二元一次方程应用题及答案
- 格式:doc
- 大小:240.50 KB
- 文档页数:9
1、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?2、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。
在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?3.、初三(2)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一节”期间的销售额.4..某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?5用白铁皮做罐头盒,每张铁皮可制成盒身25个,或制盒底40个,一个盒身和两个盒底配成一套罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?6..甲、乙两人从A地出发到B地,甲不行、乙骑车。
若甲走6千米,则在乙出发45分钟后两人同时到达B地;若甲先走1小时,则乙出发后半小时追上甲,求A、B两地的距离。
7、已知关于、的二元一次方程组的解满足二元一次方程,求的值。
8、某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68个,扁担40根,问这个班的男女生各有多少人?9、甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?10、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:行程问题变式1:甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果XXX比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
变式2:两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,水流速度y 千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度是17千米/小时,水流速度是3千米/小时。
类型二:工程问题变式:XXX家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若只选一个公司单独完成,从节约开支的角度考虑,XXX家应选甲公司还是乙公司?请说明理由。
解:略类型三:商品销售利润问题变式1:(2011湖南衡阳)XXX去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,XXX去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:XXX去年甲、乙两种蔬菜各种植了6亩、4亩。
变式2:某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:进价(元/件) | 售价(元/件) |A。
| 1200.| 1380.|B。
| 1000.| 1200.|求该商场购进A、B两种商品各多少件。
最新人教版七年级上册数学二元一次方程应用题及答案汇总1. 问题:某商店购进了20件衣服,每件衣服成本为300元。
商店希望将成本与售价之间的差距控制在4000元以内。
请问商店至少应以多少元的售价出售每件衣服?解答:设每件衣服的售价为x元。
根据题意,售价与成本之间的差距控制在4000元以内,可列出方程:x - 300 ≤ 4000。
解这个不等式可得x ≤ 4000 + 300。
答案:商店至少应以4300元的售价出售每件衣服。
2. 问题:某公司在一年内生产了件产品,已知公司每个月的生产量是上个月生产量的1.5倍。
求这个公司每个月的生产量。
解答:设这个公司每个月的生产量为x件。
根据题意,每个月的生产量是上个月生产量的1.5倍,可列出方程:x = 1.5 * x。
答案:这个公司每个月的生产量为 / 12 = 1500件。
3. 问题:某地区的人口在过去的四年中呈等比增长,第一年的人口是人,第四年的人口是人。
求这个地区每年的人口增长率。
解答:设这个地区每年的人口增长率为r。
根据题意,人口在过去的四年中呈等比增长,可列出方程: * (1 + r)^3 = 。
解这个方程可得r ≈ 0.116。
答案:这个地区每年的人口增长率约为11.6%。
4. 问题:某书店在一次促销活动中卖出了400本书,减价幅度为x元每本,共收入元。
求减价幅度x。
解答:设减价幅度为x元每本。
