微电子器件工艺
- 格式:doc
- 大小:334.05 KB
- 文档页数:6
微电子工艺流程微电子工艺流程是指在微电子器件制造过程中所采用的一系列工艺步骤和技术手段,通过这些步骤和手段,可以将各种材料加工成微米甚至纳米级别的微电子器件。
微电子工艺流程是微电子制造中至关重要的一环,它直接影响着器件的性能、稳定性和可靠性。
本文将对微电子工艺流程进行详细介绍,包括工艺步骤、工艺技术和工艺设备等方面的内容。
微电子工艺流程主要包括晶圆制备、清洗、光刻、薄膜沉积、蚀刻、离子注入、扩散、退火、金属化、封装等工艺步骤。
首先是晶圆制备,这是整个微电子工艺流程的第一步,它的质量直接影响着后续工艺步骤的进行。
晶圆制备包括晶片生长、切割、抛光等步骤,最终得到平整、无瑕疵的硅晶圆。
接下来是清洗工艺,通过一系列的化学处理和超声清洗,去除晶圆表面的杂质和污染物,为后续工艺步骤的进行做好准备。
光刻工艺是微电子工艺流程中的关键步骤之一,它通过光刻胶、掩模和紫外光照射,将芯片上的图形图案转移到光刻胶上,然后进行蚀刻或沉积等步骤,形成所需的图形结构。
薄膜沉积工艺是指将各种材料以薄膜的形式沉积到晶圆表面,包括化学气相沉积、物理气相沉积、溅射沉积等技术。
蚀刻工艺是指利用化学溶液或等离子体等手段,去除薄膜上不需要的部分,形成所需的结构。
离子注入工艺是通过加速器将离子注入到晶圆内部,改变晶体的导电性能或形成所需的掺杂区域。
扩散工艺是指将掺杂离子在晶体中进行扩散,形成所需的掺杂区域。
退火工艺是指在高温条件下对晶圆进行热处理,使其内部应力得到释放,晶体结构得到改善。
金属化工艺是将金属沉积到晶圆表面,形成导线、电极等结构。
最后是封装工艺,将晶圆切割成单个芯片,并封装在塑料封装或陶瓷封装中,形成最终的器件。
在微电子工艺流程中,还涉及到各种工艺技术和工艺设备。
例如,光刻技术包括近场光刻、多层光刻、深紫外光刻等技术;薄膜沉积设备包括化学气相沉积设备、溅射设备等;蚀刻技术包括湿法蚀刻、干法蚀刻等技术;离子注入设备包括离子注入机、离子束刻蚀机等。
微电子制造工艺流程解析微电子制造工艺流程是指通过一系列的加工步骤,将原材料转化为微小电子器件的过程。
在这个过程中,需要经过晶圆制备、薄膜沉积、光刻、蚀刻、离子注入等关键步骤,以及其他一些辅助性的工艺步骤。
本文将对微电子制造工艺流程进行详细解析。
一、晶圆制备晶圆制备是微电子制造中的第一步,主要是通过硅材料生长来制备晶圆。
晶圆一般使用单晶硅材料,它具有良好的电性能和机械性能,适合作为微电子器件的基底。
在这一步骤中,需要对硅材料进行去杂、融化、再结晶、拉晶等加工过程,最终得到高质量的单晶硅晶圆。
二、薄膜沉积薄膜沉积是微电子制造中的重要步骤,通过在晶圆表面沉积薄膜来控制电子器件的性能和功能。
常用的薄膜沉积技术包括化学气相沉积(CVD)、物理气相沉积(PVD)、原子层沉积(ALD)等。
这些技术可以在晶圆表面沉积各种功能性薄膜,如硅氧化物、金属、半导体等。
三、光刻光刻是一种重要的微电子制造工艺,通过光照和显影的方式,在薄膜表面形成微细的图案。
这个图案将作为后续工艺步骤中蚀刻、离子注入等的参考依据。
光刻通常使用光刻胶来实现,根据需要选择合适的光源和掩膜,通过光刻曝光机进行精确的图案转移。
四、蚀刻蚀刻是一种去除不需要的材料的工艺步骤,通常将薄膜表面的某些区域通过化学或物理方式进行选择性地去除。
常见的蚀刻方式有湿蚀刻和干蚀刻两种。
湿蚀刻使用化学液体进行腐蚀,而干蚀刻则是利用等离子体来实现。
通过蚀刻,可以形成微细的结构,如通道、线路等。
五、离子注入离子注入是一种将外部离子引入器件材料中的工艺步骤。
通过加速器将离子加速到高速,并射入目标材料中,从而改变其电学或物理特性。
离子注入可以用于掺杂、形成pn结、获得特定的电子特性等。
具体的离子注入方式包括浸没注入、离子束注入等。
