山东省泰安市泰山区2014-2015学年度第一学期期中学情检测七年级数学试题(五四制)(鲁教版)
- 格式:doc
- 大小:107.50 KB
- 文档页数:5
元,则这款服装每件的标价比进价多 ( )A.60元B.80元C.120元D.180元 二,填空题:7.太阳的半径为696000km ,696000用科学计数法表示为 .8.若3=x ,y 的倒数为21,则=+y x . 9.若单项式m y x 22与331y x n -是同类项,则n m +的值是 . 10.方程033=-x 的解是 .11.5减x 的差的2倍等于1,列方程表示为 . 12.当3-=x 时,代数式1322--x x 的值是 . 13.如果()()043222=-+-+-c b a ,那么=+-c b a .14.下图是用火柴拼成的图形,则第n 个图形需 根火柴棒.三、解答题(每小题5分,共20分)15.计算:24413221-⨯⎪⎭⎫⎝⎛-+-16.计算:()()[]4231822÷⨯--+-17.计算:()()222223223x y y x ---18.解方程:253231+=-x x四、解答题(每小题7分,共28分)19.某日上午9时至上午10时,某农业银行储蓄所办理了6单储蓄业务:取出12000元,存入5500元,存入3200元,取出2000元,取出3200元,存入4800元.该日上午10时的存款总额比上午9时增加了多少元?20.先化简,再求值.()()x x x x x x 4329722323+----,其中1-=x .21.北京奥运会圣火在松原市传递.圣火传递路线分为市区内和市区外两段,其中在市区内的传递路程为()1700-a 米,市区外的传递路程为()2309881+a 米.设圣火在该市的传递总路程为s 米.(1)用含a 的代数式表示s ; (2)已知a=11,求s 的值.22.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示211-,设点B 所表示的数为m. (1)求m 的值;(2)求()261-+-m m 的值.五、解答题(每小题8分,共16分)23.若化简()()433222---+-x x x mx 的结果与x 的取值无关,求m 的值.24.有若干个数,第1个数记为1a ,第2个数记为2a ,第3个数记为3a ,…第n 个数记为n a ,若311-=a ,从第二个数起,每个数都等于1与前面那个数的差的倒数. (1)分别求出2a ,3a ,4a 值; (2)计算1a +2a +3a +……+36a 的值.六、解答题(每小题10分,共20分)25.商场为了促销,推出两种促销方式:方式①:所有商品打七五折销售;方式②:购物每满200元返60元现金.(1)杨老师要购买标价为628元和788元的商品各一件,现有四种购买方案:方案一:628元和788元的商品均按促销方式①购买;方案二:628元的商品按促销方式①购买,788元的商品按促销方式②购买;方案三:628元的商品按促销方式②购买,788元的商品按促销方式①购买;方案四:628元和788元的商品均按促销方式②购买.你给杨老师提出的最合理购买方案是 .(2)通过计算下表中标价在600元到800元之间商品的付款金额,请你总结出在该商场购买商品的最优惠的合理购买规律..26.甲、乙两个物流公司分别在相距400km的A、B两地之间进行货物交换,C地为两车的货物中转站,假设A、B、C三地在同一条直线上,甲车以120km/h的速度从A地出发赶往C地,乙车以80km/h的速度从B地出发也赶往C地,两车同时出发,同时到达C地,并且在C地利用0.5h交换货物,然后各自按原速返回自己的出发地.假设两车在行驶过程中各自速度保持不变.求:(1)两车行驶了多长时间到达C地;(2)A、C两地相距 km,B、C两地相距 km;(3)从出发地出发后,经过多长时间两车相距50km?一、1.D 2.B 3.B 4.A 5.B 6.C二、(7) 5596.6⨯ (8) 5或-1 (9) 5 (10) 1x = (11)()1x 52=- (12) 26(13) 3 (14) 1n 2+ 三、15.原式244124322421⨯-⨯+⨯⎪⎭⎫⎝⎛-=261612-=-+-=16.原式()[]106446c 184=+=÷--+= 17.解: 原式222222y 9x 10x 4y 6y 3x 6-=+--= 18.解: 移项得:x 23x 3251+=-合并同类项得: x 2923=- 子数化为1得 31x -=19.()37004800320020003200550012000-=+--++-(元) 比9时增加了-3700元20.原式x x x x x x x x +-=-+-+-=22323862972当1-=x 时, 2112-=--=+-x x21.(1) ()()16091581230988170070023098811700+=++-=++-=a a a a a S(2)当11=a 时 190001609111581=+⨯=S (米)22.(1)21=m (2) 412342216211212=+=⎪⎭⎫⎝⎛-+- 23.原式()7324332222+-=++-+-=x m x x x mx ∵结果与x 的取值无关∴032=-m 23=m 25.(1)方案三规律:商品标价接近600元的按促销方式②购买,商品标价接近800元的按促销方式①购买.或商品标价大于600元且小于720元按促销方式②购买,商品标价大于720元且小于800元的按促销方式①购买.26.(1)设两车行驶了xh 到达C 地;由题意得:(120+80)x=400 解得x=2.答:两车行驶了2h 到达C 地.(2)240 160 (3)有两种情况:1.75h 或2.75h。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列图案是轴对称图形的有()个.A.1 B.2C.3 D.4试题2:下列各组线段中,能组成三角形的是()A.10,20,30 B.20,30,40 C.10,20,40 D.10,40,50试题3:按下列各组数据能组成直角三角形的是()A.11,15,13 B.1,4,5 C.8,15,17 D.4,5,6试题4:评卷人得分为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A.两点之间,线段最短 B.垂线段最短C.三角形具有稳定性 D.两直线平行,内错角相等试题5:如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SASC.AAS D.ASA试题6:如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3 B.4C.6 D.无法确定24试题7:在等腰三角形ABC中,它的两边长分别为8cm和3cm,则它的周长为()jA.10cm B.19cm或14cm C.11cm D.19cm O试题8:如图,直线l1、l2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它的三条公路的距离相等,则可供选择的地址有()PA.一处 B.二处 C.三处 D.四处D试题9:如图,△ACB≌△DCE,∠BCE=30°,则∠ACD的度数为()1A.20° B.30°C.35° D.40°4试题10:已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里 B.30海里 C.35海里 D.40海里f试题11:如图,PM=PN,MQ为△PMN的角平分线.