………………7分 115757222S ab ==⨯⨯= ………………………8分 21.(本题8分) 解:(1)根据题意得:y=4x 大+210; ………………………2分(2)①当x 大=6时,y=4×6+210=234,∴y=3x 小+234; ………………………4分②依题意,得3x 小+234≤260, 解得:,………………………6分∵x 小为自然数,∴x 小最大为8,即最多能放入8个小球. ………………………8分22. (本题8分)解:第1个数,当n=1时,[﹣] =(﹣)=×=1. ………………………4分第2个数,当n=2时,[﹣]=[()2﹣()2] =×(+)(﹣) =×1×=1. ………………………8分23. (本题8分)………………………3分欲将矩形面积等分,直线必过对角线交点,因此直线过(-2,3)和(1.5,1)设直线解析式为y=kx+b ,则{3215.1=+-=+b k b k 解得:⎩⎨⎧-==74713k b ∴这条直线的解析式是71374+-=x y ………………………8分 (本题10分)解:(1)在正方形ABCD 中,AD=AB=BC=CD ,∠D=∠B=∠BCD=90°,∵将△ADE 沿AE 对折至△AFE ,∴AD=AF ,DE=EF ,∠D=∠AFE=90°,∴AB=AF ,∠B=∠AFG=90°, ………………………2分 又∵AG=AG ,在Rt △ABG 和Rt △AFG 中,,∴△ABG ≌△AFG (HL ); ………………………5分(2)∵∴△ABG ≌△AFG ,∴BG=FG ,设BG=FG=x ,则GC=6﹣x ,∵E 为CD 的中点,∴CE=EF=DE=3, (7)分∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.………………………10分25. (本题12分)解:(1)6;8………………………2分(2)设y1=k1x,∵函数图象经过点(0,0)和(10,480),∴10k1=480,∴k1=48,∴y1=48x;………………………4分0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,800),∴10k2=800,∴k2=80,∴y2=80x,………………………6分x>10时,设y2=kx+b,∵函数图象经过点(10,800)和(20,1440),∴,∴,∴y2=64x+160;∴y2=;………………………8分(3)设A团有n人,则B团的人数为(50﹣n),当0≤n≤10时,48n+80(50﹣n)=3040,解得n=30(不符合题意舍去),………………………10分当n>10时,48n+64(50﹣n)+160=3040,解得n=20,则50﹣n=50﹣20=30.答:A团有20人,B团有30人.故答案为:6,8.………………………12分。
2017-2018学年山东省聊城市临清市八年级(上)期末数学试卷一、单选题(共12题:每小题3分,共36分)1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.2.(3分)等腰三角形一个角等于70°,则它的底角是()A.70°B.55°C.60°D.70°或55°3.(3分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.5D.64.(3分)如图,在△ABC中,BO,CO分别平分∠ABC和∠ACB,则∠BOC与∠A的大小关系是()A.∠BOC=2∠A B.∠BOC=90°+∠AC.∠BOC=90°+∠A D.∠BOC=90°﹣∠A5.(3分)下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;正确的有()个.A.1B.2C.3D.46.(3分)如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB7.(3分)如图,在△ABC中,AB=AC,∠A=30°,以C为圆心,CB的长为半径作圆弧,交AB于点D,连接CD,则∠ACD等于()A.30°B.45°C.60°D.75°8.(3分)若关于x的分式方程﹣1=无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.59.(3分)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°10.(3分)初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图:那么被遮盖的两个数据依次是()A.35 2B.36 4C.35 3D.36 3 11.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.6012.(3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x个零件,那么下面所列方程中正确的是()A.=B.=C.=D.=二、填空题(共5小题,每小题3分,满分15分)13.(3分)如图,C、D点在BE上,∠1=∠2,BD=EC请补充一个条件:,使△ABC≌△FED.14.(3分)若点P1(a+3,4)和P2(﹣2,b﹣1)关于x轴对称,则a=,b=.15.(3分)某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是分.16.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派去.17.(3分)如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y轴的正半轴上,以AA2=2为边长画等边△AA2C2;以AA3=4为边长画等边△AA3C3,…,按此规律继续画等边三角形,则点A n的坐标为.三、解答题(共8题,共69分)18.(8分)(1)(2)19.(7分)先化简,再求值:,并从﹣1,0,2中选一个合适的数作为a的值代入求值.20.(6分)当a=2017,b=2018时,代数式的值为.21.(8分)如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.22.(8分)如图,在△ABC中,BC边的垂直平分线交AC边于点D,连接BD.(1)如图CE=4,△BDC的周长为18,求BD的长.(2)求∠ADM=60°,∠ABD=20°,求∠A的度数.23.(8分)某汽车站站北广场将于2018年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵.(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务.24.(12分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.(0~1表示大于0同时小于等于1,以此类推)请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是多少度;(2)补全条形统计图;(3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数.25.