高中数学 第1课时 二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换教案 新人教A版选修4-21
- 格式:doc
- 大小:173.00 KB
- 文档页数:7
第一讲二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换。
一、二阶矩阵 1.矩阵的概念①OP → =→的坐标排成一列,并简记为⎣⎢⎡⎦⎥⎤2 3 ⎣⎢⎡⎦⎥⎤2 3 ②某电视台举办歌唱比赛,甲、乙两名选手初、复赛成绩如下:③ 概念一:象⎣⎢⎡⎦⎥⎤2 3 80908688⎡⎤⎢⎥⎣⎦ 23324m ⎡⎤⎢⎥-⎣⎦的矩形数字(或字母)阵列称为矩阵.通常用大写的拉丁字母A 、B 、C…表示, 横排叫做矩阵的行,竖排叫做矩阵的列. 名称介绍:①上述三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵,注意行的个数在前。
②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。
③行矩阵:[a 11,a 12](仅有一行)④列矩阵:⎣⎢⎡⎦⎥⎤a 11 a 21 (仅有一列)⑤向量a →=(x,y ),平面上的点P (x,y )都可以看成行矩阵[,]x y 或列矩阵x y ⎡⎤⎢⎥⎣⎦,在本书中规定所有的平面向量均写成列向量x y ⎡⎤⎢⎥⎣⎦的形式。
练习1: 1.已知⎥⎦⎤⎢⎣⎡-=243x A ,⎥⎦⎤⎢⎣⎡-=21z y B ,若A=B ,试求z y x ,,— 2 —3 —⎣⎢⎡⎦⎥⎤80 90 86 88 23324x y x y ++⎧⎨-+⎩简记为23324m ⎡⎤⎢⎥-⎣⎦2.设23x A y ⎡⎤=⎢⎥⎣⎦,2m n x y B x y m n ++⎡⎤=⎢⎥--⎣⎦,若A=B ,求x,y,m,n 的值。
概念二:由4个数a,b,c,d 排成的正方形数表a b c d ⎡⎤⎢⎥⎣⎦称为二阶矩阵。
a,b,c,d 称为矩阵的元素。
①零矩阵:所有元素均为0,即0000⎡⎤⎢⎥⎣⎦,记为0。
②二阶单位矩阵:1001⎡⎤⎢⎥⎣⎦,记为E 2.二、二阶矩阵与平面向量的乘法定义:规定二阶矩阵A=a b c d ⎡⎤⎢⎥⎣⎦,与向量x y α→⎡⎤=⎢⎥⎣⎦的乘积为ax by A cx dy α→+⎡⎤=⎢⎥+⎣⎦,即A α→=a b c d ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦=ax by cx dy +⎡⎤⎢⎥+⎣⎦练习2: 1.(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-131021= (2) ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-311021=2.⎥⎦⎤⎢⎣⎡2101⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡-11,求⎥⎦⎤⎢⎣⎡y x三、二阶矩阵与线性变换 1.旋转变换问题1:P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P 在此旋转变换作用下的象。
1.2.4 组合数的性质教学目标:1掌握组合数的两个性质;2.进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题教学重点:掌握组合数的两个性质教学过程一、复习引入:1 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号m n C 表示. 3.组合数公式的推导:(1)一般地,求从n 个不同元素中取出m 个元素的排列数m n A ,可以分如下两步:① 先求从n 个不同元素中取出m 个元素的组合数m n C ;② 求每一个组合中m 个元素全排列数m m A ,根据分步计数原理得:m n A =m n C m mA ⋅. (2)组合数的公式:(1)(2)(1)!m mn nm m A n n n n m C A m ---+==或)!(!!m n m n C m n -=),,(n m N m n ≤∈*且说明:①规定:10=n C ;②等式特点:等式两边下标同,上标之和等于下标;③y n x n C C =y x =⇒或n y x =+.2.组合数的性质2:m n C 1+=m n C +1-m nC . 三、典例分析例1.( 1)计算:69584737C C C C +++; (2)求证:n m C 2+=n m C +12-n m C +2-n m C .例2.解方程:(1)3213113-+=x x C C ;(2)解方程:333222101+-+-+=+x x x x x A C C . 例3、男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.课堂小节:本节课学习了组合数的两个性质课堂练习:精美句子1、善思则能“从无字句处读书”。