若∠MQN=72°,则∠P的度数是()A.18° B.36°C.48°D.60°t试题12:我们知道三角形的内角和为180°,而四边形可以分成两个三角形,故它的内角和为2×180°=360°,五边形则可以分成3个三角形,它的内角和为3×180°=540°(如图),依此类推,则八边形的内角和为()RA.900° B.1080° C.1260° D.1440°5试题13:如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()xA.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP9试题14:如图,在△ABC中,AB边上的中垂线DE分别交AB、BC于点E、D,连接AD,若△ADC的周长为7cm,AC=2cm,则BC的长为()cm.VA.4 B.5 C.3 D.以上答案都不对L试题15:在△ABC中,∠B=60°,∠A=70°,则∠C= .O试题16:等腰三角形的对称轴是.K如图,P 是∠AOB的角平分线上的一点,PC⊥OA于点C,PD⊥OB于点D,写出图中一对相等的线段(答案不唯一,只需写出一对即可).T试题18:已知等腰三角形有一个角为100°,那么它的底角为。
山东省泰安市泰山区
2014-2015学年七年级上学期期末学情
检测数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共120分。
考试时间120分钟。
第Ⅰ卷(选择题
共42分)一、选择题(本大题共14小题,在每小题给出的四个选项中,只有一项是正确的,请把正
确的选项选出来,每小题选对得
3分,选错、不选或选出的答案超过一个,均记零分)1. -2015的倒数是
A. 2015
B. -2015
C. 20151
D. -2015
1
2. 计算-2x +3x 的结果为
A. x
B. 5x
C. -x
D. -5x
3. 一只茶壶从上面看到的形状图是
4. 如图,数轴上的点M 所表示的数的相反数为
A. 2.5
B. 5
C. -2.5
D. -5
5. 下列合并同类项正确的是
A. 5a +2b =7ab
B. -7a +6a =-a
C. 3a -2a =1
D. 4ab -5ab =-ab。
2014——2015学年度第一学期七年数学期中试卷一、选择题(每空3分,共30分)1、已知下列各数:-8,2.1,,3,0,-2.5,10,-1,其中负数有( )个.A 、2;B 、3;C 、4;D 、5.2、甲中蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是 ()A. 1℃~3℃B.3℃~5℃C.5℃~8℃D.1℃~8℃3、有理数、在数轴上的位置如图所示,则的值( )A .小于B .大于C .小于D .大于4、下列运算结果正确的是( )(A) -6-6=0 (B) -4-4=8 (C) (D)5、如果a<2,那么│-1.5│+│a-2│等于( ) A .1.5-a B .a-3.5 C .a-0.5 D .3.5-a6、观察下列算式中的规律:25=52,1225=352,112225=3352,11122225=33352……,下列等式中符合规律的是( )A .1112225=33352B .111122225=3333352C .1111222225=333352D .11111222225=33333527、一个数的立方就是它本身,则这个数是( )(A) 1 (B) 0 (C) -1 (D) 1或0或-1 8、下列单项式中,次数为3的是 ( )A. B. C. D.9、下列各式不是整式的是 ( )A.B. C. D.10、下列代数式:,,,,,中单项式的个数是( )A .个B .个C .个D .个二、填空题(每空3 分,共30分)11、用不等式表示:a 是负数 . 12、绝对值大于2,且小于4的整数有_______.13、若m ,n 互为相反数,则│m-1+n │=_________.14、若│x+2│+│y-3│=0,则xy=________. 15、平方等于它本身的有理数是__________;16、近似数精确到了 位.17、已知|a +4| 和(b-2)2互为相反数,那么a+3b 等于 .题号 一、选择题 二、填空题 三、计算题 四、简答题总分 得分姓名:年 班 考号:考场:18、若与是同类项,则=,b=.19、航空公司规定,每位乘客可免费携带20kg行李,超重部分每千克按飞机票价格的1.5%付行李费.小明的爸爸携带了35kg的行李乘飞机,他的机票价格为元,则他需付的行李费为________元.20、如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为.三、计算题(每空8 分,共32分)21、 22、23、先化简,再求值:,其中,.24、已知A = , B = ,求2A-B。
2014~2015学年度第一学期期中试题七年级数学(满分:150分 ;考试时间:120分钟)一、选择题 (本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填下表相应的空格内)1.的倒数是 A .21 B .21- C . 2- D . 2 2.数轴上,原点左边的点所表示的数是A .正数B .负数C .非正数D .非负数 3.在下列数:1()2--,-7, 4--,18,4(1)-,0中,正数有 A .1个 B .2个 C .3个D .4个4.用代数式表示“m 的2倍与n 的平方的差”,正确的是A .2(2)m n -B .22m n -C . 22()m n -D .2(2)m n -5.下图是一个简单的运算程序.若输入x 的值为-3,则输出的数值为x 输入输出A .-1B .1C .-12D . 12 6.在解方程1223x x -=-时,去分母后正确的是 A . x =2-2(x -1) B .3x =2-2(x -1) C .3x =6-2(x -1)D .3x =12-2(x -1)7.甲、乙两班共有94人,若从乙班调2人到甲班,那么两班人数正好相等.设甲班原有人数是x 人,可列出方程 A .(94-x )-2=x B .94-x =x +2 C .(94-x )+2=x -2 D .(94-x )-2=x +2 8.将正偶数按下表排成5列第1列 第2列 第3列 第4列 第5列 第1行 2 4 6 8 第2行 16 14 12 10第3行 18 20 22 24 ... ... 28 26根据上面排列规律,则2014应在( ).A .第251行,第4列B .第251行,第5列C .第252行,第2列D .第252行,第3列 二、填空题 (本大题共有10小题,每小题3分,共30分.)9.小华用百度搜索引擎搜索了2014年网络流行热词之一的“点赞”一词,电脑显示结果为“百度为您找到相关结果约71600000个”,这个数字用科学记数法表示为 .10.单项式223ab -的系数为_______.11.绝对值是5的整数是 .12.某长方形长为a 厘米,宽为b 厘米,那么这个长方形的周长是_________厘米.13.若21(3)0x y ++-=,则=-y x _______.14.在数轴上到表示2-的点的距离等于2的点所对应的数是 _______. 15.