(12分)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.2017-2018学年山东省聊城市临清市八年级(上)期末数学试卷参考答案与试题解析一、单选题(共12题:每小题3分,共36分)1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:A.2.(3分)等腰三角形一个角等于70°,则它的底角是()A.70°B.55°C.60°D.70°或55°【解答】解:①当这个角为顶角时,底角=(180°﹣70°)÷2=55°;②当这个角是底角时,底角=70°.故选:D.3.(3分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.5D.6【解答】解:利用角的平分线上的点到角的两边的距离相等可知点P到AB的距离是也是3.故选:A.4.(3分)如图,在△ABC中,BO,CO分别平分∠ABC和∠ACB,则∠BOC与∠A的大小关系是()A.∠BOC=2∠A B.∠BOC=90°+∠AC.∠BOC=90°+∠A D.∠BOC=90°﹣∠A【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠OBC=,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB))=(180°﹣∠A)=90°∠A,根据三角形的内角和定理,可得∠OBC+∠OCB+∠BOC=180°,∴90°﹣∠A+∠BOC=180°,∴∠BOC=90°+∠A.故选:C.5.(3分)下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;正确的有()个.A.1B.2C.3D.4【解答】解:∵锐角三角形的三条高都在三角形的内部,直角三角形有一条高在三角形的内部,两条在三角形的两边上,钝角三角形的一条高在三角形的内部,两条高在三角形的外部,∴①正确;∵当a=2,b=c=1时,满足a+b>c,但是边长为1、1、2不能组成三角形,∴②错误;∵设三角形的三角为3x°,2x°,x°,∴由三角形的内角和定理得:3x+2x+x=180,∴x=30,3x=90,即三角形是直角三角形,∴③正确;∵有两个角和一条边对应相等的两个三角形全等,∴④正确;故选:C.6.(3分)如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB【解答】解:根据题意知,BC边为公共边.A、由“SSS”可以判定△ABC≌△DCB,故本选项错误;B、由“SAS”可以判定△ABC≌△DCB,故本选项错误;C、由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D、由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选:D.7.(3分)如图,在△ABC中,AB=AC,∠A=30°,以C为圆心,CB的长为半径作圆弧,交AB于点D,连接CD,则∠ACD等于()A.30°B.45°C.60°D.75°【解答】解:∵AB=AC,∠A=30°,∴∠ACB=∠ABC=(180°﹣∠A)=(180°﹣30°)=75°,∵以C为圆心,BC的长为半径圆弧,交AC于点D,∴BC=CD,∴∠BCD=180°﹣2∠ACB=180°﹣2×75°=30°,∴∠ACD=∠ABC﹣∠BCD=75°﹣30°=45°.故选:B.8.(3分)若关于x的分式方程﹣1=无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5【解答】解:﹣1=,方程两边都乘以x(x﹣3),得:x(x+2m)﹣x(x﹣3)=2(x﹣3),整理,得:(2m+1)x=﹣6,x=﹣,∵原分式方程无解,∴2m+1=0或﹣=3或﹣=0,解得:x=﹣0.5或x=﹣1.5,故选:D.9.(3分)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°【解答】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°,∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选:A.10.(3分)初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图:那么被遮盖的两个数据依次是()A.35 2B.36 4C.35 3D.36 3【解答】解:∵这组数据的平均数是37,∴编号3的得分是:37×5﹣(38+34+37+40)=36;被遮盖的方差是:[(38﹣37)2+(34﹣37)2+(36﹣37)2+(37﹣37)2+(40﹣37)2]=4;故选:B.11.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.60【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选:B.12.(3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x个零件,那么下面所列方程中正确的是()A.=B.=C.=D.=【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得,=.故选:D.二、填空题(共5小题,每小题3分,满分15分)13.(3分)如图,C、D点在BE上,∠1=∠2,BD=EC请补充一个条件:AC=DF,使△ABC≌△FED.【解答】解:条件是AC=DF,理由是:∵BD=CE,∴BD﹣CD=CE﹣CD,∴BC=DE,在△ABC和△FED中,,∴△ABC≌△FED(SAS),故答案为:AC=DF.14.(3分)若点P1(a+3,4)和P2(﹣2,b﹣1)关于x轴对称,则a=﹣5,b=﹣3.【解答】解:由题意,得a+3=﹣2,b﹣1=﹣4.解得a=﹣5,b=﹣3,故答案为:﹣5,﹣3.15.(3分)某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是90分.【解答】解:(93﹣95×60%)÷40%=(93﹣57)÷40%=36÷40%=90.故答案为:90.16.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派乙去.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.17.(3分)如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y轴的正半轴上,以AA2=2为边长画等边△AA2C2;以AA3=4为边长画等边△AA3C3,…,按此规律继续画等边三角形,则点A n的坐标为(2n﹣1﹣0.5,0).【解答】解:∵点A1的横坐标为0.5=1﹣0.5,点A2的横坐标为0.5+1=1.5=2﹣0.5,点A3的横坐标为0.5+1+2=3.5=4﹣0.5,点A4的横坐标为0.5+1+2+4=7.5=8﹣0.5,…∴点A n的横坐标为2n﹣1﹣0.5,纵坐标都为0,∴点A n的坐标为(2n﹣1﹣0.5,0).故答案为:(2n﹣1﹣0.5,0).三、解答题(共8题,共69分)18.(8分)(1)(2)【解答】解:(1)方程两边都乘以x﹣2,得:1=x﹣1﹣3(x﹣2),解得:x=2,当x=2时,x﹣2=0,则x=2是方程的增根,故原分式方程无解;(2)方程两边都乘以2(x﹣3),得:2x﹣1=x﹣3,解得:x=﹣2,当x=﹣2时,2(x﹣3)=﹣10≠0,所以原分式方程的解为x=﹣2.19.