基于MATLAB的精馏控制系统开发与仿真
- 格式:docx
- 大小:634.32 KB
- 文档页数:13
实验一 基于Matlab 的控制系统模型姓名 学号 班级机械一、实验目的1) 熟悉Matlab 的使用环境,学习Matlab 软件的使用方法和简单编程方法。
2) 学习使用Matlab 软件进行拉氏变换和拉式反变换的方法。
3) 学习使用Matlab 软件建立、转换连续系统数学模型的方法。
4) 学习使用Matlab 软件分析控制系统稳定性的方法。
二、实验原理1. 拉氏变换和反拉氏变换(1) 拉氏变换syms a w tf1=exp(-a*t)laplace(f1)f2=2laplace(f2)f3=t*exp(-a*t)laplace(f3)f4=sin(w*t)laplace(f4)f5=exp(-a*t)*cos(w*t)laplace t-t (f5)(2) 拉氏反变换syms s a wf 1=1/silaplace(f 1)f 2=1/(s+a)ilaplace(f 2)f 3=1/s^2ilaplace(f 3)f 4=w/(s^2+w^2)ilaplace(f 4)f 5=1/(s*(s+2)^2*(s+3))ilaplace(f 5)…2. 控制系统模型的建立和转化传递函数模型:112m 112+()+m m n n nb s b s b num G s den a s a s b --++==++…… 零极点增益模型:1212()()()()()()()m n s z s z s z G s k s p s p s p ---=--- (1) 建立系统传递函数模型22(1)()(2)(3)56s s s s G s s s s s ++==++++ num=[1,1,0]den=[1,5,6]Gs1=tf(num,den)(2) 建立系统的零极点模型z=[0,-1]p=[-2,-3]k=[1]Gs1=zpk(z,p,k)(3) 传递函数模型转化为零极点模型num=[1,1,0]den=[1,5,6]Gs1=tf(num,den)[z,p,k]=tf2zp(num,den)Gs2=zpk(z,p,k)(4) 零极点模型转化为传递函数模型z=[0,-1]p=[-2,-3]k=[1]Gs1=zpk(z,p,k)[num,den]=zp2tf(z',p',k)Gs2=tf(num,den)3. 用Matlab 进行传递函数部分分式展开5434321139+52s+26()1035+50s+241 2.530.5 1s+4s+3s+2s+1num s s s G s den s s s ++==++-=++++num=[1 11 39 52 26]den=[1 10 35 50 24][r,p,k]=residue(num,den)4. 连续系统稳定性分析已知传递函数,试求该系统的闭环极点并判断系统的稳定性。
实验一MATLAB 在控制系统模型建立与仿真中地应用一、MATLAB 基本操作与使用1. 实验目地1)熟悉MATLAB工作环境平台及其各个窗口,掌握MATLAB 语言地基本规定,MATLAB图形绘制功能、M 文件程序设计.2) 学习使用MATLAB控制系统工具箱中线性控制系统传递函数模型地相关函数.2. 实验仪器PC计算机一台,MATLAB软件1套3. 实验内容1) MATLAB工作环境平台Command Window图1 在英文Windows 平台上地MATLAB6.5 MATLAB工作平台①命令窗口(Command Window)命令窗口是对 MATLAB 进行操作地主要载体,默认地情况下,启动MATLAB 时就会打开命令窗口,显示形式如图 1 所示.一般来说,MATLAB地所有函数和命令都可以在命令窗口中执行.掌握 MALAB 命令行操作是走入 MATLAB 世界地第一步.命令行操作实现了对程序设计而言简单而又重要地人机交互,通过对命令行操作,避免了编程序地麻烦,体现了MATLAB 所特有地灵活性.p1Ean。