若b a 、互为相反数,d c 、互为倒数,则_______3)(2=++cd b a .16.20142013)31()3(⨯-= . 17.若方程213x -=和213x a-=的解相同,则a 的值是 . 18.已知1a ,2a ,3a ,…,2014a 是从1,0,-1这三个数中取值的2014个数,即:1a 为1,0,-1这三个数中一个数;2a 为1,0,-1这三个数中一个数,…,2014a 为1,0,-1这三个数中一个数.若12a a ++…2014100a +=,221122(3)(3)a a a a ++++ (22014)2014(3)2300a a +=,则1a ,2a ,3a ,…,2014a 中为0的个数是 个.三.解答题(本大题共有9小题,共96分.解答时写出必要的文字说明、解题过程或演算步骤) 19.(本题满分8分)计算:(1)-7+(-4)-(-5) (2)2119()(6)32⨯--÷20.(本题满分8分)计算:(1)22(3)228----+ (2)11120.54⎧⎫⎡⎤⎛⎫----÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭解方程:(1)2(1)39x +-= (2)21160.50.2x x +-+=22.(本题满分8分)(1)当2-=a ,4=b ,求代数式)(3)(2b a b a -++的值.(2)先化简,再求值:2212(23)3()3x xy x xy ---+ .其中2x =,16y =-.23.(本题满分10分)画出数轴,在数轴上表示下列各数,并用“<”连接这些数.4--,21()2,(2)--,3-,1-,0某巡警骑摩托车在一条南北大道上巡逻,某天早上他从岗亭出发,晚上停留在A 处,规定岗亭处向北方向为正,当天行驶情况记录如下(单位:千米):+10,-8,+7,-15,+6,-16; (1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油m 升,这一天共耗油多少升?25.(本题满分10分)如图,四边形ABCD 与ECGF 是两个边长分别为a ,b 的正方形. (1)用含a ,b 的代数式表示阴影部分面积;(2)当cm a 4=,cm b 6=时,计算图中阴影部分的面积.26. (本题满分10分)阅读与探究:我们知道分数13写为小数即0.3∙,反之,无限循环小数0.3∙写成分数即13.一般地,任何一个无限循环小数都可以写成分数形式.例如把0.5∙写成分数形式时: 设0.5x ∙=,则0.5555x =……根据等式性质得:10 5.555x =…… 即:105x x =+解得59x =, 所以50.59∙=.(1)模仿上述过程,把无限循环小数0.8∙写成分数形式; (2)小明知道无限循环小数0.43∙∙写成分数形式为4399,但他不知道其中原因,请你帮他写出探究的过程.27. (本题满分12分)对正整数a ,b ,a b ∆等于由a 开始的的连续b 个正整数之和,如:232349∆=++=, 又如:54567826∆=+++=. (1)若318x ∆=,求x . (2)若(3)375y ∆∆=,求y .28.(本题满分12分)某市出租车收费标准如下:3公里以内(含3公里)收费10元,超过3公里的部分每公里收费2元。
2014-2015学年山东省泰安市泰山区七年级(上)期中数学试卷(五四学制)一、选择题(共14小题,每小题3分,满分42分)1.(3分)下列四幅图案,其中是轴对称图形的个数()A.1个 B.2个 C.3个 D.4个2.(3分)下列说法:①角平分线上的点到这个角两条边的距离相等②线段的垂直平分线上的点到这条线段的两个端点的距离相等③三角形三条角平分线的交点到这个三角形三个顶点的距离相等.④三角形三条角平分线的交点到这个三角形三边的距离相等.其中正确的结论有()A.1个 B.2个 C.3个 D.4个3.(3分)两根木棒长分别为5cm和7cm,要选择第三根木棒,将其钉成三角形,则第三根木棒的长可以是()A.2cm B.4cm C.12cm D.17cm4.(3分)如图,已知AB=AD给出下列条件:(1)CB=CD (2)∠BAC=∠DAC (3)∠BCA=∠DCA (4)∠B=∠D,若再添一个条件后,能使△ABC≌△ADC的共有()A.1个 B.2个 C.3个 D.4个5.(3分)如图,在△ABC中,AB=AC,AD平分∠BAC,那么下列结论不一定成立的是()A.△ABD≌△ACD B.AD是△ABC的高线C.AD是△ABC的角平分线D.△ABC是等边三角形6.(3分)下列各组数分别是三角形的三边长,不是直角三角形的一组是()A.4,5,6 B.3,4,5 C.5,12,13 D.6,8,107.(3分)等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°8.(3分)如图中字母A所代表的正方形的面积为()A.4 B.8 C.16 D.649.(3分)如图,已知CF垂直平分AB于点E,∠ACD=70°,则∠A的度数是()A.25°B.35°C.40°D.45°10.(3分)如图1,已知△ABC的六个元素,则图2甲、乙、丙三个三角形中和图1△ABC全等的图形是()A.甲乙B.丙C.乙丙D.乙11.(3分)如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4cm B.5cm C.6cm D.10cm12.(3分)若等腰三角形的腰长为10,底边长为12,则底边上的高为()A.6 B.7 C.8 D.913.(3分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去14.(3分)△ABC的三边分别为a、b、c,其对角分别为∠A、∠B、∠C.下列条件不能判定△ABC是直角三角形的是()A.∠B=∠A﹣∠C B.a:b:c=5:12:13C.b2﹣a2=c2D.∠A:∠B:∠C=3:4:5二、填空题(共7小题,每小题3分,满分21分)15.(3分)从汽车的后视镜中看见某车车牌的后五位号码是,则该车的后五位号码是.16.(3分)等腰三角形的两边分别长7cm和15cm,则它的周长是.17.(3分)已知:如图,∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,(1)若以“SAS”为依据,还须添加的一个条件为;(2)若以“ASA”为依据,还须添加的一个条件为;(3)若以“AAS”为依据,还须添加的一个条件为.18.(3分)如图,在△ABC中AB=AC,∠A=36°,BD平分∠ABC,则∠1=度,图中有个等腰三角形.19.(3分)如图,在△ABC中,∠B=90°,∠BAC=60°,AB=5,D是BC边延长线上的一点,并且∠D=15°,则CD的长为.20.(3分)三角形三边长分别为8,15,17,那么最长边上的高为.21.(3分)如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等.则E应建在距A km?三、解答题(共6小题,满分57分)22.(9分)如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D(1)∠PCD=∠PDC吗?为什么?(2)OP是CD的垂直平分线吗?为什么?23.(6分)如图,校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P,简要说明理由.24.