微电子器件(2-6)
- 格式:ppt
- 大小:544.50 KB
- 文档页数:16
MOSFET 的直流参数饱和漏极电流I DSS截止漏极电流通导电阻R on栅极电流I GN 沟MOSFET 阈电压具有负温系数,P 沟道MOSFET 的阈电压具有正温系数。
MOSFET 有较好的温度稳定性MOSFET 的击穿电压1、漏源击穿电压BV DS2、栅源击穿电压BV GS MOSFET 的温度特性漏PN 结雪崩击穿漏源两区的穿通{{{实际上当饱和后,g m 会有所下降,原因是:•栅源电压的影响•漏源电压的影响•漏区与源区串联电阻的影响•详细请见《晶体管原理》刘永,国防工业出版社}迁移率下降说明g m 一般为几~ 几十毫西门子。
以V GS 作为参变量的g m ~ V DS特性曲线提高g的方法m从器件制造角度9增大沟道的宽长比(Z/L)9提高栅电容(减小介质结厚度、提高介电系数)9提高载流子迁移率μ从器件使用角度9提高栅源电压VGS以VGS 为参变量的gds~ V DS特性曲线在理想情况下,(gds)sat等于零实际上( gds)sat 略大于0 。
原因:I Dsat随着V DS 的增加而略微增大¾有效沟道长度调制效应怎样解释实际上( g ds )sat 略大于0?¾漏区静电场对沟道区的反馈作用¾……本章学完后自行补充!实际上使用( g ds )sat 尽量小。
降低( g ds )sat 的措施与降低有效沟道长度调制效应等的措施是一致的。
二、MOSFET 的小信号高频等效电路1 、一般推导本征MOSFET的共源极小信号高频等效电路为推导过程见书p225-230简单推导(补充)将MOSFET也看成一个双端网路先考虑低频情形输入端:从栅和接地的源/衬底的输入端口看,相当于一个电容,其行为类似开路电路,故低频可认为输入端开路。
由此,根据输出端的电流关系dsds gs m d v g v g i +=以及输入端开路,得到低频信号等效电路C gs 、C gd 分别是源极和漏极与栅极之间的电容,体现了栅极对源、漏附近的沟道电荷以及电流的控制作用,是本征电容C gsp 、C gsd 是寄生或交叠电容(即本书的C ′gs 与C ′gd )C ds 是漏-衬底pn 结电容r s 、r d 是和源、漏极有关的串连电阻g m :跨导,将输入输出联系起来进一步考虑其物理模型,可以得到各种情况下所需的等效电路3、寄生参数加上寄生参数后的饱和区等效电路如下:实际MOSFET 中的寄生参数有源极串联电阻R S 、漏极串联电阻R D 、栅极与源、漏区的交迭电容C ′gs 、C ′gd 以及C ′ds 。
电子科技大学2016年攻读硕士学位研究生入学考试试题考试科目:832 微电子器件注:所有答案必须写在答题纸上,写在试卷或草稿纸上均无效。
一、填空题(共44分,每空1分)1、PN结的内建电势也称为扩散电势,是指耗尽区中从()处到()处的电位差。
掺杂浓度越高,内建电势将越()。
2、根据耗尽近似和中性近似,在PN结势垒区内,()已完全耗尽;而在势垒区之外,()浓度等于电离杂质浓度,维持电中性。
3、在相同的电场强度和温度下,锗材料和硅材料相比较,碰撞电离率更高的是(),其原因是它的()更小。
4、在计算实际PN结的雪崩击穿电压或势垒电容时,如果结两侧掺杂浓度相差较小,浓度梯度较小,而结深较大时,则可将其近似为()结求解。
5、温度升高时,PN结的齐纳击穿电压会(),因为()随温度升高减小了。
6、一个PN结二极管在制备完成后对其进行了电子辐照,该二极管的反向恢复时间将(),原因是电子辐照在半导体中引入了()。
7、当PN结的正向电流增大时,其直流增量电阻会(),扩散电容会()。
(填“变大”,“变小”或“不变”)8、双极型晶体管的基区宽度越小,其共发射极增量输出电阻越(),厄尔利电压越()。
(填“大”或“小”)9、双极型晶体管的发射结注入效率是指()电流与()电流之比。
10、双极型晶体管的基区发生大注入时,由于基区载流子浓度急剧增加,其发射结注入效率γ会();同时,和PN结大注入相类似,基区内会发生()效应。
11、高频双极型晶体管的工作频率范围一般在:()< f <()。
12、双极型晶体管的高频优值是指()与()的乘积。
13、小电流时,双极型晶体管的电流放大系数会下降,这是由于()在()中所占的比例增加所引起的。
14、MOS结构中,半导体的表面势是指从()到()的电势差。
一般来说,实际MOS结构的表面势是()零的,这主要是由于()以及()所引起。
(第三个空填“>”、“<”或“=”)15、为了降低栅氧化层电荷的影响,MOSFET通常会采用()晶面来制作。