在运行MATLAB后,当命令窗口为活动窗口时,将出现一个光标,光标地左侧还出现提示符“>>”,表示MATLAB正在等待执行命令.注意:每个命令行键入完后,都必须按回车键!DXDiT。
当需要处理相当繁琐地计算时,可能在一行之内无法写完表达式,可以换行表示,此时需要使用续行符“…”否则 MATLAB 将只计算一行地值,而不理会该行是否已输入完毕.使用续行符之后 MATLAB 会自动将前一行保留而不加以计算,并与下一行衔接,等待完整输入后再计算整个输入地结果.在 MATLAB 命令行操作中,有一些键盘按键可以提供特殊而方便地编辑操作.比如:“↑”可用于调出前一个命令行,“↓”可调出后一个命令行,避免了重新输入地麻烦.当然下面即将讲到地历史窗口也具有此功能.jLBHr。
②历史窗口(Command History)历史命令窗口是 MATLAB6 新增添地一个用户界面窗口,默认设置下历史命令窗口会保留自安装时起所有命令地历史记录,并标明使用时间,以方便使用者地查询.而且双击某一行命令,即在命令窗口中执行该命令.xHAQX。
MATLAB 实验报告3 控制系统仿真1、一个传递函数模型: )6()13()5(6)(22++++=s s s s s G 将该传递函数模型输入到MATLAB 工作空间。
num=6*[1,5];den=conv(conv([1,3,1],[1,3,1]),[1,6]);tf(num,den)2、 若反馈系统为更复杂的结构如图所示。
其中2450351024247)(234231+++++++=s s s s s s s s G ,s s s G 510)(2+=,101.01)(+=s s H 则闭环系统的传递函数可以由下面的MATLAB 命令得出:>> G1=tf([1,7,24,24],[1,10,35,50,24]);G2=tf([10,5],[1,0]);H=tf([1],[0.01,1]);G_a=feedback(G1*G2,H)得到结果:Transfer function:0.1 s^5 + 10.75 s^4 + 77.75 s^3 + 278.6 s^2 + 361.2 s + 120 -------------------------------------------------------------------- 0.01 s^6 + 1.1 s^5 + 20.35 s^4 + 110.5 s^3 + 325.2 s^2 + 384 s + 1203、设传递函数为:61166352)(2323++++++=s s s s s s s G 试求该传递函数的部分分式展开num=[2,5,3,6];den=[1,6,11,6];[r,p,k]=residue(num,den)图 复杂反馈系统4、给定单位负反馈系统的开环传递函数为:)7()1(10)(++=s s s s G 试画出伯德图。
利用以下MATLAB 程序,可以直接在屏幕上绘出伯德图如图20。
>> num=10*[1,1];den=[1,7,0];bode(num,den)5、已知三阶系统开环传递函数为:)232(27)(23+++=s s s s G画出系统的奈氏图,求出相应的幅值裕量和相位裕量,并求出闭环单位阶跃响应曲线。
过程控制三级项目说明书题目:精馏控制系统学院(系):电气工程学院年级专业: 13级仪表一班小组:第一组指导教师:摘要精馏塔是化工、石油化工、炼油生产过程中应用极为广泛的传质传热过程设备。
精馏过程的实质就是利用混合物中各组分具有不同的挥发度,实现各组分的分离。
精馏塔是一个多输入多输出的多变量过程,内在机理较复杂,动态响应迟缓,变量之间相互关联,在线测量困难,不同的塔工艺结构差别很大,而工艺对控制提出的要求又较高,所以确定精馆塔的控制方案是一个极为重要的课题。
此外,在全球金融危机的压力下,国内众多过程工业企业不仅面临着同行的竞争压力,同时也面临着来自国际间的市场挑战.在当前经济并不景气的大环境下,积极的开发和应用先进过程控制技术来提高企业的经济效益,增强企业自身的竞争力是过程工业迎接挑战的主要途径。