根据题意,减价后的售价与初始售价之间的差距为x,可列出方程:400 * x = 。
答案:减价幅度为30元每本。
以上是最新人教版七年级上册数学二元一次方程应用题及答案的汇总。
二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。
已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。
为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。
因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。
根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。
二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。
求甲、乙两人的速度。
解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。
根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。
因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。
将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。
完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。
类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。
类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。
列二元一次方程组解应用题专项练习50题(有答案)ok1、已知某铁路桥长800m,火车从开始上桥到完全过桥共用45s,整列火车完全在桥上的时间是35s,求火车的速度和长度。
解:设火车的速度为v,长度为l,则有:l + 800 = vt (火车在桥上的时间)l = v(t-10) (火车在桥上外的时间)联立得:v = 80m/s,l = 2400m。
2、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?解:设用x张铁皮制盒身,y张铁皮制盒底,则有:8x = 22y (每张铁皮做8个盒身或做22个盒底)x = 2y/7190 = 9x + 11y (总共用了190张铁皮)代入得:x = 60,y = 35.3、用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,一个桶身一个桶底正好配套做一个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?解:设用x张铁皮做桶身,y张铁皮做桶底,则有:x + y/8 = 63 (每张铁皮能做1个桶身或8个桶底)代入得:x = 35,y = 224.4、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:货车种类 | 货车辆数(辆) | 累计运货吨数(吨) |甲。
| 2.| 15.5.|乙。
| 5.| 35.|现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,则货主应付运费多少元?解:设甲、乙两种货车每辆运输的吨数分别为x、y,则有:2x + 5y = 50 (过去两次租用的情况)3x + 5y = 70 (现在租用的情况)联立得:x = 10,y = 8.应付运费为:(15.5+35) * 30 = 1650元。
5、某工厂第一季度生产甲、乙两种机器共480台,计划第二季度生产这两种机器共554台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?解:设第一季度甲、乙两种机器分别生产x、y台,则有:x + y = 4801.1x + 1.2y = 554 (第二季度计划生产的情况)联立得:x = 280,y = 200.6、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?解:设种茄子的亩数为x,种西红柿的亩数为y,则有:x + y = 252600x + 2600y = - 1700x - 1800y (总花费为元)联立得:x = 10,y = 15.总获纯利为:2600 * 10 + 2600 * 15 = 元。