第一讲二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换。
一、二阶矩阵1.矩阵的概念① =OP → →[23][23]初赛复赛甲8090乙8688③概念一:象 的矩形数字(或字母)阵列称为矩[23]80908688⎡⎤⎢⎥⎣⎦23324m ⎡⎤⎢⎥-⎣⎦阵.通常用大写的拉丁字母A 、B 、C…表示, 横排叫做矩阵的行,竖排叫做矩阵的列.名称介绍:①上述三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵,注意行的个数在前。
②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。
③行矩阵:[a 11,a 12](仅有一行)④列矩阵:(仅有一列)[a11a21]⑤向量=(x,y ),平面上的点P (x,y )都可以看成行矩阵或a →[,]x y 列矩阵,在本书中规定所有的平面向量均写成列向量的形式。
x y ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦练习1:1.已知,,若A=B ,试求⎥⎦⎤⎢⎣⎡-=243x A ⎥⎦⎤⎢⎣⎡-=21z y B z y x ,,2.设,,若A=B ,求x,y,m,n 的值。
23x A y ⎡⎤=⎢⎥⎣⎦2m n x y B x y m n ++⎡⎤=⎢⎥--⎣⎦概念二:由4个数a,b,c,d 排成的正方形数表称为二阶矩阵。
a,b,c,d a b c d ⎡⎤⎢⎥⎣⎦称为矩阵的元素。
①零矩阵:所有元素均为0,即,记为0。
0000⎡⎤⎢⎥⎣⎦②二阶单位矩阵:,记为E 2.1001⎡⎤⎢⎥⎣⎦二、二阶矩阵与平面向量的乘法定义:规定二阶矩阵A=,与向量的乘积为a b c d ⎡⎤⎢⎥⎣⎦x y α→⎡⎤=⎢⎥⎣⎦23m 3-24—2—3—[80 9086 88]23324x y mz x y z ++=⎧⎨-+=⎩23324m ⎡⎤⎢⎥-⎣⎦,即==ax by A cx dy α→+⎡⎤=⎢⎥+⎣⎦A α→a b c d ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦ax by cx dy +⎡⎤⎢⎥+⎣⎦练习2:1.(1)=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-131021(2) =⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-3110212.=,求⎥⎦⎤⎢⎣⎡2101⎥⎦⎤⎢⎣⎡y x ⎥⎦⎤⎢⎣⎡-11⎥⎦⎤⎢⎣⎡y x 三、二阶矩阵与线性变换1.旋转变换问题1:P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P在此旋转变换作用下的象。
第二课时 椭圆的简单几何性质教学目标1、进一步掌握椭圆的几何性质2、理解椭圆的第二定义,掌握椭圆的准线方程及准线的几何意义,进一步理解离心率的几何意义。
3、掌握用坐标法求曲线方程及由方程研究图形性质的方法。
4、培养分析问题和解决问题的能力教学过程1、复习回顾前一节学习了椭圆的几何性质,大家回忆一下:⑴椭圆的几何性质的内容是什么?椭圆16x 2+9y 2=144中x 、y 的范围,长轴长,短轴长,离心率,顶点及焦点坐标。
-3≤x ≤3,-4≤y ≤4,长轴长2a =8,短轴长2b =6,离心率47=e , 顶点坐标(0,-4),(0,4),(-3,0),(3,0),焦点坐标)7,0(),7,0(-注意:椭圆的焦点一定在椭圆的长轴上。
⑵什么叫做椭圆的离心率?e =c/a离心率的几何意义是什么呢?我们先来看一个问题:点M(x,y)与定点F(c,0)的距离和它到定直线l :x =a 2/c 的距离的比是常数e=c/a(a >c>0),求点M 的轨迹。
2、探索研究(按求轨迹方程的步骤,学生回答,教师书写)解:设d 是点M 到直线l 的距离,根据题意,所求轨迹就是集合},|||{a c d MF M P == 由此得ac x c a y c x =-+-||)(222 将上式两边平方,并化简,得(a 2-c 2)x 2+a 2y 2=a 2(a 2-c 2)设a 2-c 2=b 2,就可化成x 2/a 2+y 2/b 2=1,这是椭圆方程,所以点M 的轨迹是长轴长为2a ,长轴长为2b ,焦点在x 轴上的椭圆。