随着控制理论与计算机技术的发展,不仅为先进控制技术的应用奠定了理论基础,同样也提供了良好的软硬件平台。
近些年来,先进控制技术在实际工业过程中也取得了较好的成效,具有十分广泛的应用前景。
精馏过程因其大时滞、变量藕合、动态特性分析复杂、约束条件复杂且难以进行变量配对等特性成为过程控制界多年来理论研究和实践的热点。
本文针对工程训练任务书中给出的系统辨识函数,搭建了仿真框图,调整PID参数,最终使系统在较好的指标内达到稳定。
关键词:精馏塔仿真框图 PID参数目录1.精馏控制系统................................................3 1.1精馏工艺概述..............................................3 1.2精馏工艺的基本要求......................................4 2。
系统分析及方案选择..........................................43.控制对象的数学模型..........................................64.系统稳定性分析.......................................65.控制系统的参数整定..........................................8 6。
《MATLAB与控制系统仿真》实验报告一、实验目的本实验旨在通过MATLAB软件进行控制系统的仿真,并通过仿真结果分析控制系统的性能。
二、实验器材1.计算机2.MATLAB软件三、实验内容1.搭建控制系统模型在MATLAB软件中,通过使用控制系统工具箱,我们可以搭建不同类型的控制系统模型。
本实验中我们选择了一个简单的比例控制系统模型。
2.设定输入信号我们需要为控制系统提供输入信号进行仿真。
在MATLAB中,我们可以使用信号工具箱来产生不同类型的信号。
本实验中,我们选择了一个阶跃信号作为输入信号。
3.运行仿真通过设置模型参数、输入信号以及仿真时间等相关参数后,我们可以运行仿真。
MATLAB会根据系统模型和输入信号产生输出信号,并显示在仿真界面上。
4.分析控制系统性能根据仿真结果,我们可以对控制系统的性能进行分析。
常见的性能指标包括系统的稳态误差、超调量、响应时间等。
四、实验步骤1. 打开MATLAB软件,并在命令窗口中输入“controlSystemDesigner”命令,打开控制系统工具箱。
2.在控制系统工具箱中选择比例控制器模型,并设置相应的增益参数。
3.在信号工具箱中选择阶跃信号,并设置相应的幅值和起始时间。
4.在仿真界面中设置仿真时间,并点击运行按钮,开始仿真。
5.根据仿真结果,分析控制系统的性能指标,并记录下相应的数值,并根据数值进行分析和讨论。
五、实验结果与分析根据运行仿真获得的结果,我们可以得到控制系统的输出信号曲线。
通过观察输出信号的稳态值、超调量、响应时间等性能指标,我们可以对控制系统的性能进行分析和评价。
六、实验总结通过本次实验,我们学习了如何使用MATLAB软件进行控制系统仿真,并提取控制系统的性能指标。
通过实验,我们可以更加直观地理解控制系统的工作原理,为控制系统设计和分析提供了重要的工具和思路。
七、实验心得通过本次实验,我深刻理解了控制系统仿真的重要性和必要性。
MATLAB软件提供了强大的仿真工具和功能,能够帮助我们更好地理解和分析控制系统的性能。