以上所述的晶圆制备、薄膜沉积、光刻、蚀刻和离子注入等工艺步骤只是微电子制造流程中的一部分,整个流程还包括清洗、测试、封装、探针测试等其他步骤。
每个步骤都需要精细的设备和技术支持,以确保最终制造出的微电子器件具有稳定的性能和可靠的品质。
微电子制造的基本原理与工艺流程一、微电子制造的定义微电子制造是指设计、加工和制造微电子器件和微电子系统的过程。
它是现代信息技术和通信技术的基础,也是现代工业制造的重要组成部分。
二、微电子制造的基本原理1. 半导体材料的特性半导体材料是微电子器件的基础材料,具有良好的导电性和隔离性。
在半导体中掺杂少量杂质或者改变其温度、光照等物理性质可以改变其导电性。
半导体器件就是利用这种变化制作的。
2. 器件结构的设计微电子器件的结构设计是制造的重要一环。
器件结构包括电极、栅、控制信号输入端等。
这些结构的设计要考虑各方面的因素,如器件应用场合、功率、尺寸等因素。
3. 制造工艺的选择制造工艺是微电子制造的基础,是将器件结构设计转化为实际产品的过程。
制造工艺包括硅片切割、形成电极和栅、掺杂和扩散、制造成品等多个环节。
三、微电子制造的工艺流程1. 半导体材料制备半导体材料是微电子制造的基础,其制备是微电子制造的第一步。
半导体材料制备的过程主要包括单晶生长、多晶生长、分子束外延、金属有机化学气相沉积等多种方法。
2. 硅片制备硅片是微电子制造的中间产品,它是各种微电子器件的基础。
硅片制备的过程包括硅棒制备、硅棒切割、圆片抛光等环节。
3. 电极和栅制造电极和栅是微电子器件的重要组成部分,制造电极和栅主要通过光刻和蚀刻技术实现。
光刻是一种通过光照形成光阻图形的技术,蚀刻是一种将光刻后形成的光阻图形转化为实际器件的技术。
4. 掺杂和扩散掺杂和扩散是将杂质引入半导体材料中,从而改变其电学性质的过程。
其中,掺杂是将杂质引入半导体中,扩散是将杂质在半导体中扩散开的过程。
这些过程可以通过化学气相沉积、物理气相沉积等方式实现。
5. 制造成品制造成品是微电子制造的最后一步。
成品制造包括器件组装和测试等环节。
器件组装是将各个器件按照要求组装在一起的过程,测试则是对器件进行性能测试的过程。
总之,微电子制造是一项复杂而精密的工艺,它采用了多种制造工艺和技术,涉及到多个环节。
微电子工艺的流程一、工艺步骤1. 材料准备:微电子工艺的第一步是准备好需要的材料,这些材料包括硅片、硼化硅、氧化铝、金属等。
其中,硅片是制造半导体芯片的基本材料,它具有优良的导电性和导热性能,而硼化硅和氧化铝则用于作为绝缘层和保护层。
金属材料则用于连接不同的电路元件。
2. 清洗:在进行下一步的工艺之前,需要对硅片进行清洗,以去除表面的杂质和污垢。
常用的清洗方法包括浸泡在溶剂中、超声波清洗等。
清洗后的硅片表面应平整光滑,以便后续的工艺步骤能够顺利进行。
3. 刻蚀:刻蚀是微电子工艺中的重要步骤,它用于在硅片表面上形成需要的电路图案。
刻蚀一般采用化学法或物理法,化学法包括湿法刻蚀和干法刻蚀,物理法包括离子束刻蚀、反应离子刻蚀等。
刻蚀后,硅片表面将形成不同深度和形状的电路结构。
4. 清洗:刻蚀后的硅片需要再次进行清洗,以去除刻蚀产生的残留物,并保证表面的平整度和清洁度。
清洗一般采用流动水冲洗、超声波清洗等方法。
5. 沉积:沉积是在硅片表面上沉积一层薄膜来形成电路元件或连接线的工艺步骤。
常用的沉积方法包括化学气相沉积、物理气相沉积、离子束沉积等。
沉积后,硅片表面将形成具有特定性能和功能的导电膜或绝缘膜。
6. 光刻:光刻是将需要的电路图案投射在硅片表面上的工艺步骤。
光刻过程中,先在硅片表面涂上感光胶,然后利用光刻机将光阴影形成在感光胶上,最后用化学溶液溶解感光胶,形成需要的电路结构。
光刻过程需要高精度的设备和技术支持。
7. 离子注入:离子注入是将控制的离子注入硅片表面形成电子器件的重要工艺步骤。
通过控制注入的离子种类、注入能量和注入剂量,可以形成不同性能和功能的电子器件。