(7分)先化简,再求值:,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【解答】解:原式=(﹣)×+﹣a=×+﹣a=+﹣a=﹣a=﹣1﹣a,当a=﹣1或2时,原式分母为0,无意义,∴当a=0时,原式=﹣1.20.(6分)当a=2017,b=2018时,代数式的值为.【解答】解:当a=2017,b=2018时,原式==﹣(a+b)=﹣a﹣b,=﹣2017﹣2018=﹣403521.(8分)如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.【解答】证明:因为△ABC、△CDE是等腰直角三角形,所以CA=CB,CD=CE.因为∠ACB=∠DCE=90°,其中∠ACB=∠BCE+∠ECA,∠DCE=∠ECA+∠ACD,所以∠BCE=∠ACD,在△CDA和△CEB中,,所以△CDA≌CEB(SAS).22.(8分)如图,在△ABC中,BC边的垂直平分线交AC边于点D,连接BD.(1)如图CE=4,△BDC的周长为18,求BD的长.(2)求∠ADM=60°,∠ABD=20°,求∠A的度数.【解答】解:(1)∵MN垂直平分BC,∴DC=BD,CE=EB,又∵EC=4,∴BE=4,又∵△BDC的周长=18,∴BD+DC=10,∴BD=5;(2)∵∠ADM=60°,∴∠CDN=60°,又∵MN垂直平分BC,∴∠DNC=90°,∴∠C=30°,又∵∠C=∠DBC=30°,∠ABD=20°,∴∠ABC=50°,∴∠A=180°﹣∠C﹣∠ABC=100°.23.(8分)某汽车站站北广场将于2018年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵.(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务.【解答】解:(1)设A种花木数量x棵,B种花木数量y棵.根据题意可得方程组:将②代入①可得:2y﹣600+y=6600,解得y=2400,代入②可得x=4200,所以原方程组的解为,故A种花木数量是4200棵,B种花木数量是2400棵.(2)设安排n个人种植A种花木,则安排(26﹣n)个人种植B种花木,则由题意可得方程:,化简得,解得:n=14.经检验,n≠0,26﹣n≠0,故n=14是方程的解.故应安排14个人种植A花木,12个人种植B花木.24.(12分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.(0~1表示大于0同时小于等于1,以此类推)请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是多少度;(2)补全条形统计图;(3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数.【解答】解:(1)根据题意得:1﹣(40%+18%+7%)=35%,则“玩游戏”对应的圆心角度数是360°×35%=126°因此,本题正确答案是:126°(2)根据题意得:40÷40%=1200(人),∴3小时以上的人数为100﹣(2+16+18+32)=32(人),补全条形统计图,如图所示:(0~1表示大于0同时小于等于1,以此类推)(3)根据题意得:1200×64%=768(人),则每周使用手机时间在2小时以下(不含2小时)的人数约有768人.25.(12分)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.【解答】证明:(1)由题意得,∠A+∠B=90°,∠A=∠D,∴∠D+∠B=90°,∴AB⊥DE.(3分)(2)∵AB⊥DE,AC⊥BD∴∠BPD=∠ACB=90°,∴在△ABC和△DBP,,∴△ABC≌△DBP(AAS).(8分)说明:图中与此条件有关的全等三角形还有如下几对:△APN≌△DCN、△DEF≌△DBP、△EPM≌△BFM.附赠:初中数学易错题填空专题一、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是____ _____。
2017-2018学年山东省聊城市临清市八年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下面四个图形分别是北大、清华、复旦和浙大4所大学的校标LOGO,其中是轴对称图形的是()A.B. C. D.2.(3分)如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=6,则CD的长为()A.2 B.4 C.4.5 D.33.(3分)在代数式,1+,﹣3x,,中,是分式的有()A.1个B.2个C.3个D.4个4.(3分)如图,已知AB,CD交于点O,AO=CO,BO=DO,则在以下结论中:①AD=BC;②AD∥BC;③∠A=∠C;④∠B=∠D;⑤∠A=∠B.正确结论的个数为()A.2个B.3个C.4个D.5个5.(3分)如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠BAC 的度数是()A.90°B.100°C.105°D.120°6.(3分)当x为任意实数时,下列分式一定有意义的是()A.B.C.D.7.(3分)把一张长方形纸片按如图①、图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A. B.C.D.8.(3分)若分式中的x,y都扩大2倍,则分式的值()A.扩大2倍B.缩小2倍C.不变D.扩大4倍9.(3分)下列各式中,正确的是()A.B.C. D.10.(3分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC=12,AB=15,则△ABC的面积为()A.48 B.50 C.54 D.6011.(3分)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心画弧,两弧交于点P,连结AP并延长交BC 于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③∠BAD=∠B④点D到直线AB的距离等于CD的长度.A.1 B.2 C.3 D.412.(3分)如图是一个6×6的正方形网格,每个小正方形的顶点都是格点,等腰△ABC的顶点都是图中的格点,其中点A、点B的位置如图所示,则点C可能的位置共有()A.12个B.11个C.10个D.9个二、填空题(本大题共5小题,每小题3分,共15分)13.(3分)如图,△ABD≌△ACE,AD=8cm,AB=3cm,则BE= cm.14.(3分)化简:的结果是.15.(3分)如图,E的矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AEF,F在矩形ABCD 内部,延长AF交DC于G点.若∠AEB=55°,求∠DAF= °.16.(3分)等腰三角形的一个内角50°,则这个三角形的底角是.17.(3分)如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=80°,则∠AOB= .三、解答题(本大题共8小题,共69分)18.(12分)计算:(1)•(2)÷(3)﹣(4)(+)÷.19.