二元一次方程组应用题1、一名学生问老师:“您今年多大?”老师说:“我像你这样大时,你才出生;你到我这么大时,我已经37岁了。
”问:老师、学生今年多大了。
2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元((1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
第八章二元一次方程(组)解应用题(含答案)1缉私艇与走私艇相距 120海里的同一航道上航行,如果走私艇与缉私艇同时相向而行,则2小时缉私艇即可将走私艇截住;如果走私艇与缉私艇同时同向而行,则缉私艇需12小时才能追上.问走私艇与缉私艇的速度分别是多少?1. 解:设走私艇的速度是 x海里/时,缉私艇的速度是 y海里/时,由题意得:[2(x+y)=120[12 (y- K)-120,解得卜,辽(y=35答:走私艇的速度是 25海里/时,缉私艇的速度是 35海里/时2. 甲、乙两人从 A , B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条直线公路相向匀速行驶.出发后经 3小时两人相遇.已知在相遇时乙比甲多行驶了90千米,相遇后经1小时乙到达A地.(1)问甲、乙行驶的速度分别是多少?(2)甲、乙行驶多少小时,两车相距30千米?2. 解:(1)设甲、乙行驶的速度分别是每小时 x 千米、y千米,根据题意,得’,ir v-i & 解得….(y=45所以甲、乙行驶的速度分别是每小时15千米、45千米;(2)由第(1)小题,可得 A , B两地相距45X( 3+1) =180 (千米).设甲、乙行驶x小时,两车相距 30千米,根据题意,得两车行驶的总路程是(180- 30)千米或(180+30)千米,则:(45+15) x=180 - 30 或(45+15) x=180+30 .解得:戸|或疋所以甲、乙行驶"或—小时,两车相距 30千米2 23. 小明家离学校1.8千米,其中有一段为上坡路,另一段为下坡路.如果小明在上坡路的平均速度为3千米/时,而在下坡路上的平均速度为5千米/时,那么从家里到学校共用了32 分钟.求小明上坡、下坡各用了多长时间?3. 解:32分钟小时,15设小明上坡用了 x小时,下坡用了(亠-x)小时,由题意,得15]3x+5 (一-x) =1.8,解得:x=90 y=304. A 、B 两地相距20千米.甲乙两人同时从 A 、B 两地相向而行,经过 2小时后两人相遇, 相遇时甲比乙多行 4千米•根据题意,列出两元一次方程组,求出甲乙两人的速度. 4•解:(1设甲的速度为 x 千米/时,乙的速度为 y 千米/小时,由题意得,(2s+2y=20(2K - 2y=4,解得:|{二.答:甲的速度为6千米/时,乙的速度为4千米/小时5.长春至吉林现有铁路长为 128千米,为了加快长春与吉林的经济一体化发展,有关部门决定新修建一条长春至吉林的城际铁路,城际铁路全长96千米•开通后,城际列车的平均速度将为现有列车平均速度的 2.25倍,运行时间将比现有列车运行时间缩短 芒小时.求城际3列车的平均速度.5.解:设现有列车的平均速度为x 千米/小时,现在列车的运行时间为y 小时.xy=1282.药小(y- -|) =96,卜二內4解得 :.64X2.25=144 千米 /小时.城际列车的平均速度 144千米/小时6•甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行, 1小时20分后相遇•相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?[解得:x=「,则下坡所用时间为:答:小明上坡用了 鱼左』=丄15 30"10'小时1CI—小时,下坡用了306. 解:设汽车的速度是[■| (x+y) =160丄』 ,x 千米每小时,拖拉机速度 y 千米每小时,根据题意得:则汽车汽车行驶的路程是: (一+_) >90=165 (千米),3 2拖拉机行驶的路程是:(一+卫)>30=85 (千米).冈2答:汽车、拖拉机从开始到现在各自行驶了165千米和85千米7.—列客车长200 m ,一列货车长280 m ,在平行的轨道上相向行驶,从两车头相遇到两 车尾相离经过16s,已知客车与货车的速度之比是 3: 2,问两车每秒各行驶多少米? 7.解:设客车的速度是每秒x 米,货车的速度是每秒 -x 米.由题意得(x+Zx ) >6=200+280 ,3解得x=18.答:两车的速度是客车 18m/s ,货车12m/s& A 、B 两地相距36千米•甲从A 地出发步行到B 地,乙从B 地出发步行到 A 地•两人 同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的 2倍•求两人的速度.