离子注入是微电子工艺中的关键技术之一。
8. 清洗和检测:在工艺步骤完成后,硅片需要再次进行清洗和检测,以确保电路结构和性能符合要求。
清洗和检测一般采用高精度的设备和技术支持,包括扫描电子显微镜、原子力显微镜等。
二、工艺参数和设备微电子工艺需要严格控制各种工艺参数,包括温度、压力、流量、时间等。
微电子工艺的主要流程英文回答:Microelectronics Fabrication Process.The microelectronics fabrication process, also known as semiconductor device fabrication, is a complex and highly-specialized process used to create integrated circuits (ICs) and other semiconductor devices. The process involves a series of steps that are carried out in a controlled environment using specialized equipment and materials.The following are the main steps involved in the microelectronics fabrication process:1. Substrate Preparation: The process begins with the preparation of a substrate, which is typically a thin wafer of silicon. The substrate is cleaned and polished to create a smooth and defect-free surface.2. Epitaxial Growth: A thin layer of epitaxial silicon is deposited on the substrate using chemical vapor deposition (CVD). This layer provides a high-quality surface for the subsequent processing steps.3. Oxidation: A layer of silicon dioxide (SiO2) is grown on the substrate using thermal oxidation. This layer acts as an insulator and protects the underlying silicon from impurities.4. Patterning: The oxide layer is patterned using photolithography to create the desired circuit layout. This is done by exposing the oxide layer to ultraviolet light through a mask, which defines the circuit pattern.5. Etching: The exposed oxide layer is etched away using a chemical etchant, leaving behind the desiredcircuit pattern in the silicon substrate.6. Ion Implantation: Ions are implanted into the substrate using ion