均匀基区相关知识点I pEI pCI prI nEI nr相关公式β∗W B2 τb =1− =1− 2 2 LB τBD EW B N B WBρE γ = 1− D W N = 1− W ρ B E E E B⎛ W B2 α =⎜ ⎜1 − 2 L2 B ⎝2 B 2 BR口E = 1− R口B1⎞⎛ R口E ⎞ W B2 R口E ⎟ ⎟⎜ ⎟ ≈ 1 − 2 L2 − R ⎜1 − R ⎟ 口 B1 ⎠ B 口 B1 ⎠⎝⎛W R口E ⎜ β ≈⎜ + R口B1 ⎝ 2L⎞ ⎟ ⎟ ⎠−1§3-3 缓变基区晶体管的放大系数以NPN 管为例,结电压为 VBE 与 VBC 。
现代晶体管,如双扩散外延平面管 属缓变基区晶体管,由于载流子在 基区主要是以漂移运动在传输,故 它又称为 漂移晶体管。
N+0PN杂质浓度分布图:x jE x jCWB = x jC − x jEN E ( x) N B ( x)NC0x jE x jCx1、基区内建电场的形成与求解 形成的物理机理(以P型基区的Xmb-Xjc段为例)xjE 和xjC为发射结 和集电结结深, xmB为杂质补偿后 基区净杂质浓度 的极值位置杂质浓度高的地方留下不 可移动的电离杂质电荷 (NA-),杂质浓度低的地 方积累多子(空穴)杂质(NA) 浓度梯度杂质电离多子(空 穴) 浓度梯度多子(空 穴) 扩散正负电荷 分离内建电场内建电场的作用 漂移晶体管电场方向:指向发射结 加速场 电场作用: 基区的少子(电子) 向集电结方向漂移运 动,对少子有加速作用 向发射结方向漂移运动, 抵消多子扩散运动 多子电流等于零基区的多子(空穴)xjE到xmB段,将产生一个与EB方向相反的自建电场EB’,它将阻止 基区中少子(电子)流向集电结,称阻滞电场,该部分基区称阻 滞区。
一般情况下,相对与整个基区而言,阻滞区很窄,一般可以忽略。
请从以下几方面总结半导体器件中的内建电场① 掺杂不均匀产生的内建电场 ~ 产生机理? 对多数载流子运动的影响? 对少数载流子运动的影响? ② 大注入产生的内建电场 ~ 产生机理? 对多数载流子运动的影响? 对少数载流子运动的影响 ? ③ p-n结中的内建电场 ~ 产生机理? 势垒区(阻挡层)→阻挡多数载流子还是阻挡少数载流子? 耗尽层近似?→ 耗尽什么种类的载流子?三个内建电场形成机理的比较内建电场种类形成原因 P区与N区刚接触 时冶金结两边存 在自由载流子浓 度差 大注入时中性区 多子具有浓度梯 度分布电荷分离的表现形式 冶金结两边自由载流子扩散,留下不 可移动的电离施主和受主杂质电荷在 空间上分离 多子与少子同时扩散,但由于多子扩 散得不到补充,最终使得靠近耗尽区 少子浓度高于多子浓度,远离耗尽区 边界少子浓度低于多子浓度,最终多 子与少子电荷在空间上分离 多子浓度扩散,使得靠近发射结耗尽 区的电离杂质电荷高于多子,靠近集 电结耗尽区的电离杂质电荷低于多 子,造成电离杂质电荷与多子电荷在 空间上分离作用 载流子的扩散运 动等于漂移运动PN结空间电 荷区内建电 场 大注入PN结 中性区中的 内建电场 (自建场) 缓变基区BJT 中基区内建 电场多子的扩散运动 与漂移运动抵 消,加强少子扩 散运动 多子的扩散运动与 漂移运动抵消,少 子在基区以漂移运 动为主掺杂原子具有浓 度梯度,多子具 有相同的浓度梯 度分布基区内建电场表达式的推导 设基区杂质浓度分布为:NB (0)NB (x)⎛ ηx ⎞ N B ( x ) = N B ( 0 ) exp ⎜ ⎜− W ⎟ ⎟ B ⎠ ⎝ 式中 η 是表征基区内杂质变化程度的一个参数:NB (WB )0WBxN B (W B ) = N B ( 0 ) exp (− η )N B (0) η = ln N B (W B )当 η = 0 时为均匀基区。
V D I D③沟道内的载流子迁移率为常数。
④采用强反型近似,即认为当表面少子浓度达到体内平衡多子浓度时沟道开始导电。
)(,inv S S φφ=也即⑤Q OX 为常数,与能带的弯曲程度无关,将Q OX 等价于在氧化层-半导体界面处的电荷密度。
后,沟道内产生横向电场dV E y −=dyy dV y x n )(),(b(y)分别为沟道长度、沟道宽度与沟道厚度b(y)b(y)dV在强反型时(V G > V T ),沟道中有大量的反型载流子(电子)反型载流子(电子)对来自栅电极的纵向电场起到屏蔽作用¾能带的弯曲程度几乎不再随V G 增大¾表面势φS 也几乎维持φS,inv 不变。