&解:设甲的速度是 x 千米/时,乙的速度是y 千米/时. 「4 (x+yj =36 (36-內0 二2 (36-6y)解得: 答:甲的速度是4千米/时,乙的速度是5千米/时9•从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走 3km ,平路每小时走4km ,下坡每小时走 5km ,那么从甲地到乙地用 54分钟,从乙地到甲地用 42分钟,甲地到 乙地的全程是多少?xkm ,平路为ykm ,/• x+y=3.1km ,答:甲地到乙地的全程是 3.1km 10•甲、乙分别自 A 、B 两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速 度都提高了 1千米/小时,当甲到达B 地后立刻按原路向 A 地返行,当乙到达A 地后也立刻由题意得:9•解:设从甲地到乙地的上坡路为解之得宙1・5 ]尸1花按原路向B 地返行,甲、乙二人在第一次相遇后 3小时36分又再次相遇,则 A 、B 两地的距离是多少?10•解:设甲的速度为 x 千米/时,乙的速度为y 千米/时, 可得:x+y=18 A 、B 两地的距离=2 (x+y) =2 XI8=36 答:A 、B 两地的距离是36千米11 •某班同学,从学校出发步行到某地搞军训活动,如果每小时走 6km ,则可提前10min到达目的地;如果每小时走 5km ,则比预定时间迟到 18min ,问:学校到某地有多远预定到达时间是多少?11 •解:设学校到某地 x 千米•预定到达时间是 y 小时.$(厂”I 5吨)=/解得.*1° •故学校到某地14千米•预定到达时间是 2.5小时 12.甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20km ,那么甲用1小时就能追上乙;如果乙先走 1小时,那么甲只用15分钟就能追上乙,求甲、乙二人 的速度.12 •解:设甲的速度是 x 千米/时,乙的速度为y 千米/时, 答:甲的速度是25千米/时,乙的速度为5千米/时13.甲,乙两人相距15千米,如果两人同时相向而行,过 1小时30分相遇;如果乙向相反方向走,甲同时追赶,经过 7小时30分可以追上,求甲,乙二人的速度各是多少.13.解:设甲,乙二人的速度是 x 千米/小时和y 千米/小时.fl. 5K +1. 5y=157.由题意得,x=20+y0.25s= (141X25)y由题意可得:答:甲,乙二人的速度是 6千米/小时和4千米/小时14、在某条高速公路上依次排列着A B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米•分别在A C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A C两个加油站驶去,结果往 B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上. 问巡逻车和犯罪团伙的车的速度各是多少?14、解:设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,则3 x y 120 x y 40 x 80,整理,得y ,解得,x y 120 x y 120 y 40答:巡逻车的速度是 80千米/时,犯罪团伙的车的速度是 40千米/时.15、悟空顺风探妖踪,千里只行四分钟.归时四分行六百,风速多少才称雄?15、解:设悟空飞行速度是每分钟x里,风速是每分钟 y里,依题意得 4(x+y)=10004(x-y)=600 x=200 y=5016. 某列火车通过450米的铁桥,从车头上桥到车尾下桥, 度穿过760米长的隧道时,整列火车都在隧道里的时间是分别是多少?16. 解:设火车长为x米,火车的速度为 y米/秒,33y=x + 45022y=760 — xX=276 「解方程组得:[y=22答:火车长276米,速度为22米/秒. 共33秒,同一列火车以同样的速22秒,问这列火车的长度和速度。
- 1 - 北师大版八年级二元一次方程应用题1、一个校办工厂购进了5立方米的木材,厂长决定构成方桌销售,已知一张方桌由一个桌面和4个桌腿做成,经试验发现1立方米木材可以做成50张桌面或者桌腿300个,问工厂能做多少张方桌?2、某人用有机肥给玉米施肥,如果每亩施10千克,就缺200千克;如果每亩施8千克,又剩余300千克,问该人有多少亩玉米?又有多少千克有机肥?(1公顷=15亩)3、古题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空”。