基于MATLAB控制系统的仿真与应用毕业设计论文目录一、内容概括 (2)1. 研究背景和意义 (3)2. 国内外研究现状 (4)3. 研究目的和内容 (5)二、MATLAB控制系统仿真基础 (7)三、控制系统建模 (8)1. 控制系统模型概述 (10)2. MATLAB建模方法 (11)3. 系统模型的验证与校正 (12)四、控制系统性能分析 (14)1. 稳定性分析 (14)2. 响应性能分析 (16)3. 误差性能分析 (17)五、基于MATLAB控制系统的设计与应用实例分析 (19)1. 控制系统设计要求与方案选择 (20)2. 基于MATLAB的控制系统设计流程 (22)3. 实例一 (23)4. 实例二 (25)六、优化算法在控制系统中的应用及MATLAB实现 (26)1. 优化算法概述及其在控制系统中的应用价值 (28)2. 优化算法介绍及MATLAB实现方法 (29)3. 基于MATLAB的优化算法在控制系统中的实践应用案例及分析对比研究31一、内容概括本论文旨在探讨基于MATLAB控制系统的仿真与应用,通过对控制系统进行深入的理论分析和实际应用研究,提出一种有效的控制系统设计方案,并通过实验验证其正确性和有效性。
本文对控制系统的基本理论进行了详细的阐述,包括控制系统的定义、分类、性能指标以及设计方法。
我们以一个具体的控制系统为例,对其进行分析和设计。
在这个过程中,我们运用MATLAB软件作为主要的仿真工具,对控制系统的稳定性、动态响应、鲁棒性等方面进行了全面的仿真分析。
在完成理论分析和实际设计之后,我们进一步研究了基于MATLAB 的控制系统仿真方法。
通过对仿真模型的建立、仿真参数的选择以及仿真结果的分析,我们提出了一种高效的仿真策略。
我们将所设计的控制系统应用于实际场景中,通过实验数据验证了所提出方案的有效性和可行性。
本论文通过理论与实践相结合的方法,深入探讨了基于MATLAB 控制系统的仿真与应用。
基于MATLAB的过程控制系统仿真研究毕业设计论文过程控制是工业生产和化工工艺中的重要环节,通过对过程控制系统进行仿真研究,可以为实际生产提供有效的参考依据和优化方案。
基于MATLAB的仿真研究是目前较为常见和有效的方法之一、本文旨在通过对过程控制系统的仿真研究,分析系统的动态响应和稳态性能,以及提出改进方案,为实际生产过程中的过程控制系统优化提供参考。
首先,本文将介绍过程控制系统的基本原理和结构,以及其在工业生产和化工工艺中的应用。
然后,将详细介绍MATLAB在过程控制系统仿真研究中的优势和应用。
MATLAB作为一种功能强大且易于使用的工具,可以快速建立过程控制系统的数学模型,并进行系统的动态仿真和稳态分析。
接下来,本文将分析过程控制系统的动态响应和稳态性能。
通过使用MATLAB进行仿真,可以模拟系统在不同工况下的输出响应,并进行性能评估。
对于动态响应的分析,包括系统的超调量、上升时间、调节时间等参数的计算和比较;对于稳态性能的分析,包括系统的稳态误差、控制精度等指标的评估和优化。
然后,本文将提出改进过程控制系统的方案。
通过对仿真结果的分析和比较,可以确定系统的不足之处,并进一步提出改进方案。
改进方案可以包括系统参数的调整,控制策略的改变,或者增加反馈环节等手段。
通过对系统进行多次仿真,并与原始系统进行比较,可以评估改进方案的效果和优劣,并选择最佳方案进行实际应用。
最后,本文将对仿真结果进行讨论和总结。
通过对仿真结果的分析和评估,可以得出对过程控制系统的改进方案和优化建议。
同时,也可以总结基于MATLAB的过程控制系统仿真研究的优势和应用价值,并对未来的研究方向进行展望。
总的来说,本文旨在通过对基于MATLAB的过程控制系统仿真研究的探讨和分析,为实际生产中的过程控制系统优化提供参考。
通过仿真分析系统的动态响应和稳态性能,提出改进方案,并对仿真结果进行讨论和总结,可以为实际生产过程中的过程控制系统优化提供科学的指导和参考。
基于MATLAB的控制系统设计与仿真实践控制系统设计是现代工程领域中至关重要的一部分,它涉及到对系统动态特性的分析、建模、控制器设计以及性能评估等方面。
MATLAB作为一种强大的工程计算软件,在控制系统设计与仿真方面有着广泛的应用。
本文将介绍基于MATLAB的控制系统设计与仿真实践,包括系统建模、控制器设计、性能评估等内容。