implantation, which modifies the electrical properties of the silicon. This step is used tocreate different types of semiconductor devices, such as transistors and diodes.7. Metallization: A layer of metal is deposited on the substrate using physical vapor deposition (PVD). This layer provides electrical connections between the different components of the circuit.8. Annealing: The metal layer is annealed at high temperatures to improve its electrical properties and adhesion to the substrate.9. Packaging: The completed IC is packaged in a protective enclosure to protect it from the environment and provide electrical connections to the outside world.中文回答:微电子工艺流程。
微电子工艺流程1. 接收原料:首先,工厂会接收到原料,包括硅片、化学试剂等。
这些原料是制造微电子产品的基础材料。
2. 晶圆清洗:硅片需要经过严格的清洗过程,以去除上面的杂质和污垢,确保表面的干净和平整。
3. 掩膜制备:接下来,工艺师会在硅片表面涂覆一层光刻胶,然后使用光刻技术,将所需的图形模式转移到光刻胶上,形成掩膜。
4. 腐蚀和沉积:根据掩膜的图形,工厂会进行腐蚀或沉积的工艺步骤,以形成器件的结构或导线。
5. 清洗和检测:完成腐蚀和沉积后,硅片需要再次进行清洗,以去除残留的化学试剂和杂质。
然后需要进行严格的检测,以确保器件的质量和性能。
6. 封装和测试:最后,器件需要进行封装,将其安装到塑料或金属封装体中。
然后进行性能测试,确保器件符合规定的标准。
以上就是一般微电子工艺流程的概述,实际的制造过程可能会更为复杂和精细。
微电子工艺的不断创新和发展,为现代电子产品的制造提供了坚实的基础。
很高兴您对微电子工艺流程感兴趣,接下来我将继续介绍相关内容。
7. 产品测试:在封装完成后,产品需要进行各种测试,如电气测试、可靠性测试和外观检验,以确保器件的性能符合要求,并且保证了产品的质量和可靠性。
8. 清洁和包装:一旦通过了所有测试,产品需要进行终端清洁和包装,尤其是对于集成电路芯片。
清洁是为了确保产品的外观整洁和减少外部污染,而包装则是保护产品在运输和存储中不受损坏。
9. 质量控制和认证:最终产品也需要进行质量控制和认证,以确保产品达到国际标准,并通过相关认证。
这是为了确保产品在市场上获得认可和信任,同时也是对制造过程的全面检验。
微电子工艺流程中所采用的工艺技术包括了光刻、薄膜沉积、腐蚀、离子注入、微影、等离子刻蚀、扩散、陶瓷封装等,在每一个环节都需要非常精细和精准的工艺控制,同时需要使用各种先进的设备和工艺材料。
这些工艺都是多年来不断发展进步和技术创新的产物,使得微电子产品的制造能够更加精确、可靠和高效。
另外,微电子工艺在制造过程中也需要严格控制环境条件,比如温度、湿度、净度等。
微电子制造工艺技术微电子制造工艺技术是指用于制造微电子器件的一系列工艺技术,主要包括光刻、薄膜沉积、离子注入、蚀刻和扩散等步骤。
这些工艺技术在现代电子器件制造中起着至关重要的作用,直接影响着微电子器件的性能和可靠性。
首先,光刻是微电子制造中的关键步骤之一。