(6分)某中学八年级的同学参加义务劳动,其中有两个班的同学在D、E两处参加劳动,另外两个班的同学在道路AB、AC两处劳动(如图),现要在道路AB、AC的交叉区域内设置一个茶水供应点P,使P到AB、AC的距离相等,且使PD=PE,请你找出点P的位置.20.(6分)先化简:(a﹣)÷,然后给a选择一个你喜欢的数代入求值.21.(7分)如图,已知:AB=AD,BC=DE,AC=AE,∠1=42°,求∠3的度数.22.(8分)如图,AB=AC,AC的垂直平分线MN交AB于D,交AC于E.(1)若∠A=40°,求∠BCD的度数;(2)若AE=5,△BCD的周长17,求△ABC的周长.23.(8分)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合,求两堵木墙之间的距离.24.(10分)已知:如图,∠B=∠C=90°,M是BC的中点,且DM平分∠ADC.(1)求证:AM平分∠DAB.(2)试说明线段DM与AM有怎样的位置关系?并证明你的结论.25.(12分)如图,△ABC中,∠BAC=90°,AB=AC,点D是斜边BC的中点.(1)如图①,若点E,F分别在边AB,AC上,且AE=CF,连接DE,DF,EF,观察,猜想△DEF 是否为等腰直角三角形,并证明你的猜想.(2)如图②,若点E,F分别在边AB,CA的延长线上,且AE=CF,连接DE,DF,EF,那么(1)中所得到的结论还成立吗?如果成立,请给出证明;如果不成立,说明你的理由.2017-2018学年山东省聊城市临清市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下面四个图形分别是北大、清华、复旦和浙大4所大学的校标LOGO,其中是轴对称图形的是()A.B. C. D.【解答】解:A、是轴对称图形,本选项正确;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选A.2.(3分)如图,点A、D、C、E在同一条直线上,AB∥EF,A B=EF,∠B=∠F,AE=10,AC=6,则CD的长为()A.2 B.4 C.4.5 D.3【解答】解:∵AB∥EF,∴∠A=∠E,在△ABC和△EFD中,,∴△ABC≌△EFD(ASA),∴AC=ED=6,∴AD=AE﹣ED=10﹣6=4,∴CD=AC﹣AD=6﹣4=2.故选A.3.(3分)在代数式,1+,﹣3x,,中,是分式的有()A.1个B.2个C.3个D.4个【解答】解:在下列代数式中式,1+,﹣3x,,,分式有,1+,,共有2个.故选B.4.(3分)如图,已知AB,CD交于点O,AO=CO,BO=DO,则在以下结论中:①AD=BC;②AD∥BC;③∠A=∠C;④∠B=∠D;⑤∠A=∠B.正确结论的个数为()A.2个B.3个C.4个D.5个【解答】解:在△AOD和△COB中,∴△AOD≌△COB(SAS),∴∠A=∠C,∠B=∠D,AD=CB,故①,③,④正确,∴正确的有3个.故选B5.(3分)如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠BAC的度数是()A.90°B.100°C.105°D.120°【解答】解:∵△ADB≌△EDB≌△EDC,∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,∵∠BED+∠CED=180°,∴∠A=∠BED=∠CED=90°.故选:A.6.(3分)当x为任意实数时,下列分式一定有意义的是()A.B.C.D.【解答】解:A、x2+1≠0,因此此分式当x为任意实数时一定有意义,故此选项正确;B、当x=﹣时,分母等于零,分式无意义,故此选项错误;C、当x=﹣1时,分母等于零,分式无意义,故此选项错误;D、当x=0时,分母等于零,分式无意义,故此选项错误;故选:A.7.(3分)把一张长方形纸片按如图①、图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A.B.C.D.【解答】解:重新展开后得到的图形是C,故选C.8.(3分)若分式中的x,y都扩大2倍,则分式的值()A.扩大2倍B.缩小2倍C.不变D.扩大4倍【解答】解:∵=2×,∴分式中的x,y都扩大2倍,则分式的值扩大2倍,故选A.9.(3分)下列各式中,正确的是()A.B.C. D.【解答】解:A、分式的分子和分母同时乘以一个不为0的数时,分式的值不变,即,故A选项错误;B、不能再进行约分,,故B选项错误;C、只有分式的分子和分母有相同的公因式才能约分,,故C选项错误;D、,故D选项正确,故选:D.10.(3分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC=12,AB=15,则△ABC的面积为()A.48 B.50 C.54 D.60【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABC的面积为:×AC×DC+×AB×DE=54,故选:C.11.(3分)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心画弧,两弧交于点P,连结AP并延长交BC 于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③∠BAD=∠B④点D到直线AB的距离等于CD的长度.A.1 B.2 C.3 D.4【解答】解:∵∠C=90°,∠B=30°,∴∠BAC=60°,由作法得AD平分∠BAC,所以①正确;∴∠BAD=∠CAD=∠BAC=30°,∴∠ADC=90°﹣∠CAD=60°,所以②正确;∠BAD=∠B,所以③正确;∵AD为角平分线,∴点D到AC的距离等于点D到AB的距离,而点D到直线AC的距离等于CD的长度,∴点D到直线AB的距离等于CD的长度,所以④正确.故选D.12.(3分)如图是一个6×6的正方形网格,每个小正方形的顶点都是格点,等腰△ABC的顶点都是图中的格点,其中点A、点B的位置如图所示,则点C可能的位置共有()A.12个B.11个C.10个D.9个【解答】解:如图:符合条件的点C一共有10个.故选C.二、填空题(本大题共5小题,每小题3分,共15分)13.(3分)如图,△ABD≌△ACE,AD=8cm,AB=3cm,则BE= 5 cm.【解答】解:∵△ABD≌△ACE,∴AD=AE,AC=AB,又AD=8cm,AB=3cm,∵BE=AE﹣AB=8﹣3=5,∴BE=5cm.故填5.的结果是m+3 .14.(3分)化简:【解答】解:====m+3.故答案为:m+3.15.(3分)如图,E的矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AEF,F在矩形ABCD 内部,延长AF交DC于G点.若∠AEB=55°,求∠DAF= 20 °.【解答】解:∵△ABE沿AE折叠到△AEF,∴∠BAE=∠FAE,∵∠AEB=55°,∠ABE=90°,∴∠BAE=90°﹣55°=35°,∴∠DAF=∠BAD﹣∠BAE﹣∠FAE=90°﹣35°﹣35°=20°.故答案为:2016.(3分)等腰三角形的一个内角50°,则这个三角形的底角是50°或65°.【解答】解:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故答案是:50°或65°.17.(3分)如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=80°,则∠AOB= 50°.