小结:⑴椭圆的第二定义:当点M 与定点F 的距离和它到定直线l 的距离的比是常数e=c/a(0<e <1)时,这个点的轨迹是椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率。
⑵对于椭圆x 2/a 2+y 2/b 2=1,相应于焦点F 2(c,0)的准线方程是l :x =a 2/c ,根据椭圆对称性,相应于焦点F 1(-c,0)的准线方程是l :x =-a 2/c ;对于椭圆x 2/ b 2+y 2/ a2=1,相应于焦点F 2(0,c)的准线方程是l :y =a 2/c ,根据椭圆对称性,相应于焦点F 1(0,-c)的准线方程是l :y =-a 2/c 。
第一讲二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换。
一、二阶矩阵 1.矩阵的概念
①OP → =
→的坐标排成一列,并简记为⎣⎢⎡⎦⎥⎤2 3 ⎣⎢⎡⎦
⎥⎤
2 3 ②某电视台举办歌唱比赛,甲、乙两名选手初、复赛成绩如下:
③
概念一:
象⎣⎢⎡⎦⎥⎤2 3 80908688⎡⎤
⎢⎥⎣⎦
23324m ⎡⎤⎢⎥-⎣⎦的矩形数字(或字母)阵列称为矩阵.通常用大写的拉丁字母A 、B 、C…表示, 横排叫做矩阵的行,竖排叫做矩阵的列. 名称介绍:
①上述三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵,注意行的个数在前。
②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。
③行矩阵:[a 11,a 12](仅有一行)
④列矩阵:⎣⎢⎡⎦⎥⎤
a 11 a 21 (仅有一列)
⑤向量a →
=(x,y ),平面上的点P (x,y )都可以看成行矩阵[,]x y 或列矩阵x y ⎡⎤
⎢⎥⎣⎦
,在本书中
规定所有的平面向量均写成列向量x y ⎡⎤⎢⎥⎣⎦
的形式。
练习1: 1.已知⎥⎦⎤⎢⎣⎡-=243x A ,⎥
⎦
⎤
⎢⎣⎡-=21z y B ,若A=B ,试求z y x ,,
— 2 —
3 —
⎣⎢⎡⎦
⎥⎤80 90 86 88 23324x y x y ++⎧⎨-+⎩简记为23324m ⎡⎤⎢⎥-⎣⎦
2.设23x A y ⎡⎤=⎢⎥⎣⎦,2m n x y B x y m n ++⎡⎤
=⎢⎥--⎣⎦
,若A=B ,求x,y,m,n 的值。
概念二:
由4个数a,b,c,d 排成的正方形数表a b c d ⎡⎤
⎢⎥⎣⎦
称为二阶矩阵。
a,b,c,d 称为矩阵的元素。
①零矩阵:所有元素均为0,即0000⎡⎤
⎢
⎥⎣⎦
,记为0。
②二阶单位矩阵:1001⎡⎤
⎢⎥⎣⎦
,记为E 2.
二、二阶矩阵与平面向量的乘法
定义:规定二阶矩阵A=a b c d ⎡⎤⎢⎥⎣⎦,与向量x y α→⎡⎤=⎢⎥⎣⎦
的乘积为ax by A cx dy α→+⎡⎤
=⎢⎥
+⎣⎦,即A α→=a b c d ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦=ax by cx dy +⎡⎤
⎢⎥+⎣⎦
练习2: 1.(1)⎥
⎦
⎤
⎢⎣⎡⎥⎦⎤⎢
⎣⎡-131021= (2) ⎥⎦
⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-311021=
2.⎥⎦⎤⎢
⎣⎡2101⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡-11,求⎥
⎦
⎤
⎢⎣⎡y x
三、二阶矩阵与线性变换 1.旋转变换
问题1:P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’
为P 在此旋转变换作用下的
象。
其结果为''x x y y ⎧=-⎨=-⎩,也可以表示为''00x x y y x y
⎧=-+⋅⎨=⋅-⎩,即''x y ⎡⎤⎢⎥⎣⎦=1001-⎡⎤⎢⎥-⎣⎦⎥⎦⎤⎢⎣⎡y x =x y -⎡⎤
⎢⎥-⎣⎦怎么算出来的?
问题2. P (x,y )绕原点逆时针旋转30o 得到P ’(x ’,y ’),试完成以下任务①写出象P ’
; ②
写出这个旋转变换的方程组形式;③写出矩阵形式.
问题3.把问题2中的旋转30o
改为旋转 角,其结果又如何?
2.反射变换
定义:把平面上任意一点P 对应到它关于直线l 的对称点P ’
的线性变换叫做关于直线l 的反射。
研究:P (x,y )关于x 轴的反射变换下的象P ’(x ’,y ’
)的坐标公式与二阶矩阵。
3.伸缩变换
定义:将每个点的横坐标变为原来的1k 倍,纵坐标变为原来的2k 倍,(1k 、2k 均不为0),这样的几何变换为伸缩变换。
试分别研究以下问题:
①.将平面内每一点的纵坐标变为原来的2倍,横坐标不变的伸缩变换的坐标公式与二阶矩阵.