(9分)在△ABC中,∠ACB=90°,AC=4,BC=3,在△ABD中,BD=12,AD=13,求△ABD的面积.25.(9分)已知在△ABC中,∠A=90°,D,E分别是边BC,AC上的点,且DE ⊥BC于D,△ADB≌△EDB≌EDC,则∠C的度数为多少?.DE与DC之间有怎样的数量关系?说明理由.26.(12分)在△ABC中,AB=AC,点D是BC的中点,点E是AD上任意一点.(1)如图1,连接BE、CE,问:BE=CE成立吗?并说明理由;(2)如图2,若∠BAC=45°,BE的延长线与AC垂直相交于点F时,问:EF=CF 成立吗?并说明理由.27.(12分)在△ABC中,∠BAC=90°,AB=AC,l是过A的一条直线,BD⊥AE于D,CE⊥AE于E.求证:(1)当直线l绕点A旋转到如图1位置时,试说明:DE=BD+CE.(2)若直线l绕点A旋转到如图2位置时,试说明:DE=BD﹣CE.(3)若直线l绕点A旋转到如图3位置时,试问:BD与DE,CE具有怎样的等量关系?请写出结果,不必证明.2014-2015学年山东省泰安市泰山区七年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)1.(3分)下列四幅图案,其中是轴对称图形的个数()A.1个 B.2个 C.3个 D.4个【解答】解:第一、二、四幅图案是轴对称图形,共3个.故选:C.2.(3分)下列说法:①角平分线上的点到这个角两条边的距离相等②线段的垂直平分线上的点到这条线段的两个端点的距离相等③三角形三条角平分线的交点到这个三角形三个顶点的距离相等.④三角形三条角平分线的交点到这个三角形三边的距离相等.其中正确的结论有()A.1个 B.2个 C.3个 D.4个【解答】解:①角平分线上的点到这个角两条边的距离相等,说法正确;②线段的垂直平分线上的点到这条线段的两个端点的距离相等,说法正确;③三角形三条角平分线的交点到这个三角形三个顶点的距离相等,说法错误;④三角形三条角平分线的交点到这个三角形三边的距离相等,说法正确.其中正确的结论有①②④.故选:C.3.(3分)两根木棒长分别为5cm和7cm,要选择第三根木棒,将其钉成三角形,则第三根木棒的长可以是()A.2cm B.4cm C.12cm D.17cm【解答】解:由三角形的三边关系,得7﹣5<x<7+5,即2<x<12.综观各选项,只有B符合要求.故选:B.4.(3分)如图,已知AB=AD给出下列条件:(1)CB=CD (2)∠BAC=∠DAC (3)∠BCA=∠DCA (4)∠B=∠D,若再添一个条件后,能使△ABC≌△ADC的共有()A.1个 B.2个 C.3个 D.4个【解答】解:由图形△ABC和△ADC有公共边,结合条件AB=AD,故可再加一组边,和公共边与已知一组边的夹角相等,即当CB=CD或∠BAC=∠DAC时△ABC ≌△ADC,当∠B=∠D时,如图,连接BD,∵AB=AD,∴∠ABD=∠ADB,∴∠CBD=∠CDB,∴BC=DC,且AC=AC,∴△ABC≌△ADC(SSS),所以能使△ABC≌△ADC的条件有3个,故选:C.5.(3分)如图,在△ABC中,AB=AC,AD平分∠BAC,那么下列结论不一定成立的是()A.△ABD≌△ACD B.AD是△ABC的高线C.AD是△ABC的角平分线D.△ABC是等边三角形【解答】解:A、在△ABD和△ACD中,,所以△ABD≌△ACD,所以A正确;B、因为AB=AC,AD平分∠BAC,所以AD是BC边上的高,所以B正确;C、由条件可知AD为△ABC的角平分线;D、由条件无法得出AB=AC=BC,所以△ABC不一定是等边三角形,所以D不正确;故选:D.6.(3分)下列各组数分别是三角形的三边长,不是直角三角形的一组是()A.4,5,6 B.3,4,5 C.5,12,13 D.6,8,10【解答】解:A、42+52≠62,不符合勾股定理的逆定理,不是直角三角形;B、32+42=25=52,符合勾股定理的逆定理,是直角三角形;C、52+122=169=132,符合勾股定理的逆定理,是直角三角形;D、62+82=100=102,符合勾股定理的逆定理,是直角三角形.故选:A.7.(3分)等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:B.8.(3分)如图中字母A所代表的正方形的面积为()A.4 B.8 C.16 D.64【解答】解:根据勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,所以A=289﹣225=64.故选:D.9.(3分)如图,已知CF垂直平分AB于点E,∠ACD=70°,则∠A的度数是()A.25°B.35°C.40°D.45°【解答】解:∵CF垂直平分AB,∴CA=CB,∴∠B=∠A.∵∠ACD=∠A+∠B=70°,∴∠A=∠B=35°.故选:B.10.(3分)如图1,已知△ABC的六个元素,则图2甲、乙、丙三个三角形中和图1△ABC全等的图形是()A.甲乙B.丙C.乙丙D.乙【解答】解:已知图1的△ABC中,∠B=50°,BC=a,AB=c,AC=b,∠C=58°,∠A=72°,图2中,甲:只有一个角和∠B相等,没有其它条件,不符合三角形全等的判定定理,即和△ABC不全等;乙:符合SAS定理,能推出两三角形全等;丙:符合AAS定理,能推出两三角形全等;故选:C.11.(3分)如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4cm B.5cm C.6cm D.10cm【解答】解:∵△ABC是直角三角形,两直角边AC=6cm、BC=8cm,∴AB===10cm,∵△ADE由△BDE折叠而成,∴AE=BE=AB=×10=5cm.故选:B.12.(3分)若等腰三角形的腰长为10,底边长为12,则底边上的高为()A.6 B.7 C.8 D.9【解答】解:作底边上的高并设此高的长度为x,则根据勾股定理得:62+x2=102;解得:x=8,故选:C.13.(3分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.14.(3分)△ABC的三边分别为a、b、c,其对角分别为∠A、∠B、∠C.下列条件不能判定△ABC是直角三角形的是()A.∠B=∠A﹣∠C B.a:b:c=5:12:13C.b2﹣a2=c2D.∠A:∠B:∠C=3:4:5【解答】解:A、∵∠B=∠A﹣∠C,∴∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,即△ABC是直角三角形,故本选项错误;B、∵52+122=132,∴△ABC是直角三角形,故本选项错误;C、∵b2﹣a2=c2,∴b2=a2+c2,∴△ABC是直角三角形,故本选项错误;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故本选项正确;故选:D.二、填空题(共7小题,每小题3分,满分21分)15.(3分)从汽车的后视镜中看见某车车牌的后五位号码是,则该车的后五位号码是BA629.【解答】解:该车的后五位号码是BA629.故答案是:BA629.16.(3分)等腰三角形的两边分别长7cm和15cm,则它的周长是37cm.【解答】解:①7cm是腰长时,三角形的三边分别为7cm、7cm、15cm,∵7+7=14<15,∴不能组成三角形,②7cm是底边时,三角形的三边分别为7cm、15cm、15cm,能组成三角形,周长=7+15+15=37cm,综上所述,它的周长是37cm.