【解答】解:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∠MPN=80°∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M,∴∠P1OP2=180°﹣80°=100°,∴∠AOB=50°,故答案为:50°三、解答题(本大题共8小题,共69分)18.(12分)计算:(1)•(2)÷(3)﹣(4)(+)÷.【解答】解:(1)•==;(2)÷===;(3)﹣====1;(4)(+)÷==(m﹣1)2+2m=m2﹣2m+1+2m=m2+1.19.(6分)某中学八年级的同学参加义务劳动,其中有两个班的同学在D、E两处参加劳动,另外两个班的同学在道路AB、AC两处劳动(如图),现要在道路AB、AC的交叉区域内设置一个茶水供应点P,使P到AB、AC的距离相等,且使PD=PE,请你找出点P的位置.【解答】解:连接DE,作DE的中垂线;作∠BAC的角平分线交DE的中垂线于点P;如图20.(6分)先化简:(a﹣)÷,然后给a选择一个你喜欢的数代入求值.【解答】解:原式=•=﹣•=﹣(a﹣1)=1﹣a,当a=2时,原式=﹣1.21.(7分)如图,已知:AB=AD,BC=DE,AC=AE,∠1=42°,求∠3的度数.【解答】解:∵在△ABC和△ADE中,,∴△ABC≌△ADE,(SSS)∴∠ADE=∠B,∵∠1+∠B+∠ADB=180°∠3+∠ADE+∠ADB=180°∴∠3=∠1=42°.22.(8分)如图,AB=AC,AC的垂直平分线MN交AB于D,交AC于E.(1)若∠A=40°,求∠BCD的度数;(2)若AE=5,△BCD的周长17,求△ABC的周长.【解答】解:(1)∵AB=AC∴∠B=∠ACB=(180°﹣∠A)=70°,∵MN垂直平分线AC∴AD=CD,∴∠ACD=∠A=40°,∴∠BCD=∠ACB﹣∠ACD=70°﹣40°=30°;(2)∵MN是AC的垂直平分线∴AD=DC,AC=2AE=10,∴AB=AC=10,∵△BCD的周长=BC+CD+BD=AB+BC=17,∴△ABC的周长=AB+BC+AC=17+10=27.23.(8分)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合,求两堵木墙之间的距离.【解答】解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.24.(10分)已知:如图,∠B=∠C=90°,M是BC的中点,且DM平分∠ADC.(1)求证:AM平分∠DAB.(2)试说明线段DM与AM有怎样的位置关系?并证明你的结论.【解答】(1)证明:过M作ME⊥AD于E,∵DM平分∠ADC,∠C=90°,ME⊥AD,∴MC=ME,∵M为BC的中点,∴BM=MC=ME,∵∠B=90°,ME⊥AD,∴AM平分∠DAB;(2)AM⊥DM,证明如下:∵AB∥DC,∴∠BAD+∠ADC=180°,∵AM平分∠DAB,DM平分∠ADC,∴∠MAD=∠BAD,∠MDA=∠ADC,∴∠MAD+∠MDA=90°,∴∠AMD=90°,∴AM⊥DM.25.(12分)如图,△ABC中,∠BAC=90°,AB=AC,点D是斜边BC的中点.(1)如图①,若点E,F分别在边AB,AC上,且AE=CF,连接DE,DF,EF,观察,猜想△DEF 是否为等腰直角三角形,并证明你的猜想.(2)如图②,若点E,F分别在边AB,CA的延长线上,且AE=CF,连接DE,DF,EF,那么(1)中所得到的结论还成立吗?如果成立,请给出证明;如果不成立,说明你的理由.【解答】解:(1)△DEF为等腰直角三角形.证明如下:∵∠BAC=90°,AB=AC,∴∠B=∠C=45°.∵点D是斜边BC的中点,∴AD是BC边上的中线.∴AD⊥BC,∠BAD=∠CAD=∠BAC=×90°=45°,∴∠ADC=90°,∠BAD=∠CAD=∠C∴DA=DC,在△ADE和△CDF中∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF,∴∠EDF=∠ADE+∠ADF=∠CDF+∠ADF=∠ADC=90°,∴△DEF为等腰直角三角形;(2)成立.证明如下:∵∠BAC=90°,AB=AC,∴∠B=∠C=45°.∵点D是斜边BC的中点,∴AD是BC边上的中线.∴AD⊥BC,∠BAD=∠CAD=∠BAC=×90°=45°,∴∠ADB=90°,∠BAD=∠CAD=∠C,∴DA=DC,在△ADE和△CDF中∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF,∴∠EDF=∠ADE+∠ADF=∠CDF+∠ADF=∠ADB=90°∴△DEF为等腰直角三角形.。
新人教版 2017-2018 学年八年级下期中数学试卷含答案解析一、选择题(本大题共12 小题,每小题 3 分,共 36 分)1.下列各式,,,,中,分式共有()个.A. 2 B.3 C. 4 D.52.若把分式中的x和y都扩大3倍,那么分式的值()A.为原来的 3 倍B.不变C.为原来的D.为原来的3.在平面直角坐标系中,点(4,﹣ 3)关于 y 轴对称的点的坐标是()A.(﹣ 4,﹣ 3)B.( 4,3)C.(﹣ 4, 3) D .( 4,﹣ 3)4.花粉的质量很小,一粒某种植物花粉的质量约为0.000037 毫克,那么 0.000037 毫克可用科学记数法表示为()A. 3.7× 10﹣5毫克B.3.7×10﹣6毫克C. 37×10﹣7毫克D.3.7×10﹣8毫克5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.修车时间为15 分钟B.学校离家的距离为2000 米C.到达学校时共用时间20 分钟D.自行车发生故障时离家距离为1000 米6.考察反比例函数y=﹣,下列结论中不正确的是()A.图象必经过(﹣ 3, 2) B.当 x >0 时, y 随 x 的增大而增大C.图象在第二、四象限内 D.图象与直线 y=x 有两个交点7.一次函数 y=kx +b,当 k>0,b<0 时,它的图象是()A.B.C.D.8.已知平行四边形ABCD 中,∠ B=5∠A ,则∠ C=()A. 30°B.60°C. 120°D. 150°9.在平面直角坐标系中, ? ABCD 的顶点 A (0,0), B(5,0),D( 2, 3),则顶点 C 的坐标是()A.( 3,7)B.( 5,3)C.( 7,3)D.( 8,2)10.若反比例函数 y=(k<0)的图象经过点(﹣2,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系为()1>y2>y31>y3>y22y1> y3D.y3>y2>y1A. y B. y C.y >11.如图,在平面直角坐标系中,直线l1:y=x+3 与直线 l2:y=mx+n 交于点 A(﹣ 1,b),则关于 x、y 的方程组的解为()A.B.C.D.12.如图,直线l⊥ x 轴于点 P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点 A ,B,连接 OA , OB,已知△ OAB 的面积为 2,则 k1﹣k2的值为()A. 2 B.3 C. 4 D.﹣ 4二、填空题(本大题共 8 小题,每小题 4 分,共 32分)13.在函数 y=中,自变量 x 的取值范围是.14.