1. 控制系统设计概述控制系统是通过对被控对象施加某种影响,使其按照既定要求或规律运动的系统。
在控制系统设计中,首先需要对被控对象进行建模,以便进行后续的分析和设计。
MATLAB提供了丰富的工具和函数,可以帮助工程师快速准确地建立系统模型。
2. 系统建模与仿真在MATLAB中,可以利用Simulink工具进行系统建模和仿真。
Simulink是MATLAB中用于多域仿真和建模的工具,用户可以通过拖拽图形化组件来搭建整个系统模型。
同时,Simulink还提供了各种信号源、传感器、执行器等组件,方便用户快速搭建复杂的控制系统模型。
3. 控制器设计控制器是控制系统中至关重要的一部分,它根据系统反馈信息对输出信号进行调节,以使系统输出达到期望值。
在MATLAB中,可以利用Control System Toolbox进行各种类型的控制器设计,包括PID控制器、根轨迹设计、频域设计等。
工程师可以根据系统需求选择合适的控制器类型,并通过MATLAB进行参数调节和性能优化。
4. 性能评估与优化在控制系统设计过程中,性能评估是必不可少的一环。
MATLAB提供了丰富的工具和函数,可以帮助工程师对系统进行性能评估,并进行优化改进。
通过仿真实验和数据分析,工程师可以评估系统的稳定性、鲁棒性、响应速度等指标,并针对性地进行调整和改进。
5. 实例演示为了更好地说明基于MATLAB的控制系统设计与仿真实践,我们将以一个简单的直流电机速度控制系统为例进行演示。
首先我们将建立电机数学模型,并设计PID速度控制器;然后利用Simulink搭建整个闭环控制系统,并进行仿真实验;最后通过MATLAB对系统性能进行评估和优化。
过程控制三级项目说明书题目:精馏控制系统学院(系):电气工程学院年级专业: 13级仪表一班小组:第一组指导教师:摘要精馏塔是化工、石油化工、炼油生产过程中应用极为广泛的传质传热过程设备。
精馏过程的实质就是利用混合物中各组分具有不同的挥发度,实现各组分的分离。
精馏塔是一个多输入多输出的多变量过程,内在机理较复杂,动态响应迟缓,变量之间相互关联,在线测量困难,不同的塔工艺结构差别很大,而工艺对控制提出的要求又较高,所以确定精馆塔的控制方案是一个极为重要的课题。
此外,在全球金融危机的压力下,国内众多过程工业企业不仅面临着同行的竞争压力,同时也面临着来自国际间的市场挑战。
在当前经济并不景气的大环境下,积极的开发和应用先进过程控制技术来提高企业的经济效益,增强企业自身的竞争力是过程工业迎接挑战的主要途径。
随着控制理论与计算机技术的发展,不仅为先进控制技术的应用奠定了理论基础,同样也提供了良好的软硬件平台。
近些年来,先进控制技术在实际工业过程中也取得了较好的成效,具有十分广泛的应用前景。
精馏过程因其大时滞、变量藕合、动态特性分析复杂、约束条件复杂且难以进行变量配对等特性成为过程控制界多年来理论研究和实践的热点。
本文针对工程训练任务书中给出的系统辨识函数,搭建了仿真框图,调整PID参数,最终使系统在较好的指标内达到稳定。
关键词:精馏塔仿真框图 PID参数目录1.精馏控制系统................................................3 1.1精馏工艺概述..............................................31.2精馏工艺的基本要求......................................42.系统分析及方案选择..........................................43.控制对象的数学模型..........................................64.系统稳定性分析.......................................65.控制系统的参数整定..........................................86.控制系统Simulink仿真.......................................107.心得体会..................................................11 参考文献1.精馏控制系统1.1精馏工艺概述精馏是将一定浓度的溶液送入精馏装置使它反复地进行部分汽化和部分冷凝,从而的得到预期的塔顶和塔底产品的操作。