它通过使用光刻胶和光刻机等设备,在硅片表面上形成微细的图案。
光刻胶光敏剂的遮蔽能力和图案的精度决定了光刻的质量。
光刻的目标是将芯片上的微米级图案转移到硅片上,以创建集成电路的不同功能区域。
其次,薄膜沉积是微电子制造过程中不可或缺的步骤之一。
它通过在硅片表面上沉积各种材料薄膜,例如金属、氧化物和多晶硅等,来实现各种电子器件所需的结构和功能。
薄膜的质量和厚度均匀性对器件的性能和可靠性起着重要作用。
离子注入是一种常用的微电子制造工艺技术,它用于调节硅片的电学性能。
通过将离子注入硅片,可以改变硅片的电导率和掺杂浓度,从而实现不同类型的电子器件的制造。
离子注入的精度和均匀性是确保器件性能一致性的关键因素。
蚀刻技术在微电子制造中也起着重要作用。
它通过使用蚀刻液将不需要的材料从硅片上去除,以形成所需的结构和图案。
蚀刻的选择性和精度对器件的性能和可靠性有着重要的影响。
最后,扩散是微电子制造中的一种关键工艺技术。
它通过在硅片表面扩散掺杂物,例如硼和磷等,来改变硅片的导电性能。
扩散的时间和温度控制非常重要,以确保所得到的电子器件具有一致的性能。
总结起来,微电子制造工艺技术是实现集成电路制造的基础。
它们的精度、均匀性和可重复性对微电子器件的性能和可靠性具有重要影响。
随着微电子技术的不断发展,对工艺技术的要求也越来越高。
因此,不断改进和创新微电子制造工艺技术,提高制造效率和器件性能,是当前微电子制造领域面临的重要挑战。
微电子封装工艺流程微电子封装工艺是指将微电子器件封装起来,以保护器件内部结构并方便与外部电路连接交互的工艺流程。
下面是一个简要的微电子封装工艺流程。
首先,需要准备好封装基板。
封装基板通常由高热传导性材料制成,例如陶瓷或金属,以确保器件在工作时能够迅速散热。
基板需要经过清洗和表面处理,以便后续工艺步骤的顺利进行。
接下来是芯片粘接。
将芯片粘接到基板上是封装过程中的重要一步。
通常采用粘合剂将芯片固定在基板上。
粘接剂需要具有良好的粘附力和导热性能,以确保芯片与基板之间能够有效传递热量。
接着是线缆连接。
线缆连接是将芯片内部的电连接到外部电路的关键步骤。
常用的线缆连接方式有焊接和微焊接。
焊接是通过加热导线和焊盘使其相互熔接,形成可靠的电连接。
微焊接则是采用微小尺寸的焊盘和导线进行连接,以满足封装器件的小尺寸要求。
紧接着是封装密封。
为了保护器件内部结构免受外部环境的侵蚀和损坏,需要对器件进行密封。
常用的密封方式有环氧树脂封装和金属封装。
环氧树脂封装将芯片包裹在保护层中,形成一个紧密的密封结构,以防止封装器件受到潮湿、灰尘等外部因素的影响。
金属封装则是利用金属外壳将芯片封装起来,提供更高的机械保护和散热性能。
最后是封装测试。
在封装完成后,需要对封装器件进行功能性测试和可靠性测试,以确保器件的性能和质量。
功能性测试包括电性能测试和信号测试,可靠性测试则是针对器件在不同环境和工作条件下的长期稳定性进行测试。
综上所述,微电子封装工艺流程包括准备封装基板、芯片粘接、线缆连接、封装密封和封装测试等步骤。
这些步骤都需要严格的操作和控制,以确保封装器件的质量和可靠性。
随着技术的不断进步,微电子封装工艺也在不断演进,逐渐实现更小尺寸、更高性能和更可靠的封装方案。
微电子器件的工艺制备技术研究一、引言随着科技的发展,微电子器件越来越被广泛应用于各个领域,如消费电子、电子通信、医疗等。
微电子器件的工艺制备技术是实现小型化、高性能和低功耗的关键。
本文将探讨微电子器件的工艺制备技术研究进展。
二、微电子器件制备技术种类微电子器件的制备技术可以分为三种:扩散工艺、离子注入工艺和化学气相沉积工艺。
1.扩散工艺扩散工艺是指利用扩散原理,在半导体表面上形成p-n结或改变半导体的电性质,从而制备各种器件。
该工艺可以分为三种:固相扩散、气相扩散和液相扩散。
其中,固相扩散是最常用的一种。