当 x=时,分式的值为零.15.化简:=.16.计算:(﹣ m3n﹣2)﹣2=.(结果不含负整数指数幂).17.一次函数 y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移 5 个单位长度得到,则 k=+18.一次函数 y=(2m﹣6)x+4 中, y 随 x 的增大而减小,则 m 的取值范围是.19.如图,在平行四边形ABCD 中, BC=8cm,AB=6cm ,BE 平分∠ ABC 交 AD 边于点 E,则线段DE 的长度为.20.如图,平行四边形ABCD 的对角线相交于点O,且 AB ≠ AD ,过 O 作 OE⊥ BD 交 BC 于点 E,若平行四边形 ABCD 的周长为 20,则△ CDE 的周长为.三、解答题(本大题共7 小题,共 82 分)21.计算:( 1)(﹣)﹣2+﹣(﹣1)0( 2)( 1+)÷.22.解方程:.23.已知一次函数 y=kx +b,当 x=2 时 y 的值是﹣ 1,当 x=﹣ 1 时 y 的值是 5.(1)求此一次函数的解析式;(2)若点 P( m,n)是此函数图象上的一点,﹣ 3≤ m≤2,求 n 的最大值.24.如图, ? ABCD 中,对角线 AC 与 BD 相交于 O,EF 是过点 O 的任一直线交 AD 于点 E,交 BC 于点 F,猜想 OE 和 OF 的数量关系,并说明理由.25.列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300 米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造 10%,结果提前 3 天完成了任务,求原计划每天改造道路多少米?26.如图,一次函数 y=kx b 与反比例函数 y= (x> 0)的图象交于 A(m,6), B( 3, n)两点.+( 1)直接写出 m=,n=;(2)根据图象直接写出使kx b<成立的 x 的取值范围;+(3)在 x 轴上找一点 P 使 PA PB 的值最小,求出 P 点的坐标.+27.心理学家研究发现,一般情况下,一节课 40 分钟中,学生的注意力随教师讲课的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间 x(分钟)的变化规律如图所示(其中 AB 、 BC 分别为线段, CD 为双曲线的一部分):( 1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?( 2)一道数学竞赛题,需要讲 16 分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?参考答案与试题解析一、选择题(本大题共12 小题,每小题 3 分,共 36 分)1.下列各式,,,,中,分式共有()个.A. 2 B.3 C. 4 D.5【考点】 61:分式的定义.【分析】根据分式的定义进行解答即可,即分母中含有未知数的式子叫分式.【解答】解:,的分母中均不含有字母,因此它们是整式,而不是分式.,,的分母中含有字母,因此是分式.故选 B.2.若把分式中的x和y都扩大3倍,那么分式的值()A.为原来的 3 倍B.不变C.为原来的D.为原来的【考点】 65:分式的基本性质.【分析】根据分式的性质,可得答案.【解答】解:分式中的x和y都扩大3倍,得==,故选: C.3.在平面直角坐标系中,点( 4,﹣ 3)关于 y 轴对称的点的坐标是()A.(﹣ 4,﹣ 3)B.( 4,3)C.(﹣ 4, 3) D .( 4,﹣ 3)【考点】 P5:关于 x 轴、 y 轴对称的点的坐标.【分析】根据关于 y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;即点(x, y)关于 y 轴的对称点的坐标是(﹣ x,y)即可得到点( 4,﹣ 3)关于 y 轴对称的点的坐标.【解答】解:点( 4,﹣ 3)关于 y 轴的对称点的坐标是(﹣ 4,﹣ 3),故选: A.4.花粉的质量很小,一粒某种植物花粉的质量约为 0.000037 毫克,那么0.000037毫克可用科学记数法表示为()A. 3.7× 10﹣5毫克B.3.7×10﹣6毫克 C. 37×10﹣7毫克 D.3.7×10﹣8毫克【考点】 1J:科学记数法—表示较小的数.a×10﹣n,与较大数的科学记【分析】绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.【解答】解: 0.000037 毫克 =3.7× 10﹣5毫克;故选: A.5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.修车时间为15 分钟B.学校离家的距离为2000 米C.到达学校时共用时间20 分钟D.自行车发生故障时离家距离为1000 米【考点】 E6:函数的图象; E9:分段函数.【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断.【解答】解:由图可知,修车时间为15﹣10=5 分钟,可知 A 错误; B、 C、D 三种说法都符合题意.故选 A .6.考察反比例函数y=﹣,下列结论中不正确的是()A.图象必经过(﹣ 3, 2) B.当 x >0 时, y 随 x 的增大而增大C.图象在第二、四象限内 D.图象与直线 y=x 有两个交点【考点】 G8:反比例函数与一次函数的交点问题.【分析】根据反比例函数的图象和性质逐一判断可得.【解答】解: A、当 x=﹣3 时, y=﹣=2,即图象必经过(﹣ 3,2),此结论正确;B、∵﹣ 6<0,∴反比例函数在x>0 或 x<0 时, y 随 x 的增大而增大,此结论正确;C、由 k=﹣6<0 知函数图象在第二、四象限内,此结论正确;D、由反比例函数图象位于第二、四象限,而直线y=x 经过第一、三象限,∴图象与直线 y=x 没有交点,此结论错误;故选: D.7.一次函数 y=kx +b,当 k>0,b<0 时,它的图象是()A.B.C.D.【考点】 F7:一次函数图象与系数的关系.【分析】根据一次函数图象在坐标平面内的位置与 k、 b 的关系,可以判断出其图象过的象限,进而可得答案.【解答】解:根据题意,有k>0,b<0,则其图象过一、二、四象限;故选 C.8.已知平行四边形 ABCD 中,∠ B=5∠A ,则∠ C=( ) A . 30°B .60°C . 120° D . 150°【考点】 L5:平行四边形的性质.【分析】 首先根据平行四边形的性质可得∠ A= ∠C ,∠ A +∠ B=180°,再由已知条件计算出∠ A 的度数,即可得出∠ C 的度数.【解答】 解:∵四边形 ABCD 是平行四边形,∴ AD ∥BC ,∠ A= ∠C , ∴∠ A+∠B=180°, ∵∠ B=5∠ A ,∴∠ A+5∠ A=180°,解得:∠ A=30°, ∴∠ C=30°,故选: A .9.在平面直角坐标系中, ? ABCD 的顶点 A (0,0), B (5,0),D ( 2, 3),则顶点 C 的坐标是 ( ) A .( 3,7) B .( 5,3) C .( 7,3) D .( 8,2)【考点】 L5:平行四边形的性质; D5:坐标与图形性质.【分析】 根据题意画出图形,进而得出 C 点横纵坐标得出答案即可.【解答】 解:如图所示:∵ ? ABCD 的顶点 A ( 0, 0), B (5,0), D ( 2, 3),∴ AB=CD=5 , C 点纵坐标与 D 点纵坐标相同,∴顶点 C 的坐标是;( 7, 3).