精馏的设备和过程如图1.1所示。
图1.1 精馏设备与精馏过程精馏设备主要有:精馏塔、再沸器、冷凝器、回流罐和回流泵。
原料从精馏塔中段某一块塔板(称为进料板)进入。
进料板把精馏塔分为进料板以上的精馏段和进料板以下的提馏段。
进入塔内的液体与塔内上升蒸汽在各层塔板上充分接触,使沸点低的易挥发组分汽化上行;沸点高的难挥发组分随液体往下流。
精馏塔内物料和蒸汽在逆流作用下进行传质和传热。
下流到塔釜的液体分为两部分,一部分被引出为塔底产品,另一部分经再沸器加热汽化后返回精馏塔。
精馏塔内上升的蒸汽依次经过所有塔板,使蒸汽中易挥发组分浓度逐渐增大,馏出塔顶的蒸汽在冷凝器中冷凝为液体,经回流罐和回流泵后,液体分为两部分,一部分塔顶产品引出,另一部分则引回到精馏塔塔顶的精馏段塔板上,称为回流量。
在精馏过程达到稳态时,塔内状态稳定,每层塔板上液体和蒸汽的浓度均保持不变,塔外状态稳定,塔顶产品和塔釜产品的浓度和流量均保持定值。
1.2精馏工艺的基本要求精馏塔的控制主要有三类指标:质量指标(产品纯度)、产品产量指标和能耗指标。
根据精馏过程,基本的精馏工艺要求有:(1)保证产品的提纯纯度(质量)和产量精馏过程所得产品自然应满足规定的质量要求。
精馏产品的质量要求一般是要保证塔顶或塔底产品之一达到规定的纯度要求,而另一产品纯度在规定的范围内。
产品质量的高低与能耗、产量和成本等关联密切,为了取得综合效益最好,往往把产品质量控制到刚好能满足规格要求,即所谓“卡边”生产。
产品的产量通常用回收率表示。
回收率为原料中每单位产品组分所能得到的可售产品的数量。
可见回收率越高,表明产量越高。
(2)安全和节能生产过程的安全性主要体现在精馏过程控制中的参数设限问题,即根据实际情况,设定如蒸汽压力、流量等的最大最小值,以防止事故发生保证安全生产。
耗能问题是精馏过程所研究的重点问题。
能耗的降低主要考虑工艺过程的合理性、过程控制的参数选择和策略选择合理性等。
2.系统分析及方案选择精馏工艺的基本控制内容包括:精馏塔外部的原料流量控制、过热蒸汽控制;精馏塔内部的精馏塔压力控制、精馏段相关量控制、提馏段相关量控制;总体的安全控制和节能控制等。
其中,精馏塔内精馏段相关量控制包括:精馏段回流量控制、馏出液量控制、馏出产品质量控制等。
精馏塔内提馏段相关量控制包括:再沸器加热量控制、提馏段质量控制、提馏段釜液流量控制等。
在分离混合物的精馏过程中,通过控制再沸器的加入蒸汽量来维持精馏塔气相的空间速度。
如果气相的空间速度太高会引起液泛,其后果是从气相带走大量没有分离的混合物;反之,如果气象空间速度太低,则会引起漏液,其后果是从液相带走大量没有分离的混合物。
在这两种情况下,都会破坏精馏塔的正常运行。
蒸汽加热的再沸器是把蒸汽释放的潜热转化成被加热液体的汽化热,如果加热蒸汽量太大,传热间壁两边的温差增大,容易使被加热液体一侧产生的气泡连成一片,使实际传热效率大大降低。
可见在,在控制再沸器蒸汽流量的同时。
需要对最大的蒸汽量加以限制。
被调节变量可以取精馏塔的供料流量、塔压、精馏塔塔釜液位或冷凝液储槽液位。
选择冷凝液储槽液位为被调节量,控制再沸器的蒸汽加入量。
这种控制方法在塔底产品流量较小时经常采用。
在这种场合下,一般不采用塔釜液位来调节加热蒸汽量,因为塔底产品流量很低时,加热蒸汽量的增加会使再沸器里的一部分液体排入精馏塔,造成塔釜液位短时间里增加,之后又逐渐下降,这样控制起来会比较困难。
图2.1 系统控制方案结构简图考虑到冷凝槽的液位变化基本上是与加热蒸汽量成比例的,所以采用冷凝液储槽液位控制加热蒸汽量可以应用线性调节器。