2.离子注入工艺离子注入工艺是指将离子束射入半导体中,操纵半导体电物性,从而形成p-n结或制备器件。
该工艺具有制程简单、精度高和性能良好等优点。
3.化学气相沉积工艺化学气相沉积工艺是指利用化学反应在半导体表面上沉积薄膜,从而形成器件。
该工艺具有制程简单、成本低廉和控制性好等特点。
三、微电子器件制备技术的进展微电子器件制备技术在发展过程中,不断涌现出新的方法和技术。
下面将分别从扩散工艺、离子注入工艺和化学气相沉积工艺方面来介绍微电子器件制备技术的进展。
1.扩散工艺由于扩散工艺制备的器件成本低廉、效率高,因此得到了广泛应用。
在扩散工艺的研究中,最重要的问题是如何控制扩散过程中的杂质含量。
随着微电子器件的小型化,杂质的含量变得更加敏感,因此对杂质的控制要求更高。
目前,控制杂质含量的方法主要有如下几种:前处理、增量扩散和掺杂剂挥发。
其中,前处理是将器件的前部分进行清洗和去除,以减少杂质的影响。
增量扩散是指在扩散过程中,不断的补充新材料,以控制器件中的杂质含量。
掺杂剂挥发则是指在扩散过程中,通过加热掺杂剂将掺杂剂挥发出去,以减少杂质的含量。
2.离子注入工艺离子注入工艺在微电子器件制备中起到了重要的作用。
离子注入技术可以控制掺杂原子的深度、浓度和分布等参数,因而得到了广泛应用。
在离子注入工艺的研究中,最主要的问题是如何控制离子束和自生征上的温升。
微电子工艺流程1. 概述微电子工艺是处理微尺寸的电子器件的制造过程,它涉及到一系列精细的工艺步骤。
在本文档中,我们将介绍微电子工艺的基本流程,包括光刻、沉积、腐蚀、离子注入等关键步骤。
了解微电子工艺流程的基本原理和步骤对于微电子设备的制造和理解至关重要。
2. 光刻光刻是微电子工艺中的关键步骤之一,用于在半导体材料上定义图案和结构。
下面是光刻的基本流程:1.准备基片:首先,选择合适的半导体材料作为基片,并进行清洗和处理,以确保表面的纯洁度和平坦度。
2.胶涂覆:将光刻胶涂覆在基片表面上,利用旋涂机或涂覆机来均匀地涂布光刻胶。
3.预烘烤:将涂覆了光刻胶的基片放入烘箱中进行预烘烤,以去除胶液中的溶剂和气泡。
4.对准与曝光:使用光刻机将掩膜对准和曝光到光刻胶表面,通过可见光或紫外光刺激光刻胶,形成所需图案。
5.显影:将曝光后的光刻胶基片浸泡在显影液中,显影液会将未曝光部分的光刻胶溶解掉,形成所需的图案。
6.后烘烤:将显影后的光刻胶基片进行后烘烤,以去除残留的显影液和增强光刻胶的附着力。
7.清洗:使用溶剂将光刻胶残留物彻底清洗干净,以保证基片表面的纯净度。
3. 沉积沉积是微电子工艺中另一个重要的步骤,用于在基片上沉积薄膜材料。
以下是典型的沉积过程:1.基片准备:与光刻类似,首先需要准备基片,并确保表面的平整度和清洁度。
2.选择沉积方法:根据需要沉积的材料和要求,选择合适的沉积方法,包括化学气相沉积(CVD)、物理气相沉积(PVD)等。
3.沉积薄膜:将基片放入沉积室中,并通过提供适当的气体或蒸发源来沉积所需的薄膜材料。
4.监控和控制:在沉积过程中,通过监控和调整沉积速率、温度和气体浓度等参数,以确保薄膜的质量和厚度符合要求。
5.结束和清洗:当沉积达到预定的厚度后,停止供气或蒸发,将基片取出并清洗,以去除表面的残留物。
4. 腐蚀腐蚀是微电子工艺中的一种重要的加工方法,用于去除或改变薄膜或基片的部分区域。
以下是典型的腐蚀流程:1.基片准备:与前面的过程类似,准备基片并确保表面的清洁和平整。
《微电子器件工艺》课程设计报告
班级:电子09-2
学号: 0906040206
姓名:高春旭
指导教师:白立春
N阱硅栅结构的CMOS集成电工艺设计
一.基本要求
设计如下电路的工艺流程
(1)设计上图所示电路的生产工艺流程:
(2)每一具体步骤需要画出剖面图;
(3)每一个步骤都要求说明,例如进行掺杂时,是采用扩散还是离子注入,需要
解释原因,又如刻蚀,采用的是干法刻蚀,还是湿法刻蚀,这类问题都须详细说明.