2、沟道电子电荷面密度Q n (y)3、求强反型表面势φS,inv (y )和Q A (y)当外加V D ( > V S ) 后,沟道中将产生电势V ( y ) 。
V (y ) 随y 而增加,考虑到衬底加有反向偏压-V B ,则在y 处的总反偏压为y zx()BV y V −I DI DsatV DSV Dsat当VDS>V D sat后,简单的处理方法是从抛物线顶点以水平方向朝右延伸出去。
以不同的VGS 作为参变量,可得到一组ID~ V DS曲线,这就是MOSFET的输出特性曲线。
课堂作业某N沟道MOSFET的VT= 1V,β= 10-3AV -2,求当VGS = 4V ,而VDS分别为2V、3V、4V 时的漏极电流之值。
答案:4 mA、4.5 mA、4.5 mA因此)()(T G T G OX n V V V V C Q ≥−−≅MOS 电容整个背面接地,而MOSFET 背面“极板”电势则从源端V S 变化到漏端的V D ,如图所示,MOSFET 可比作电阻型平板电容,在源端两极间电势差为V G -V S ,漏端为V G -V D ,任一点y 处为V G -V(y),于是)())(()(T G T G OX n V V y V V V C y Q ≥−−−≅长沟模型当V DS > V Dsat 后,沟道中满足V = V Dsat 和Q n = 0 的位置会怎么变化呢?已知当V DS = V Dsat 时,V (L ) = V Dsat ,Q n (L ) = 0 。
双基极条:Se Sb C d rbb′ = R口B1 + R口B 2 + R口B 3 + Ω 12l 2l 6l 2lS b圆环行基极:rbb′dB 4C Ω 1 1 = R口 B 1 + ln R口 B 2 + 2 8π 2π S e π ( d S2 − d B )降低 rbb’ 的措施: (1)减小 R口B1 与 R口B2 ,即增大基区掺杂与结深, 但这 会降低 β ,降低发射结击穿电压与提高发射结势垒电容。
(2)无源基区重掺杂, 以减小 R口B3 和 CΩ 。
(3)减小 Se 、Sb 与 d ,增长 L , 即采用细线条,并增加 基极条的数目, 但这受光刻工艺水平和成品率的限制。
§3-7 电流放大系数与频率的关系随着频率的增加, BJT的电流放大系数会怎么变化? 为什么?β3dBα = 20lg α ( dB )6分贝/ 倍频电流放大系数( dB) 0β02αβ =1α023dBfβfT fαf课堂练习如果忽略两个空间电荷区的复合产生电流,说 明直流电流在晶体管内部的传输过程中有哪些 电流损失?直流电流在BJT中的传输过程(NPN)• 发射极电流由发射结注入到基区,通过基区输运到集电 结,被集电结收集形成集电极输出电流 • 发射极电流传输过程的电流损失(对理想情况):1.与 发射结反向注入电流的在发射区复合;2.输运到基区的 少子电流与基极多子电流在基区的复合。
下面定性分析交流电流在晶体管内部的传输过程损失请画出二极管的交流等效电路图P区NApp0 NAND+N区ND+ nn0课堂练习请说明工作于正偏模式BJT 时存在的电容工作于正偏模式BJT 中的电容 发射结扩散电容:CDeN P集电结扩散电容:CDcN发射结势垒电容:CTe集电结势垒电容:CTc一、高频小信号电流在晶体管中的传输过程(NPN)直流情况下的两种损耗仍然存在发射过程当发射极输入一交变信号时,交变信号将叠加在直流上作用 于发射结上,发射结的空间电荷区宽度将随着信号电压的变 化而改变,因此需要一部分电子电流对CTe进行充放电。
微电子器件公式: 部分物理常数:191412S 1031412G i S 13314G i O X 1.610C,0.026V (300k ),(Si)11.88.854101.04510F cm ,(Si) 1.09eV ,(Si) 1.510cm,(G e)168.854101.41710F cm ,(G e)0.66eV ,(G e)2.410cm ,3.98.854103.45q kT q T E n E n εεε--------=⨯===⨯⨯=⨯==⨯=⨯⨯=⨯==⨯=⨯⨯=13310F cm-⨯第1章 半导体器件基本方程 1. 泊松方程D A sd ()d E qp n N N xε=-+-2. 电流密度方程n nnp ppd d d d nJ q n E q D x p J q p E q D xμμ=+=-3. 电荷控制方程n nn n p pp pd d d d Q Q I t Q Q I tττ∆=--∆=--第2章 PN 结 2.1 PN 结的平衡状态1.