问:有多少间房?多少客人?4、某工厂去年的总产值比总支出多500万元,而今年计划的总产值比总支出多950万元,已知今年计划的总产值去去年增加15%,而计划总支出比去年减少10%,求今年计划的总产值和总支出各为多少?5、某商场购进商品后,加价40%作为销售价,商场搞优惠促销,决定甲、乙两种商品分别打七折和九折销售,某顾客购买甲、乙两种商品,共付款399元,这两种商品原销售价之和为490元,问:这两种商品的进价分别是多少元?6、某同学的父母用甲、乙两种形式为其存储了一笔教育准备金10000元,甲种年利率为2.25%,乙种年利率为2.5%,一年后,这名同学得到本息和共10242.5元,问其父母为其存储的甲、乙两种形式的教育准备金各多少元?7、某间寺庙有大小和尚共100人,在一顿午餐中一个大和尚一人能吃掉三个馒头,三个小和尚一起才吃掉一个馒头。
现知道这顿午餐共计吃掉100个馒头,问这间寺庙大和尚多少人?小和尚多少人?8、由甲、乙两种铜与银的合金,甲种含银25%,乙种含银37.5%,现在要溶成含银30%的合金100千克,两种合金各取多少千克?9、在某校举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分,某班足球队参加了12场比赛,共得22分,已知这个队只负了2场,那么这个队胜了几场?平了几场?10、某体育场的一条环形跑道长400m ,甲乙两人从跑道上同一地点出发,分别以不变的速度练习长跑和骑自行车,如果背向而行,每隔1/2分钟他们相遇一次;如果同向而行,每隔4/3乙就追上甲一次。
1:某校为同学们安排宿舍。
若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住4人,且两间宿舍没人住。
求该年级同学人数和宿舍间数。
(解:设年级人数是x人,宿舍是y人)解:设年级人数是x人,宿舍是y人)5y-x=-46(y-2)-x=2解这个方程组得:y=18x=942:用A、B两种原料配制两种油漆,已知甲种油漆含A、B两种原料之比为5:4,每千克50元,乙种油漆含A、B两种原料之比为3:2,每千克48.6元,求A、B两种原料每千克的价格分别是多少元。
(解:设A种原料每千克x元,B种原料每千克y元)5÷9×x+4÷9×y=503÷5×x+2÷5×y=48.6化简方程组得:5x+4y=4503x+2y=243解这个方程组得:x=36y=67.53:甲、乙两地相距24千米,公共汽车和直达快车在8:45从甲、乙两地相向开出,这两辆车都在8:52到达中途A处。
有一次,直达快车晚开8分钟,两车则在8:58相遇途中B处,求这两车的速度。
(解:设直达快车每小时x千米,公共汽车每小时y千米)7÷60×x+7÷60×y=2413÷60×y+5÷60×x=244.要用含药30%和75%的两种防腐药水,配制含药50%的防腐药水18千克,两种药水各需取多少千克?(解:设含药30%的药水x千克,含药75%的药水y千克)x+y=1830%有效成分=x×30%75%有效成分=y×75%50%有效×成分=18×50%所以30%x+7×5%=18×50%0.3x+0.75y=9x+y=180.3x+0.3y=5.4所以0.75y-0.3y=9-5.40.45x=3.6x=8y=10所以30%取8千克,75%取10千克5.一列快车长70千米,慢车长80千米,若两车同时相向而行,快车从追上慢车到完全离开慢车为20秒,若两车相向而行,则两车从相遇到离开时间为4秒,求两车每小时各行多少千米。
利用二元一次方程组解简单的应用题1、李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息元。
已知这两种储蓄的年利率的和为%,问这两种储蓄的年利率各是多少(注:公民应交利息所得税=利息金额 20%2、某班学生参加义务劳动,男生全部挑土,女生全部抬土,这样安排恰需筐68个,扁担40根,问这个班男生、女生各有多少人3、甲、乙两人做加法,甲将其中一个加数后面多写了一个0,所以得和是2342,乙将同一个加数后面少写了一个0,所得和是65,求原来的两个加数。
4、甲、乙2个工人同时接受一批任务,上午工作的4小时中,甲用了小时改装机器以提高工效,因此,上午工作结束时,甲比乙少做40个零件;下午2人继续工作4小时后,全天总计甲反而比乙多做420个零件,问这一天甲、乙各做多少个零件5、去年甲、乙两车间计划共完成税利150万元,由于技术革新,生产效率大幅度提高,结果甲车间超额完成税利110%,乙车间超额完成税利120%,两车间一共上缴税利323万元,问甲、乙车间实际上缴税利多少万元6一列快车长168米,一列慢车长184米,如果两车相向而行,那么两车错车需4秒,如果同向而行,两车错车需16秒钟,求两车的速度。
7、甲、乙两人分别以均匀的速度在周长为600米的圆形轨道上运动,甲的速度较快,当两人反向运动时,每15秒钟相遇一次;当两人同向运动时,每1分钟相遇一次,求各人的速度。