②. 将每个点的横坐标变为原来的1k 倍,纵坐标变为原来的2k 倍的伸缩变换的坐标公式与二阶矩阵.
4.投影变换
定义:将平面上每个点P对应到它在直线l上的投影P’(即垂足),这个变换称为关于直线l 的投影变换。
研究:P(x,y)在x轴上的(正)投影变换的的坐标公式与二阶矩阵。
5.切变变换
定义:将每一点P(x,y)沿着与x轴平行的方向平移ky个单位,称为平行于x轴的切变变
换。
将每一点P(x,y)沿着与y轴平行的方向平移kx个单位,称为平行于y轴的切变变换。
研究:这两个变换的坐标公式和二阶矩阵。
练习:P10 1.2.3.4
四、简单应用
1.设矩阵A=
10
01
-⎡⎤
⎢⎥
⎣⎦
,求点P(2,2)在A所对应的线性变换下的象。
练习:P13 1.2.3.4.5
【第一讲.作业】
1.关于x 轴的反射变换对应的二阶矩阵是
2.在直角坐标系下,将每个点绕原点逆时针旋转120o
的旋转变换对应的二阶矩阵是
3.如果一种旋转变换对应的矩阵为二阶单位矩阵,则该旋转变换是
4.平面内的一种线性变换使抛物线2y x =的焦点变为直线y=x 上的点,则该线性变换对应
的二阶矩阵可以是
5.平面上一点A 先作关于x 轴的反射变换,得到点A 1,在把A 1绕原点逆时针旋转180o
,得到
点A 2,若存在一种反射变换同样可以使A 变为A 2,则该反射变换对应的二阶矩阵是
6.P (1,2)经过平行于y 轴的切变变换后变为点P 1(1,-5),则该切变变换对应的坐标公式为
7. 设1
21x A x y ⎡⎤=⎢⎥-⎣⎦,2242z x B x ⎡⎤-=⎢⎥-⎣⎦
,且A=B.则x = 8.在平面直角坐标系中,关于直线y=-x 的正投影变换对应的矩阵为
9.在矩阵1221A -⎡⎤
=⎢
⎥⎣⎦
对应的线性变换作用下,点P(2,1)的像的坐标为 10.已知点A (2,-1),B (-2,3),则向量AB →
在矩阵11202⎡⎤
⎢⎥⎢⎥-⎣⎦
对应的线性变换下得到的向量坐标为
11.向量a →
在矩阵1201A -⎡⎤=⎢⎥
⎣⎦
的作用下变为与向量11⎡⎤
⎢⎥-⎣⎦平行的单位向量,则a →=
12.已知15234A ⎡⎤-⎢⎥=⎢⎥-⎣
⎦,a →=12-⎡⎤⎢⎥⎣⎦,b →=34⎡⎤⎢⎥⎣⎦,
设a b α→→→=+,a b β→→→=-,①求A α→,A β→;
13.已知1012A ⎡⎤=⎢⎥-⎣⎦,a →=11⎡⎤⎢⎥-⎣⎦,b →=1x ⎡⎤⎢⎥
⎣⎦
,若A a →与A b →的夹角为135o
,求x.
14.一种线性变换对应的矩阵为1010⎡⎤
⎢
⎥
-⎣⎦。
①若点A 在该线性变换作用下的像为(5,-5),求电A 的坐标;②解释该线性变换的几何意义。
15.在平面直角坐标系中,一种线性变换对应的二阶矩阵为01
102⎡⎤⎢⎥⎢⎥⎣⎦。
求①点A (1/5,3)在
00(,)P x y 在该变换作用下的像。
3. 360o R
4.00a a ⎛⎫ ⎪⎝⎭
5.1001-⎛⎫ ⎪⎝⎭
6.''
2x x y x y ⎧=⎨=-+⎩ 7.-1 8. 1122 ⎪ ⎪
- ⎪⎝⎭ 9.(0,5) 10.(2,8) 11.2
⎝⎭,2⎛ - ⎝⎭
12.718-⎛⎫ ⎪
-⎝⎭、
194⎛⎫ ⎪-⎝⎭
13.x=2/3 14.(5,y) 15.
1
5
3
2
⎛⎫
⎪
⎪
⎪
⎪
⎝⎭
,
2
o
o
x
y
⎛⎫
⎪
⎪
⎪
⎝⎭。