平衡多子p 0A in 0D i ()p Nn n N n =>>=>>P 区(N 区)2.平衡少子22iip 0i p 0A 22iin 0in0D()n n n n P p N nnp n n N ==<<==<<区(N 区)3.内建电势 A Dbi 2ilnN N kT V qn =4.最大电场强度 120maxb i s 2qN E V ε⎛⎫= ⎪⎝⎭5.N 区耗尽区宽度 12s s An maxbi DD A D 2()N xE V qN q N N N εε⎡⎤==⋅⎢⎥+⎣⎦6.P 区耗尽区宽度 12s s D p maxbi AA A D 2()N x E V qN q N N N εε⎡⎤==⋅⎢⎥+⎣⎦7.总耗尽区宽度 12b is d n p b i ma x 022V x x x V E qN ε⎡⎤=+==⎢⎥⎣⎦2.2 PN 结的直流电流电压方程1.在N 型区与耗尽区的边界处(即n x 处)少子浓度 n n n0()e x p qV p x pkT ⎛⎫= ⎪⎝⎭在P 型区与耗尽区的边界处(即 –p x 处)少子浓度 p p p 0()exp qV n x n kT ⎛⎫-= ⎪⎝⎭2.PN 结总的扩散电流密度 d Jp p 2n n d dp dnn0p 0i p n p D n A 0exp 1exp 1exp 1D D D D qV qV J J J q p n qn L L kT L N L N kT qV J kT ⎛⎫⎛⎫⎡⎤⎡⎤⎛⎫⎛⎫=+=+⋅-=+⋅- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⎣⎦⎝⎭⎝⎭⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦3.薄基区二极管小子分布关系:n n0B ()exp 11qV x p x p kT W ⎛⎫⎡⎤⎛⎫∆=-⋅-⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭ 2.4 PN 结的击穿1.雪崩倍增因子 d i 011d x M xα=-⎰2.雪崩击穿近似计算120C B s 2qN E V ε⎛⎫= ⎪⎝⎭3.突变结果的临界电场 131247G 8C 0s 1.110 1.1E q E N ε⎛⎫⎛⎫=⨯ ⎪ ⎪⎝⎭⎝⎭4.突变结外加反向电压时的最大电场强度112200m axbi s s 22||()qN qN E V V V εε⎡⎤⎛⎫=-≈ ⎪⎢⎥⎣⎦⎝⎭5.突变结果的雪崩击穿电压 33213s24B CG 05.2102V E E N qN ε-==⨯2.5 PN 结的势垒电容 ()()11223s 0sT T bi bi ()...212qN aq C A C A V V V V εε⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦均匀(缓变)2.6 PN 结的交流小信号特性与扩散电容 1. PN 结的直流增量电导 F D qI g kT= 2. PN 结的扩散电容 F D D 22qI g C kTττ==第3章 双极结型晶体管3.1 双极结型晶体管基础 电流放大系数关系:C B.........11I I αββααβ===-+3.2 均匀基区晶体管的电流放大系数 1.基区输运系 2pC B pE B 112J W J L β*⎛⎫==- ⎪⎝⎭bB1ττ=- 2.基区度越时间 2B bB 2W D τ=B B pE pC Q Q J J =≈ 3.基区少子寿命 B B prQ J τ=4.注入效率 B EE B1W W ργρ=-11E B R R =-口口 5.共基极电流放大系数 22E E BB22BB1B B1111122R R W W L R L R αδ⎛⎫⎛⎫=--≈--=- ⎪ ⎪⎝⎭⎝⎭口口口口6.共发射极电流放大系数 121E B 2B B 112R W L R δβδδ--⎛⎫-=≈=+ ⎪⎝⎭口口7.异质结双极晶体管(HBT ) E G B11exp R E R kT γ∆⎛⎫=- ⎪⎝⎭口异口3.4 双极晶体管的直流电流电压方程1.埃伯斯-莫尔方程BC BE E ES R C SBC BE C ES C Sexp 1exp 1exp 1exp 1qV qV I I I kT kT qV qV I I I kT kT αα⎡⎤⎡⎤⎛⎫⎛⎫=--- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤⎡⎤⎛⎫⎛⎫=--- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦2.