(4)在设计时,要考虑隔离,衬底选择等问题.
(5)要求不少于5页,字迹工整,画图清楚.
二、设计的具体实现
2.1 工艺概述
n阱工艺为了实现与LSI的主流工艺增强型/耗层型(E/D)的完全兼容,n 阱CMOS工艺得到了重视和发展。
它采用E/D NMOS的相同的p型衬底材料制备NMOS器件,采用离子注入形成的n阱制备PMOS器件,采用沟道离子注入调整两种沟遭器件的阈值电压。
n阱CMOS工艺与p阱CMOS工艺相比有许多明显的优点。
首先是与E/D NMOS工艺完全兼容,因此,可以直接利用已经高度发展的NMOS 工艺技术;其次是制备在轻掺杂衬底上的NMOS的性能得到了最佳化--保持了高的电子迁移率,低的体效应系数,低的n+结的寄生电容,降低了漏结势垒区的电场强度,从而降低了电子碰撞电离所产生的电流等。
这个优点对动态CMOS电路,如时钟CMOS电路,多米诺电路等的性能改进尤其明显。
这是因为在这些动态电路中仅采用很少数目的PMOS器件,大多数器件是NMOS 型。
另外由于电子迁移率较高,因而n阱的寄生电阻较低;碰撞电离的主要来源—电子碰撞电离所产生的衬底电流,在n阱CMOS中通过较低寄生电阻的衬底流走。
而在p阱CMOS中通过p阱较高的横向电阻泄放,故产生的寄生衬底电压在n阱CMOS中比p阱要小。
在n阱CMOS中寄生的纵向双极型晶体管是PNP型,其发射极电流增益较低,n阱CMOS结构中产生可控硅锁定效应的几率较p阱为低。
由于n阱
CMOS的结构的工艺步骤较p阱CMOS简化,也有利于提高集成密度.例如由于磷在场氧化时,在n阱表面的分凝效应,就可以取消对PMOS的场注入和隔离环。
杂质分凝的概念:杂质在固体-液体界面上的分凝作用 ~ 再结晶层中杂质的含量决定于固溶度→ 制造合金结(突变结);杂质在固体-固体界面上也存在分凝作用 ~ 例如,对Si/SiO2界面:硼的分凝系数约为3/10,磷的分凝系数约为10/1;这就是说,掺硼的Si经过热氧化以后, Si表面的硼浓度将减小,而掺磷的Si 经过热氧化以后, Si表面的磷浓度将增高)。
n阱CMOS基本结构中含有许多性能良好的功能器件,对于实现系统集成及接口电路也非常有利。
图A (a)和(b)是p阱和n阱CMOS结构的示意图。
N阱硅栅CMOS IC的剖面图
N离子注入
2.2 现在COMS工艺多采用的双阱工艺制作步骤主要表现为以下几个步骤:
■N阱的形成
外延生长,外延层已经进行了轻的P型掺杂
原氧化生长这一氧化层主要是a)保护表面的外延层免受污染,b)阻止了在注入过程中对硅片过度损伤,c)作为氧化物层屏蔽层,有助于控制流放过程中杂质的注入深度
第一层掩膜,n阱注入
n阱注放(高能)
退火退火后的四个结果:a)裸露的硅片表面生长了一层新的阴挡氧化层,b)高温使得杂质向硅中扩散c)注入引入的损伤得到修复,d)杂质原子与硅原子间的共价键被激活,使得杂质原子成为晶格结构中的一部分。
2.3工艺流程
1.初始氧化
2.光刻1. (1)刻N阱(2)形成N阱(3)沉积
光刻2 (1)刻有源区,场区硼离子注入(2)氧场