故答案为:37cm.17.(3分)已知:如图,∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,(1)若以“SAS”为依据,还须添加的一个条件为BC=EF;(2)若以“ASA”为依据,还须添加的一个条件为∠A=∠D;(3)若以“AAS”为依据,还须添加的一个条件为∠ACB=∠DFE.【解答】解:(1)若以“SAS”为依据,还须添加的一个条件为BC=EF;(2)若以“ASA”为依据,还须添加的一个条件为∠A=∠D;(3)若以“AAS”为依据,还须添加的一个条件为∠ACB=∠DFE.故填BC=EF,∠A=∠D,∠ACB=∠DFE.18.(3分)如图,在△ABC中AB=AC,∠A=36°,BD平分∠ABC,则∠1=72度,图中有3个等腰三角形.【解答】解:∵AB=AC,∠A=36°,∴△ABC是等腰三角形,∠C=∠ABC==72°,∵BD为∠ABC的平分线,∴∠ABD=∠A=∠DBC=36°,∴AD=BD,△ADB是等腰三角形,∴∠1=180°﹣36°﹣72°=72°=∠C,∴BC=BD,△CDB是等腰三角形,图中共有3个等腰三角形.故填3.19.(3分)如图,在△ABC中,∠B=90°,∠BAC=60°,AB=5,D是BC边延长线上的一点,并且∠D=15°,则CD的长为10.【解答】解:∵在△ABC中,∠B=90°,∠BAC=60°,∴∠ACB=30°,∵∠D=15°,∴∠CAD=∠ACB﹣∠D=15°=∠D,∴CD=AC,∵∠B=90°,∠ACB=30°,AB=5,∴AC=2AB=10,∴CD=10,故答案为:10.20.(3分)三角形三边长分别为8,15,17,那么最长边上的高为.【解答】解:∵82+152=172,∴三角形为直角三角形,设斜边上的高为h,∵三角形的面积=,∴h=.21.(3分)如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等.则E应建在距A15km?【解答】解:设AE=xkm,则BE=(25﹣x)km,根据题意可得:∵DE=CE,∴AD2+AE2=BE2+BC2,故102+x2=(25﹣x)2+152,解得;x=15.故答案为:15.三、解答题(共6小题,满分57分)22.(9分)如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D(1)∠PCD=∠PDC吗?为什么?(2)OP是CD的垂直平分线吗?为什么?【解答】解:(1)∠PCD=∠PDC.理由:∵OP是∠AOB的平分线,且PC⊥OA,PD⊥OB,∴PC=PD,∴∠PCD=∠PDC;(2)OP是CD的垂直平分线.理由:∵∠OCP=∠ODP=90°,在Rt△POC和Rt△POD中,,∴Rt△POC≌Rt△POD(HL),∴OC=OD,由PC=PD,OC=OD,可知点O、P都是线段CD的垂直平分线上的点,从而OP是线段CD的垂直平分线.23.(6分)如图,校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P,简要说明理由.【解答】解:灯柱的位置P在∠AOB的平分线OE和CD的垂直平分线的交点上.∵P在∠AOB的平分线上,∴到两条路的距离一样远;∵P在线段CD的垂直平分线上,∴P到C和D的距离相等,符合题意.24.(9分)在△ABC中,∠ACB=90°,AC=4,BC=3,在△ABD中,BD=12,AD=13,求△ABD的面积.【解答】解:∵∠ACB=90°,AC=4,BC=3,∴AB2=AC2+CB2,∴AB=5.∵BD=12,AD=13,∴AD2=BD2+AB2,∴∠ABD=90°,∴△ABD的面积=×AB×BD=30.答:△ABD的面积为30.25.(9分)已知在△ABC中,∠A=90°,D,E分别是边BC,AC上的点,且DE ⊥BC于D,△ADB≌△EDB≌EDC,则∠C的度数为多少?.DE与DC之间有怎样的数量关系?说明理由.【解答】解:当∠C=30°时,△ADB≌△EDB≌EDC,DC=2ED,理由是:∵△ADB≌△EDB≌△EDC,∴∠A=∠DEB=∠DEC=90°,∠ABD=∠EBD=∠C,∵∠A=90°,∴∠C+∠ABC=90°,∴3∠C=90°,∴∠C=30°,∵∠DEC=90°,∴DC=2DE.26.(12分)在△ABC中,AB=AC,点D是BC的中点,点E是AD上任意一点.(1)如图1,连接BE、CE,问:BE=CE成立吗?并说明理由;(2)如图2,若∠BAC=45°,BE的延长线与AC垂直相交于点F时,问:EF=CF 成立吗?并说明理由.【解答】解:(1)成立.理由:∵AB=AC,D是BC的中点,∴∠BAE=∠CAE.在△ABE和△ACE中,∴△ABE≌△ACE(SAS)∴BE=CE.(2)成立.理由:∵∠BAC=45°,BF⊥AF.∴△ABF为等腰直角三角形∴AF=BF…由(1)知AD⊥BC,∴∠EAF=∠CBF在△AEF和△BCF中,.∴△AEF≌△BCF(ASA),∴EF=CF.27.(12分)在△ABC中,∠BAC=90°,AB=AC,l是过A的一条直线,BD⊥AE于D,CE⊥AE于E.求证:(1)当直线l绕点A旋转到如图1位置时,试说明:DE=BD+CE.(2)若直线l绕点A旋转到如图2位置时,试说明:DE=BD﹣CE.(3)若直线l绕点A旋转到如图3位置时,试问:BD与DE,CE具有怎样的等量关系?请写出结果,不必证明.【解答】(1)证明:如图1,∵BD⊥l,CE⊥l,∴∠BDA=∠CEA=90°,∴∠ABD+∠DAB=90°.∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠ABD=∠CAE.在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE.∵DE=AD+AE,∴DE=CE+BD;(2)如图2,∵BD⊥l,CE⊥l,∴∠BDA=∠CEA=90°,∴∠ABD+∠DAB=90°.∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠ABD=∠CAE.在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE∵DE=AE﹣AD,∴DE=BD﹣CE.(3)DE=CE﹣BD如图3,∵BD⊥l,CE⊥l,∴∠BDA=∠CEA=90°,∴∠ABD+∠DAB=90°.∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠ABD=∠CAE.在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE∵DE=AD﹣AE,∴DE=CE﹣BD.。
___2014-2015学年七年级(上)期中数学试卷解析1.的相反数的绝对值是()2.下列语句中错误的是()A。
数字也是单项式B。
单项式 -a 的系数与次数都是1C。
xy 是二次单项式3.下列各式计算正确的是()A。
-(-4) = -16B。
-8 - 2×6 = (-1+6)×(-2)C。
4÷x = 4÷(x)4.如果|a|=3,|b|=1,且a>b,那么a+b的值是()5.下列说法上正确的是()A。
长方体的截面一定是长方形B。
正方体的截面一定是正方形C。