故选: C .11,y 2),( 2,y 3),则 y 1,y 2,y 310.若反比例函数 y= (k <0)的图象经过点(﹣ 2,y ),(﹣ 的大小关系为( ) 2> y 1> y 33> y 2> y 1A . y 1> y 2> y 31> y 3> y 2C .yD .yB . y【考点】 G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性, 再由各点横坐标的值即可得出结论.【解答】 解:∵反比例函数 y= (k <0),∴此函数图象的两个分支分别位于二、四象限,并且在每一象限内,y 随 x 的增大而增大.∵(﹣ 2,y 1),(﹣ 1, y 2),( 2, y 3)三点都在反比例函数 y= (k <0)的图象上,∴(﹣ 2,y1),(﹣ 1, y2)在第二象限,点( 2, y3)在第四象限,∴y2> y1> y3.故选 C.11.如图,在平面直角坐标系中,直线 l 1:y=x 3与直线 l2:y=mx n 交于点 A(﹣ 1,b),则关于 x、++y 的方程组的解为()A.B.C.D.【考点】 FE:一次函数与二元一次方程(组).【分析】首先将点 A 的横坐标代入y=x+3 求得其纵坐标,然后即可确定方程组的解.【解答】解:∵直线l : y=x 3 与直线 l : y=mx n 交于点 A (﹣ 1,b),1+2+∴当 x=﹣1 时, b=﹣1+3=2,∴点 A 的坐标为(﹣ 1,2),∴关于 x、 y 的方程组的解是,故选 C.12.如图,直线l⊥ x 轴于点 P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点 A ,B,连接 OA , OB,已知△ OAB 的面积为 2,则 k1﹣k2的值为()A. 2 B.3 C. 4D.﹣ 4【考点】 G5:反比例函数系数k 的几何意义.【分析】根据反比例函数k 的几何意义可知:△ AOP 的面积为,△ BOP的面积为,由题意可知△ AOB 的面积为.【解答】解:根据反比例函数k 的几何意义可知:△ AOP 的面积为,△ BOP的面积为,∴△ AOB 的面积为,∴=2,∴k1﹣k2=4,故选( C)二、填空题(本大题共8 小题,每小题 4 分,共 32 分)13.在函数 y=中,自变量x的取值范围是x≠3.【考点】 E4:函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,可以求出 x 的范围.【解答】解:根据题意得: x﹣3≠0,解得: x≠3.故答案为 x≠3.14.当 x= 2时,分式的值为零.【考点】 63:分式的值为零的条件.【分析】要使分式的值为 0,必须分式分子的值为0 并且分母的值不为0.【解答】解:由分子 x2﹣4=0? x=±2;而x=2 时,分母 x+2=2+2=4≠0,x=﹣2 时分母 x+2=0,分式没有意义.所以 x=2.故答案为: 2.15.化简:= 1 .【考点】 6B:分式的加减法.【分析】首先把分式通分,然后进行同分母的分式的加减,最后把结果进行化简即可求解.【解答】解:原式 =﹣===1.故答案是: 1.16.计算:(﹣ m3n﹣2)﹣2=.(结果不含负整数指数幂)【考点】 47:幂的乘方与积的乘方;6F:负整数指数幂.【分析】直接利用积的乘方运算法则结合负指数幂的性质计算得出答案.【解答】解:(﹣ m3n﹣2)﹣2=m﹣6n4=.故答案为:.17.一次函数 y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移 5 个单位长度得到,则 k= 2 .+【考点】 F9:一次函数图象与几何变换.【分析】直线 y=2x 平移时,系数 k=2 不会改变. 5 个单位长度得到,【解答】解:因为一次函数y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移+所以 k=2.故答案是: 2.18.一次函数 y=(2m﹣6)x 4中, y 随 x 的增大而减小,则 m 的取值范围是m<3 .+【考点】 F7:一次函数图象与系数的关系.【分析】利用一次函数图象与系数的关系列出关于m 的不等式 2m﹣6<0,然后解不等式即可.【解答】解:∵一次函数y=(2m﹣6) x 4 中, y 随 x 的增大而减小,+∴ 2m﹣ 6< 0,解得, m< 3;故答案是: m<3.19.如图,在平行四边形 ABCD 中, BC=8cm,AB=6cm ,BE 平分∠ ABC 交 AD 边于点 E,则线段 DE 的长度为 2cm .【考点】 L5:平行四边形的性质.【分析】根据四边形ABCD 为平行四边形可得AE ∥BC,根据平行线的性质和角平分线的性质可得出∠ ABE=∠ AEB,继而可得 AB=AE ,然后根据已知可求得DE 的长度【解答】解:∵四边形 ABCD 为平行四边形,∴ AE∥ BC, AD=BC=8cm ,∴∠ AEB=∠ EBC,∵ BE 平分∠ ABC ,∴∠ ABE=∠ EBC,∴∠ ABE=∠ AEB,∴ AB=AE=6cm ,∴ DE=AD ﹣AE=8 ﹣6=2(cm);故答案为: 2cm.20.如图,平行四边形 ABCD 的对角线相交于点 O,且 AB ≠ AD ,过 O 作 OE⊥ BD 交 BC 于点 E,若平行四边形 ABCD 的周长为 20,则△ CDE 的周长为 10 .【考点】 L5:平行四边形的性质;KG:线段垂直平分线的性质.【分析】由平行四边形 ABCD 的对角线相交于点 O, OE⊥ BD ,根据线段垂直平分线的性质,可得BE=DE ,又由平行四边形 ABCD 的周长为 20,可得 BC+CD 的长,继而可得△ CDE 的周长等于BC+CD.【解答】解:∵四边形 ABCD 是平行四边形,∴OB=OD,AB=CD ,AD=BC ,∵平行四边形 ABCD 的周长为 20,∴BC+CD=10,∵OE⊥ BD ,∴ BE=DE,∴△ CDE 的周长为: CD+CE+DE=CD +CE+BE=CD+BC=10.故答案为: 10.三、解答题(本大题共7 小题,共 82 分)21.计算:( 1)(﹣)﹣2+﹣(﹣1)0( 2)( 1+)÷.【考点】 6C:分式的混合运算; 2C:实数的运算; 6E:零指数幂; 6F:负整数指数幂.【分析】(1)根据负整数指数幂、零指数幂可以解答本题;( 2)根据分式的加法和除法可以解答本题.【解答】解:( 1)(﹣)﹣2+﹣(﹣1)0=4+3﹣1=6;(2)( 1+)÷==x 1.+22.解方程:.【考点】 B3:解分式方程.x 的值,代入公分母进行检验即可.【分析】先去分母把分式方程化为整式方程,求出整式方程中【解答】解:方程两边同时乘以 2(3x﹣ 1),得 4﹣ 2( 3x﹣1)=3,化简,﹣ 6x=﹣3,解得 x=.检验: x=时, 2(3x﹣1)=2×( 3× ﹣1)≠ 0所以, x=是原方程的解.23.已知一次函数 y=kx +b,当 x=2 时 y 的值是﹣ 1,当 x=﹣ 1 时 y 的值是 5.(1)求此一次函数的解析式;(2)若点 P( m,n)是此函数图象上的一点,﹣ 3≤ m≤2,求 n 的最大值.【考点】 FA:待定系数法求一次函数解析式; F5:一次函数的性质.【分析】(1)把 x=2,y=﹣ 1 代入函数 y=kx +b,得出方程组,求出方程组的解即可;(2)把 P 点的坐标代入函数 y=﹣2x+3,求出 m 的值,根据已知得出不等式组,求出不等式组的解集即可.