8、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元。
该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨,受人员限制,两种加工方式不可同时进行。
受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕。
为此,该厂设计了两种方案:方案一:尽可能多的制成奶片,其余直接销售鲜奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。
你认为选择哪种方案获利最多,为什么9、甲、乙两人不知其年龄,只知道甲像乙现在的年龄时,乙只有2岁,又知等乙长到甲现在这么大时,甲已经是38岁了,问甲、乙现在的年龄各是多少10、某校为初一年级学生安排宿舍,若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住了4人,且空两间宿舍,求该年级寄宿生人数及宿舍间数。
11、4辆小车和7辆大车一次运货38吨,5辆小车和6辆大车一次运货吨,问一辆小车和一辆大车一次各运货多少吨12、两地相距280千米,一艘轮船在其间航行,顺流用14小时,逆流用20小时,求这艘轮船在静水中的速度和水流速度。
13、某无线电厂原计划上月生产A型电视机和B型电视机共3600台,由于订货量增加,该厂挖掘生产潜力,上月A、B两种型号的电视机共生产4240台,其中A型电视机完成了原计划的116%,B型电视机完成了原计划的120%,问上月两种电视机各比原计划超额了多少台14、有一只驳船,载重500吨,容积705立方米,现在要运生铁和棉花两种货物,生铁每吨体积立方米,棉花每吨体积4立方米。
生铁和棉花各装多少吨才能充分利用船的载重量与容积15、永盛电子有限公司向工商银行申请了甲乙两种贷款,共计68万元,每年需付出利息万元。
甲种贷款每年的利息是12%,乙种贷款每年的利率是13%,求这两种贷款的数额各是多少16、甲、乙两种商品,如果购买甲3件、乙7件共需27元,如果购买甲商品40件、乙商品50件,则可以按批发价计算,共需付189元,已知甲商品每件批发价比零售价低元,乙商品每件批发价比零售价低元。
问甲、乙两种商品的批发价各是多少元17、两个商店以100元的相同价格进同一种商品。
甲店以30%的利润加价出售,乙店以20%的利润加价出售,结果乙店销售的件数是甲店的2倍,且总利润比甲店多4000元。
问甲、乙两店各售出多少件商品18、一个三位数是一个两位数的3倍,把三位数放在两位数的左边得到一个五位数;再把三位数放在两位数的右边又得到一个五位数,并且较大的一个五位数比较小一个五位数的2倍多22456,求此三位数和两位数。
19、有一水库,在单位时间内有一定量的水流进,同时也向外放水,按现在的进出水量,水库中的水可使用40天,因最近在水源的地方降雨,流入水库的水量增加20%,如果放水量增加10%,则仍可使用40天,如果按原来的放水量放水,可使用多少天20、甲骑摩托车每小时行40千米,乙骑机动脚踏车每小时行20千米,上午七时他们从相距140千米的A,B同时出发。
(1)相向而行,在什么时刻相距20千米(2)同向而行,什么时刻他们相距20千米。
答案:1解:设存2000元的这种储蓄的年利率是x ,存1000元的这种储蓄的年利率是y ,根据题意得:⎩⎨⎧=-⨯+=+92.43%)201()10002000(%24.3y x y x 解这个方程组得:⎩⎨⎧==0099.00225.0y x 答:存2000元的这种储蓄的年利率是%,存1000元的这种储蓄的年利率是%。
2解:设这个班有男生x 人,女生y 人,根据题意得:⎪⎪⎩⎪⎪⎨⎧=+=+4026822y x y x解这个方程组得:⎩⎨⎧==2428y x 答:这个班有男生28人,女生24人3解:设两个加数分别为x 和y ,其中两人都看错的加数为y ,根据题意得:⎪⎩⎪⎨⎧=+=+65101234210y x y x 解这个方程组得:⎩⎨⎧==23042y x 4解:设甲每小时加工x 个零件,乙每小时加工y 个零件,则甲一天做x )5.28(-个零件,乙一天做y 8个零件。
根据题意得:⎩⎨⎧+=-=+-4208)5.28(440)5.24(y x y x 解这个方程组得:⎩⎨⎧==85200y x 则 11000)5.28(=-x , 6808=y答:这一天甲做了11000个零件,乙做了680个零件。