圆锥的截面一定是三角形6.如图,四条表示方向的射线中,表示___的是()A。
B。
C。
7.若,则代数式的值是()8.下面是___做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面。
(-x+3xy-y)-(-x+4xy-y)=-x+2y,阴影部分即为被墨迹弄污的部分。
那么被墨汁遮住的一项应是()9.下列说法正确的个数为()1)过两点有且只有一条直线2)连接两点的线段叫做两点间的距离3)两点之间的所有连线中,线段最短4)射线比直线短一半5)直线AB和直线BA表示同一条直线。
10.某电影院共有座位n排,已知第一排的座位为m个,后一排总是比前一排多1个,则电影院中共有座位()个。
11.比较大小:-π-3.14(选填“>”、“=”、“<”)。
12.单项式 -ab 的系数是,单项式 -2 的次数是。
13.在数轴上,点M表示的数是-2,将它先向右移动4.5个单位,再向左移5个单位到达点N,则点N表示的数是。
14.一桶油连桶的重量为a千克,桶重量为b千克,如果把油平均分成3份,每份重量是。
15.如图:三角形有个。
23.正方形的边长为$a$,其中有一直径为$a$的内切圆,阴影部分面积为$S$。
1)求阴影面积$S$;24.计算:1)$\left(-\frac{1}{2}+\frac{3}{4}\right)\times(-12)$;25.1)化简$-2(mn-3m)-[m-5(mn-m)+2mn]$;2)先化简,再求值:$5abc-\{2ab-[3abc-2(2ab-ab)]\}$,当$a=2$,$b=-1$,$c=3$时的值;26.如图,点$P$在线段$AB$上,点$M$、$N$分别是线段$AB$、$AP$的中点,若$AB=16$cm,$BP=6$cm,求线段$NP$和线段$MN$的长度。
泰安市高新区一中2014-2015学年上学期期中模拟初一数学试卷一.选择题(共15小题)1.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.2.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦3.下列几何体中,同一个几何体的主视图与俯视图不同的是()A.圆柱B.正方体C.圆锥D.球4.下列几何体的主视图、左视图、俯视图都相同的是()A.B.C.D.5.一个正方体的6个面分别标有“2”,“3”,“4”,“5”,“6”,“7”其中一个数字,如图表示的是正方体3种不同的摆法,当“2”在上面时,下面的数字是()A.4B.5C.6D.76.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是()A.我B.的C.梦D.中7.用一个平面去截一个几何体,不能截得三角形截面的几何体是( ) A . 圆柱B . 圆锥C . 三棱柱D . 正方体8.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是( )A .19.7千克B . 19.9千克C . 20.1千克D . 20.3千克9. 2014的相反数是( )A .B . ﹣C . ﹣2014D . 201410.21的绝对值的相反数是( )A .B .C . 2D . ﹣211.下列各数中,比﹣2小1的是( ) A . ﹣1B . 0C . ﹣3D . 312.一位“粗心”的同学在做加减运算时,将“﹣5”错写成“+5”进行运算,这样他得到的结果比正确答案( ) A . 少5 B . 少10 C . 多5 D . 多1013.将5.62×10﹣4用小数表示为( )A . 0.000562B . 0.0000562C . 0.00562D . 0.0000056214.计算﹣8+6÷(﹣21)的结果是( ) A . 4B . ﹣5C . ﹣11D . ﹣2015.(2013•资阳)资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值( ) A . 精确到亿位B . 精确到百分位C . 精确到千万位D . 精确到百万位二.填空题(共8小题)16.若m 与n 互为相反数,则|m+n ﹣2|= _________ . 17.已知|x|=1,|y|=2,且xy >0,则x+y= _________ . 18.如果一个数的倒数等于它本身,则这个数是 _________ .19.已知|x﹣1|+(y+2)2=0,则(x+y)2013= _________.20.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是_________.21.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是_________.22.个几何体,是由许多规格相同的小正方体堆积而成的,其正视图、左视图如图所示,要摆成这样的图形,最少需用_________个正方体.(22) (23)23.如图是一个几何体的三个视图,则这个几何体的表面积为_________.(结果保留π)三.解答题(共6小题)24.(2009•沈阳模拟)如图是一个由若干个棱长相等的正方体构成的几何体的三视图.(1)请写出构成这个几何体的正方体个数;(2)请根据图中所标的尺寸,计算这个几何体的表面积.25.如图,在无阴影的方格中选出两个画出阴影,使它们与图中四个有阴影的正方形一起可以构成正方体表面的不同展开图(填出三种答案).26.计算:(1)2×(﹣5)+22﹣3÷21.27.计算:17﹣23÷(﹣2)×3.28.计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣21).29.一天下午,出租车司机小王的营运全是在南北走向建设大街上进行的,如果规定向南为正,向北为负,这天下午他行车里程(单位:千米)为:+3,+10,﹣21,+7,﹣6,﹣8,+12,+2,﹣3,﹣4,+6,﹣5.请回答:(1)收工时,小王的出租车在下午出发点的什么位置? (2)这辆汽车共行驶了多远?(3)若汽车耗油量为0.3升/千米,这天下午小王的汽车共耗油多少升?参考答案一.选择题(共15小题)1.B .2.D .3.C .4.D .5.C .6.A .7.A .8.C .9.C .10.B .11.C .12.D . 13.A .14.D .15.D . 二.填空题(共8小题)16. 2 .17.﹣3或3 .18. ±1 .19.﹣1 20. 8 .21. 3 . 22. 7 23. 24π . 三.解答题(共6小题) 24.解:(1)5个;(2)S 表=5×6a 2﹣10a 2=20a 2. 25.解:根据正方体的展开图作图:26.解:原式=﹣10+4﹣3×2=﹣10+4﹣6=﹣12.27.解:17﹣23÷(﹣2)×3=17﹣8÷(﹣2)×3=17﹣(﹣4)×3=17+12=29.28.解:原式=4﹣7+3+1=1.29.解:(1)3+10+(﹣21)+7+(﹣6)+(﹣8)+12+2+(﹣3)+(﹣4)+6+(﹣5)=﹣7(km),答:小王的出租车在下午出发点倍7千米;(2)3+10+|﹣21|+7+|﹣6|+|﹣8|+12+2+|﹣3|+|﹣4|+6+|﹣5|=87(千米).答:这辆汽车共行驶了87千米;(3)87×0.3=26.1(升).答:这天下午小王的汽车共耗油26.1升.。