系统控制方案结构简图如图2.1。
由于蒸汽加入量的变化要通过再沸器、精馏塔、冷凝器和储槽,再影响到液位的变化,所以对象有较大的滞后特性,因此采用PID调节器。
为了防止设定值突变时,微分控制输出突跳,将微分环节设置在反馈回路中,微分运算只对测量信号进行,即先行微分;蒸汽流量调节器采用PI调节器。
冷凝液储槽液位利用差压变送器进行测量。
系统框图如图2.2。
图2.2再沸器控制系统框图3.控制对象的数学模型广义被控对象(即从再沸器至储液槽液位,含有电/气转换器、阀门定位器/阀门、被控对象和液位变送器)的数学模型为:G(s)=1.25e −44s(25s+1)2从再沸器(蒸汽流量)至精馏塔内压力测量变送器的数学模型为:G(s)=e−4s12s+1整齐的限制流量和塔内压力关系为:Q sH(s)=Q0−0.48P(s),式中QsH (s)为蒸汽的限制流量(拉氏变换);Q0为蒸汽的最大流量;P(s)为塔内压力最大值(拉氏变换)。
4系统稳定性分析广义被控对象G(s)=1.25e −44s(25s+1)2的伯德图:Matlab程序:num=[1.25];den=conv([25 1],[25 1]);G=tf(num,den,'inputdelay',44);margin(G);伯德图:由Bode 图可知,无调节器时,相位裕度为76.5°,幅值裕度为3.49°,所以开环系统不稳定。
-60-40-20020M a g n i t u d e (d B )10101010-2880-2160-1440-7200P h a s e (d e g )Bode DiagramGm = 3.49 dB (at 0.0373 rad/s) , P m = 76.5 deg (at 0.02 rad/s)Frequency (rad/s)5.控制系统的参数整定PID模块位于MATLAB SIMULINK的coutinuous库中,如图5.1,这里先整定蒸汽流量调节器的PI参数,利用此PID Tunner,可以自动整定PI 参数。
D参数由于采用先行微分,需要通过观察simulink仿真波形,手动调试。
图5.1 PID模块首先连接仿真模型,如图5.2图5.2闭环系统PI调节器simulink框图双击打开PID模块的设置界面如图5.3图5.3PID模块设置页面在Controller下拉菜单中选择PI结构模式,Time-domain选项选择连续域模式。
选择好模式之后,单击Apply,然后单击Tune按钮,PID Tuner 会自动在系统默认的工作点处对模型进行线性化处理,设计出控制器的参数。
如图5.4所示,P=1.5631,I=0.02952。
图5.4 PID自动调节模块界面6.控制系统Simulink仿真搭建完整的系统Simulink仿真框图,在仿真框图中,为了模拟真正的工业控制环境,在特定的环节,添加了幅值为-0.5至0.5的噪声干扰信号,仿真框图如图所示:图6.1 控制系统仿真框图图6.2 仿真结果曲线从上至下依次为:给定蒸汽流量、实际蒸汽流量、塔内压力、扰动。
由图6.2可知,系统实现了控制要求,系统稳定性较好,能满足一般精馏过程控制的需要。
7.心得体会本次三级项目,我们小组查阅了相关资料,并运用课堂上学习过的知识,对精馏控制的发展现状及相关流程有了一定的了解,完成了此次老师交给的任务要求。
在这次的三级项目中,我们使用Simulink对精馏控制系统进行了建模与仿真,基本实现了精馏控制系统PID参数的整定和Simulink仿真,对Matlab和Simulink的理解和运用得到了进一步的提高。
任何事情的完成都离不开团队的精诚合作,只有把每个人的力量团结在一起才能发挥最大的潜力,以后我们应该继续加强对专业知识的学习,同时注重实践,实现自我的进步与升华。
参考文献[1] 曹润生. 过程控制仪表. 浙江大学出版社.[2] 王文强. 精馏控制系统开发与仿真. 百度文库.[3] 胡寿松. 自动控制原理.第6版. 科学出版社.。