5解:设去年甲车间计划完成税利x 万元,乙车间计划完成税利y 万元,则实际甲车间完成税利x %)1101(+万元,乙车间完成税利根据题意得:⎩⎨⎧=+++=+323%)1201(%)1101(150y x y x 解这个方程组得:⎩⎨⎧==8070y x 则 147%)1101(=+x , 176%)1201(=+y6解:设快车的速度是x 米/秒,慢车的速度为y 米/秒,根据题意得:⎩⎨⎧+=-+=+184168161618416844y x y x 解这个方程组得:⎩⎨⎧==3355y x 答:快车的速度是55米/秒,慢车的速度为33米/秒。
7解:设甲的速度是x 米/秒,乙的速度是y 米/秒,根据题意得:⎩⎨⎧=-=+60060606001515y x y x 解这个方程组得:⎩⎨⎧==1525y x 答:甲的速度是25米/秒,乙的速度是15米/秒。
8解:方案一:总利润=10500500)49(20004=⨯-+⨯元。
方案二:设4天内加工酸奶x 吨,加工奶片y 吨,则总利润为y x 20001200+元,根据题意得:⎪⎩⎪⎨⎧=+=+4139y x y x 解这个方程组得:⎩⎨⎧==5.15.7y x 则 1200020001200=+y x因为方案一的总利润<方案二的总利润所以选择方案二获利更多。
答:选择方案二获利更多。
9解:设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据题意得:⎩⎨⎧-=--=-x y x y y x 382 ⎧=26x答:甲现在的年龄是26岁,乙现在的年龄是14岁。
10解:设该年级寄宿生x 人,宿舍y 间,根据题意得:⎩⎨⎧=+-=+xy x y 4)3(645 解这个方程组得:⎩⎨⎧==1894y x 答:该年级寄宿生94人,宿舍18间11、解:设一辆小车一次运货x 吨,一辆大车一次运货y 吨,根据题意得: ⎩⎨⎧=+=+5.36653874y x y x 解这个方程组得: ⎩⎨⎧==45.2y x 答:一辆小车一次运货吨,一辆大车一次运货4吨。
12、解:设轮船在静水中的速度为x 千米/小时,水流速度为y 千米/小时,根据题意得: ⎩⎨⎧=-=+280)(20280)(14y x y x 解这个方程组得: ⎩⎨⎧==317y x 答:轮船在静水中的速度为17千米/小时,水流速度为3千米/小时。
13、解:设上月原计划A 型电视机生产x 台,B 型电视机生产y 台,则A 型电视机比原计划超额x )1%116(-台,B 型电视机比原计划超额y )1%120(-台。
根据题意得: ⎩⎨⎧=+=+4240%120%1163600y x y x 解这个方程组得: ⎩⎨⎧==16002000y x 则 320)1%116(=-x 320)1%120(=-y答:A 型电视机比原计划超额320台,B 型电视机比原计划超额320台。
14、解:设生铁x 吨,棉花y 吨,根据题意得: ⎩⎨⎧=+=+70543.0500y x y x ⎧=350x答:生铁350吨,棉花150吨。
15、解:设甲种贷款x 万元,乙种贷款y 万元,根据题意得: ⎩⎨⎧=+=+42.8%13%1268y x y x 解这个方程组得: ⎩⎨⎧==2642y x 答:甲种贷款42万元,乙种贷款26万元。
16、解:设甲商品的批发价为x 元,乙商品的批发价为y 元,根据题意得: ⎩⎨⎧=+=+++189504027)5.0(7)4.0(3y x y x 解这个方程组得: ⎩⎨⎧==5.26.1y x 答:甲商品的批发价为元,乙商品的批发价为元。
17、解:设甲店售出x 件商品,乙店售出y 件商品,根据题意得:⎩⎨⎧⨯=+⨯=y x x y 100%204000100%302 解这个方程组得: ⎩⎨⎧==800400y x 答:甲店售出400件商品,乙店售出800件商品。
18、解:设这个三位数是x ,两位数是y ,根据题意得: ⎩⎨⎧+=++=xy y x y x 100022456)100(23 解这个方程组得:⎩⎨⎧==56168y x 答:这个三位数是168,两位数是56。
19、解:设水库原来每天进水量为a 立方米,原来每天出水量为x 立方米,则水库原有存水)(40a x -立方米,按原放水量可用ax a x %)201()(40+--天。
根据题意得: ]%)201(%)101[(40)(40a x a x +-+=-则 a a x 40)(40=-50%)201()(40=+--ax a x 答:如果按原放水量放水,可使用50天。
20、解:(1)情况一:两人相遇前,还相距20千米, 设x 小时后,即y 时刻两人相距20千米, 根据题意得:⎩⎨⎧=+++=1402020407x x x y 解这个方程组得: ⎩⎨⎧==92y x 情况二:两人相遇后,又相距20千米, 根据题意得:⎩⎨⎧+=++=2014020407x x x y 解这个方程组得: ⎪⎪⎩⎪⎪⎨⎧==32938y x 答:上午9点或是上午9点40分两人相距20千米。