七年级(上)期中数学试卷一、选择题(本大题共15小题,共45.0分)1.在-4,2,-1,3这四个数中,比-2小的数是()A. B. 2 C. D. 32.若a<0,则|a|的相反数是()A. B. C. a D.3.下列调查中,最适合采用全面调查(普查)的是()A. 对肥城市居民日平均用水量的调查B. 对一批LED节能灯使用寿命的调查C. 对肥城新闻栏目收视率的调查D. 对某校七年级班同学身高情况的调查4.下列图形中,是正方体表面展开图的是()A. B.C. D.5.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是()A. B. C. D.6.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A. 3cmB. 6cmC. 11cmD. 14cm7.为了了解我市6000名学生参加的初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:(1)这6000名学生的数学会考成绩的全体是总体;(2)每个考生是个体;(3)200名考生是总体的一个样本;(4)样本容量是200,其中说法正确的有()A. 4个B. 3个C. 2个D. l个8.已知线段AB=6,若点C到点A距离为2,到点B的距离为3,则对点C描述正确的是()A. 在线段AB所在的平面内能找到无数多个这样的点CB. 满足条件的点C都在线段AB上C. 满足条件的点C都在两条射线上D. 这样的点C不存在9.计算(-2)0+9÷(-3)的结果是()A. B. C. D.10.在线段AB上取一点C,使AC=AB,再在线段AB的延长线上取一点D,使DB=AD,则线段BC的长度是线段DC长度的()A. B. C. D.11.有理数a、b在数轴上的位置如图所示,则a+b的值是()A. 正数B. 负数C. 零D. 符号不确定12.某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)根据图表提供的信息,下列结论错误的是()A. 这次被调查的学生人数为400人B. 扇形统计图中E部分扇形的圆心角为C. 被调查的学生中喜欢选修课E、F的人数分别为80,70D. 喜欢选修课C的人数最少13.点P在线段EF上,现有四个等式①PE=PF;②PE=EF;③EF=2PE;④2PE=EF;其中能表示点P是EF中点的有()A. 4个B. 3个C. 2个D. 1个14.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a-b|=3,|b-c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A. 在A的左边B. 介于A、B之间C. 介于B、C之间D. 在C的右边15.下列说法①若a+b=0,则a、b互为相反数;②若ab=1,则a、b互为倒数;③若ab>0,则a、b均大于0;④若|a|=a,则a一定为正数,其中正确的个数为()A. ①④B. ①②C. ①②④D. ①③④二、填空题(本大题共5小题,共15.0分)16.计算+(-3)2的结果是______ .17.有理数a、b在数轴上的位置如图所示,则|a+1|-|b-2|的结果为______ .18.如图,点C、D是线段AB上的两点,若AC=4,CD=5,DB=3,则图中所有线段的和是______ .19.下列说法①两条不同的直线可能有无数个公共点;②两条不同的射线可能有无数个公共点;③两条不同的线段可能有无数个公共点;④一条直线和一条线段可能有无数个公共点,其中正确说法的序号为______ .20.如图是一家报纸“百姓热线”一周内接到热线电话的统计图,其中有关环境保护问题的电话最多,共30个.本周“百姓热线”共接到热线电话有______ 个.三、计算题(本大题共1小题,共16.0分)21.计算下列各题:(1)(-27)+(+3)-(-25)-(+15)(2)(-+)÷(-)•(3)[(-6-)÷]÷[(2-)×]×(-)(4)-23-×[4-(-3)2]3.四、解答题(本大题共5小题,共44.0分)22.将下列各数填在相应的集合里.-,π0,(-3)3,-|-|,(-2)2,0,-(-),-6.2%整数集合:{______…};分数集合:{______…};正数集合:{______…};负数集合:{______…}.23.将-3,(π-3.14)0,-|-3.14|,(-2)2,0,-(-)在数轴上表示出来,并将这几个数用“<”连接起来.24.如图,点C分线段AB为2:1两部分,D点为线段CB的中点,AD=5,求线段AB的长.25.为扩大内需,国务院决定在全国实施“家电下乡”政策.第一批列入家电下乡的产品为彩电、冰箱、洗衣机和手机四种产品.我市一家家电商场,去年一季度对以上四种产品的销售情况进行了统计.结果显示冰箱销售的数量占总销量的20%,手机销售的数量占总销量的40%,并绘制了如图的条形统计图,请你解答下列问题:(1)该商场一季度四种家电销售的数量总共是多少台?(2)洗衣机销售的数量占总销量的百分比?(3)请补全条形统计图,并将条形统计图转化为扇形统计图.26.按要求完成下列问题:(1)若A、B、C、D、E是平面内不同的5个点,则过这5个点的直线可能有多少条?要求确定出可能的条数,并画出每种情况的一种简图;(2)平面内有n(n为不小于2的整数)个点,过这n个点最多能作多少条直线?答案和解析1.【答案】A【解析】解:∵正数和0大于负数,∴排除2和3.∵|-2|=2,|-1|=1,|-4|=4,∴4>2>1,即|-4|>|-2|>|-1|,∴-4<-2<-1.故选:A.根据有理数大小比较的法则直接求得结果,再判定正确选项.考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.2.【答案】C【解析】解:∵a<0,则|a|=-a,∴-a的相反数是a,故选C.根据绝对值的意义,可得a的值,根据相反数的意义,可得答案.本题考查了绝对值,熟记绝对值的定义是解题关键.3.【答案】D【解析】解:A、对肥城市居民日平均用水量的调查,调查范围广,适合抽样调查,故A 不符合题意;B、对一批LED节能灯使用寿命的调查,调查具有普坏性,适合抽样调查,故B不符合题意;C、对肥城新闻栏目收视率的调查,调查范围广,适合抽样调查,故C不符合题意;D、对某校七年级(7)班同学身高情况的调查,适合普查,故D符合题意;故选:D.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.【答案】C【解析】解:A、B折叠后,缺少一个底面,故不是正方体的表面展开图;选项D折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体,故选C.利用正方体及其表面展开图的特点解题.只要有“田”字格的展开图都不是正方体的表面展开图.5.【答案】C【解析】解:2014年底机动车的数量为:3×105+2×106=2.3×106.故选C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.【答案】B【解析】解:∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB-BC=7-4=3cm,∵D是AC的中点,∴AC=2CD=2×3=6cm.故选B.先根据CB=4cm,DB=7cm求出CD的长,再根据D是AC的中点求出AC的长即可.