【解答】解:( 1)依题意得:,解得:,所以一次函数的解析式是y=﹣2x+3;( 2)由( 1)可得, y=﹣2x+3.∵点 P (m,n )是此函数图象上的一点,∴n=﹣2m 3即,+又∵﹣ 3≤m≤ 2,∴,解得,﹣ 1≤ n≤ 9,∴ n 的最大值是 9.24.如图, ? ABCD 中,对角线 AC 与 BD 相交于 O,EF 是过点 O 的任一直线交 AD 于点 E,交 BC 于点 F,猜想 OE 和 OF 的数量关系,并说明理由.【考点】 L5:平行四边形的性质.【分析】结论: OE=OF,欲证明 OE=OF,只要证明△ AOE≌△ COF 即可.【解答】解:结论: OE=OF.理由∵四边形 ABCD 是平行四边形,∴OA=OC,AD ∥ BC,∴∠ OAE=∠ OCF,在△ AOE 和△ COF 中,,∴△ AOE≌△ COF,∴OE=OF.25.列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300 米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造 10%,结果提前 3 天完成了任务,求原计划每天改造道路多少米?【考点】 B7:分式方程的应用.【分析】设原计划每天改造道路 x 米,实际每天改造( 1+10%)x 米,根据比原计划每天多改造 10%,结果提前 3 天完成了任务,列出方程,再进行求解即可.【解答】解:设原计划每天改造道路x 米,实际每天改造( 1+10%) x 米,根据题意得:=+3,解得: x=100,经检验 x=100 是原方程的解,且符合题意.答:原计划每天改造道路100 米.26.如图,一次函数y=kx+b 与反比例函数 y=(x>0)的图象交于A(m,6), B( 3, n)两点.(1)直接写出 m= 1 , n= 2 ;( 2)根据图象直接写出使kx+b<成立的x的取值范围0<x<1 或 x>3;( 3)在 x 轴上找一点 P 使 PA+PB 的值最小,求出P 点的坐标.【考点】 G8:反比例函数与一次函数的交点问题.【分析】(1)将点 A 、B 坐标代入即可得;(2)由函数图象即可得;(3)作点 A 关于 x 轴的对称点 C,连接 BC 与 x 轴的交点即为所求.【解答】解:( 1)把点( m,6), B(3,n)分别代入 y=(x>0)得:m=1,n=2,故答案为: 1、2;(2)由函数图象可知,使 kx+b<成立的 x 的取值范围是 0<x<1 或 x> 3,故答案为: 0<x<1 或 x> 3;(3)由( 1)知 A 点坐标为( 1, 6), B 点坐标为( 3, 2),则点 A 关于 x 的轴对称点 C 的坐标( 1,﹣ 6),设直线 BC 的解析式为 y=kx+b,将点 B、 C 坐标代入,得:,解得:,则直线 BC 的解析式为 y=4x﹣ 10,当y=0 时,由 4x﹣10=0 得: x= ,∴点 P 的坐标为(,0).27.心理学家研究发现,一般情况下,一节课 40 分钟中,学生的注意力随教师讲课的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间 x(分钟)的变化规律如图所示(其中 AB 、 BC 分别为线段, CD 为双曲线的一部分):( 1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?( 2)一道数学竞赛题,需要讲16 分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【考点】 GA:反比例函数的应用.【分析】(1)先用待定系数法分别求出 AB 和 CD 的函数表达式,再分别求第五分钟和第三十分钟的注意力指数,最后比较判断;(2)分别求出注意力指数为 36 时的两个时间,再将两时间之差和 16 比较,大于 16 则能讲完,否则不能.【解答】解:( 1)设线段 AB 所在的直线的解析式为y1=k1x+20,把B(10,40)代入得, k1=2,∴ y1=2x+20.设C、D 所在双曲线的解析式为 y2= ,把 C(25,40)代入得, k2=1000,∴ y2=.当 x1=5 时, y1 =2×5+20=30,当 x2时, 2÷30=,=30y =1000∴y1< y2,∴第 30 分钟注意力更集中.(2)令 y1=36,∴ 36=2x+20,∴ x1=8.令y2=36,∴36=1000÷ x,∴x2=1000÷36≈27.8,∵ 27.8﹣8=19.8>16,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.2017 年 8 月 2 日。
2017~2018学年第二学期期中考试试卷初 二 数学 2018.04一、选择题:(本大题共8小题,每小题2分,共16分.)1.下列图形中,既是轴对称图形又是中心对称图形的是2.若分式23x x +-的值为零,则A.3x = B.3x =- C.2x = D.2x =- 3.若反比例函数的图象经过点(2,3)-,则该反比例函数图象一定经过点A.(2,3)-B.(2,3)--C.(2,3)D.(1,6)--4. 一个不透明的盒子中装有3个红球,2个黄球,这些球除了颜色外其余都相同,从中随机摸出3个小球,则事件“所摸3个球中必含有红球”是A.确定事件B.必然事件C.不可能事件D.随机事件5.如图,△ABC 中,∠ACB=90°,∠ABC=25°,以点C 为旋转中心顺时针旋转后得到△A ′B ′C ,且点A 在边A ′B ′上,则旋转角的度数为A .65°B . 60°C .50°D . 40°6.如图,在□ABCD 中,BM 是ABC ∠的平分线,交CD 于点M ,且DM=2, □ABCD 的周长是14,则BC 的长等于A .2 B . 2. 5 C .3 D . 3. 5(第5题) (第6题) (第7题) (第8题)7.如图,P 为边长为2的正方形ABCD 的对角线BD 上任一点,过点P 作PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF .给出以下4个结论:①AP=EF ;②AP ⊥EF ;③EF 最短长度为;④若∠BAP=30°时,则EF 的长度为2.其中结论正确的有A .①②③B .①②④C .②③④D .①③④8.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数(0)k y x x=>与AB 相交于点D ,与BC 相交于点E ,若3BD AD =,且ODE ∆的面积是9,则k 的值是A. 92 B. 74 C. 245D. 12 二、 填空题:(本大题共10小题,每小题2分,共20分.)9.使式子11-x 有意义的x 的取值范围是 . 10.分式3212x y 、213x y 的最简公分母是 . 11.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是__________.12.关于x 的方程122x a x x +=--有增根,则a 的值为 . 13.若点A (a ,b )在反比例函数2y x =的图像上,则代数式ab -4的值为________. 14.平行四边形ABCD 的周长是30,AC ,BD 相交于点O ,OAB ∆的周长比OBC ∆的周长大3,则AB = .15.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为 。