光刻3. (1)场氧(2)栅氧化,开启电压调整(3)多晶硅淀积
光刻4. (1)刻NMOS管硅栅,磷离子注入形成NMOS管
光刻5. (1)刻PMOS管硅栅,硼离子注入及推进,形成PMOS管
(2)磷硅玻璃淀积
光刻6. (1)刻孔、磷硅玻璃淀积回流(2)蒸铝
光刻7 (1)刻铝
光刻8 (1)刻钝化孔
N阱硅栅CMOS工艺流程
三、注意事项
1. 有源区和场区是互补的,晶体管做在有源区处,金属和多晶连线多做在场区上。
2. 有源区和P+,N+注入区的关系:有源区即无场氧化层,在这区域中可做N 型和P型各种晶体管,此区一次形成。
3. 至于以后何处是NMOS晶体管,何处是PMOS晶体管,要由P+注入区和N+注入区那次光刻决定。
4. 有源区的图形(与多晶硅交叠处除外)和P+注入区交集处即形成P+有源区, P+注入区比所交有源区要大些。
5. 有源区的图形(与多晶硅交叠处除外)和N+注入区交集处即形成N+有源区, N+注入区比所交有源区要大些。
6. 两层半布线
金属,多晶硅可做连线,所注入的有源区也是导体,可做短连线(方块电阻大)。
三层布线之间,多晶硅和注入有源区不能相交布线,因为相交处形成了晶体管,使得注入有源区连线断开。
7. 三层半布线
金属1,金属2 ,多晶硅可做连线,所注入的有源区也是导体,可做短连线(方块电阻大)。
四层线之间,多晶硅和注入有源区不能相交布线,因为相交处形成了晶体管,使得注入有源区连线断开。
四、总结与展望
作为一个电子专业的学生,我深深地知道自己所学的专业是一个非常前沿的
专业,它像一股狂潮正在日新月异的发展着。
微电子专业主要研究新型电子器件及大规模集成电路的设计、制造,计算机辅助集成电路分析,各种电子器件的基础理论、新型结构、制造工艺和测试技术,以及新型集成器件的开发。
微电子学近年来的发展,使计算机能力成倍数地增加,硬件成本大幅度降低,从而极大地推动了工业以及信息产业的发展。
还有如激光器的研究应用、传感器的研究等的当代热点研究领域,都是微电子的范畴或者与之紧密相关。
微电子技术的发展,是现代工业的基础和信息化工等。
所以我知道自己也要努力,风景一片大好,我会尽全力与科技一同进步。
通过本次课程设计,我们掌握了N 阱硅栅CMOS 工艺流程及其基本方法在完成过程中,发现许多知识仍有盲点,从网上查找资料最后也不能完全解答。
后来仔细跟同学研究使得问题得到了解答。
COMS 的知识很深很难懂,在设计过程中遇到了很多困难。
但是作为毕业实际之前的最后一次课程设计,一定要努力做好它,在老师和同学的帮助下,最终课程设计得以完成,在大学的四年里做了很多课程设计,每次课程设计都有很多收获,这次也一样,这是一次非常好提升自己的机会,都能给自己补充很多能量,每次课程设计都是一次小小的成功,同时也很感谢老师和同学们可以帮助我解决一次又一次的疑问,帮助我可以按时、顺利的完成每次的设计课题
五、参考文献
1.《模拟集成电路设计精粹》(美)桑森 著,陈莹梅 译,清华大学出版社.
2.《模拟CMOS 集成电路设计》(美)拉扎维 著,陈贵灿
等译,西安交通大学
出版社.。