共发射极电流方程BC BE B ES R C SBC BE C ES C S(1)exp 1(1)exp 1exp 1exp 1qV qV I I I kT kT qV qV I I I kT kT ααα⎡⎤⎡⎤⎛⎫⎛⎫=--+-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤⎡⎤⎛⎫⎛⎫=--- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦3.厄尔利电压 B B B B 0A dB B B B B BC BC E d d d d ()()d d W W N xN x V x W N W N W V V ≡=⎛⎫- ⎪⎝⎭⎰⎰4.共发射极增量输出电阻 C E A o CCV V r I I ∂≡=∂ 5.均匀基区厄尔利电压 B biA dB2,W V V x =3.5 双极晶体管的反向特性 1.浮空电势 BE ln(1)0kT V qα=-< 2.基区穿通电压 2B ptC B B s C ()2N q V N N W N ε⎛⎫=+ ⎪⎝⎭3.击穿电压 CBO B BV V = (共基极)C EO BV =(共发射极)3.6 基极电阻 b e bb B 3B 2B1b26212S S C d r R R R lS lllΩ'=+++口口口3.8 电流放大系数与频率的关系 1.特征频率 ()T ece bb d c1122f πτπττττ==+++0βf β=T||,()ff f f ωββ=<<2dc Bec T E cs T C TEBm ax1211222x W kT C r C f qI D v τπηη⎛⎫==+⋅-++ ⎪⎝⎭ 3.10 功率增益和最高振荡频率 1.最大功率增益 o max Tp max 2inbb TC 8P f K P r C fπ'==2.高频优值 2Tp m ax bb T C8f M K fr C π'≡=3.最高振荡频率 112T 2Mbb T C 8f f M r C π'⎛⎫== ⎪⎝⎭第 5 章 绝缘栅场效应晶体管 5.2 MOSFET 的阈电压1.P 型衬底的费米势 A FP i F i1ln0N kT E E q qn ϕ=-=>() N 型衬底 D FN iln0N kT qn ϕ=-<2.阈值电压()()()1O X 2T M S FP FPO X12B FB FP S B FP S B 1O X 2M S FP S B FP SO X222222Q V K C V V K V V V V Q K V V V C ϕϕϕϕϕϕϕϕ=-++=+++-++-=-++-++ 5.3 MOSFET 的直流电流电压方程1.电流电压方程 ()2D G S T D S D S p O XD sat G S T22D sat G S T D sat D sat G S T 1()()....211()22Z I V V V V C L V V V I V V V V V V ββμββ⎡⎤=--=⎢⎥⎣⎦=-⎡⎤=--=-⎢⎥⎣⎦非饱和区(饱和区)5.5 MOSFET 的直流参数与温度特性 1.通导电阻 on R D S on DG S T n O X G S T 1()()V LR I V V Z C V V βμ===--5.6 MOSFET 的小信号参数、高频等效电路及频率特性1.跨导mg m D S m s G S T D sat ()()g V g V V V βββ==-=非饱和区(饱和区)2.漏源电导ds gd s G ST DSDs a td s s a tD Sg VV V I g V β=--∂==∂()()3.跨导的截止角频率 m n G S T g 2g s g s()1154V V R CLμω-==⋅ 4.本征最高工作频率 msn G S TT 2gs()13222g V V f C L μππ-⎡⎤==⋅⎢⎥⎣⎦5.高频功率增益为 22o max ms ds ms dsp max 2222igsgsgsgs44(2)P g r g r K P C R f C R ωπ===6.最高振荡频率M f 1122m s ds dsM T gsgs gs 244g rrf f C RRπ⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。