本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.7.【答案】C【解析】解:本题中的个体是每个考生的数学会考成绩,样本是200名考生的数学会考成绩,故(2)和(3)错误;总体是我市6000名学生参加的初中毕业会考数学考试的成绩情况,样本容量是200.故(1)和(4)正确.故选:C.总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.本题考查的是确定总体、个体和样本.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”8.【答案】D【解析】解:若A、B、C三点一条直线上,如图1,∵AB=6,若点C到点A距离为2,∴BC=6-2=4,如图2,∵AB=6,若点C到点A距离为2,∴BC=6+2=8,如图3,若A、B、C不在一条直线上,则AC+BC>AB,AC+BC>6,∴线段AB=6,若点C到点A距离为2,到点B的距离为3时,这样的C点不存在,故选:D.此题分两种情况进行分析,①若A、B、C三点一条直线上,②若A、B、C不在一条直线上.此题主要考查了直线、射线和线段,关键是正确确定A、B、C三点的位置,进行分类讨论.9.【答案】B【解析】解:原式=1+(-3)=-2,故选:B.根据零指数幂和有理数的除法法则计算即可.本题考查的是零指数幂和有理数的除法运算,掌握任何不为0的数的零次幂为1、灵活运用有理数的除法法则是解题的关键.10.【答案】B【解析】解:∵AC=AB,DB=AD,∴AB=3AC,AB=3BD,BC=2AC,∴AC=BD,∴DC=3BD=3AC,∴BC÷DC=2AC÷3AC=,故选B.先画出突出,根据已知求出BC=2AC,DC=3BD=3AC,即可求出答案.本题考查了求两点之间的距离,能根据已知求出BC=2AC和D=3AC是解此题的关键.11.【答案】A【解析】解:根据图可得:a<0,b>0,|b|>|a|,则a+b>0.故选A.根据数轴判断出a,b的符号和绝对值的大小,从而判断出|b|>|a|,再根据有理数的加法法则即可得出a+b的值.此题考查了有理数的加法、数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的思想.12.【答案】D【解析】解:被调查的学生人数为60÷15%=400(人),∴选项A正确;扇形统计图中D的圆心角为×360°=90°,∵×360°=36°,360°×(17.5%+15%+12.5%)=162°,∴扇形统计图中E的圆心角=360°-162°-90°-36°=72°,∴选项B正确;∵400×=80(人),400×17.5%=70(人),∴选项C正确;∵12.5%>10%,∴喜欢选修课A的人数最少,∴选项D错误;故选:D.通过计算得出选项A、B、C正确,选项D错误,即可得出结论.本题考查了条形统计图、扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.13.【答案】B【解析】解:①PE=PF,点P在线段EF上,可判断P是EF中点,故正确;②PE=EF,则PE=PF,点P在线段EF上,可判断P是EF中点,故正确;③EF=2PE,则EF=4PE,点P在线段EF上,可判断P不是EF中点,故错误;④2PE=EF,则PE=PF,点P在线段EF上,可判断P是EF中点,故正确;综上可得①②④正确.故选B.根据中点的定义判断各项即可得出答案.本题考查线段及重点的知识,有一定难度,注意考虑线段的延长线可能满足条件.14.【答案】C【解析】解:∵|a-b|=3,|b-c|=5,∴b=a+3,c=b+5,∵原点O与A、B的距离分别为4、1,∴a=±4,b=±1,∵b=a+3,∴a=-4,b=-1,∵c=b+5,∴c=4.∴点O介于B、C点之间.故选C.由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为4、1,即可得出a=±4、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.15.【答案】B【解析】解:①若a+b=0,则a、b互为相反数是正确的;②若ab=1,则a、b互为倒数是正确的;③若ab>0,则a、b均大于0或均小于0,题干的说法是错误的;④若|a|=a,则a一定为负分数,题干的说法是错误的.故选:B.分别利用有理数的加法、相反数的定义,倒数的定义、有理数乘法运算,绝对值的性质分别分析得出答案.此题主要考查了相反数、倒数的定义、有理数的加法,乘法运算,绝对值的性质等知识,正确掌握相关性质是解题关键.16.【答案】10【解析】解:+(-3)2=1+9=10.故答案为:10.直接利用零指数幂的性质结合有理数的乘方运算法则化简求出答案.此题主要考查了零指数幂的性质以及有理数的乘方运算,正确掌握运算法则是解题关键.17.【答案】a+b-1【解析】解:根据题意得:-1<a<0<1<b<2,则a+1>0,b-2<0,则|a+1|-|b-2|=a+1+b-2=a+b-1.故答案为:a+b-1.根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,数轴,以及绝对值,弄清题意是解本题的关键.18.【答案】41【解析】解:AD=AC+CD=9,AB=AC+CD+DB=12,CB=CD+DB=8,故所有线段的和=AC+AD+AB+CD+CB+DB=41.图中所有线段有:AC、AD、AB、CD、CB、DB,由已知条件分别求出线段的长度,再相加即可.找出图中所有线段是解题的关键,注意不要遗漏,也不要增加.19.【答案】②③④【解析】解:①两条不同的直线可能有无数个公共点,错误,直线不能重合;②两条不同的射线可能有无数个公共点,正确;③两条不同的线段可能有无数个公共点,正确;④一条直线和一条线段可能有无数个公共点,正确.故答案为:②③④.直接利用直线、射线、线段的定义进而判断得出答案.此题主要考查了直线、射线、线段的定义,正确把握相关定义是解题关键.20.【答案】100【解析】解:本周“百姓热线”共接到热线电话有:30÷30%=100(个);故答案为:100根据其中有关环境保护问题最多,共有30个,占30%,已知部分求全体,用除法,即可求解.本题主要考查条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,这里注意:已知部分求全体,用除法;已知全体求部分,用乘法.21.【答案】解:(1)原式=-27+3+25-15=-42+28=-14;(2)原式=(-+)×(-36)×=(-+)×(-16)=-12+-=-6;(3)原式=(-)×÷(-)×=××=;(4)原式=-8-×(-125)=-8+=-.【解析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式先计算括号中的运算,再计算乘除运算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.【答案】π0,(-3)3,(-2)2,0;-,-|-|,-(-),-6.2%;π0,(-2)2,-(-);-,(-3)3,-|-|,-6.2%【解析】解:整数集合:{π0,(-3)3,(-2)2,0…};分数集合:{-,-|-|,-(-),-6.2%…};正数集合:{π0,(-2)2,-(-)…};负数集合:{-,(-3)3,-|-|,-6.2%…}.故答案为:{π0,(-3)3,(-2)2,0…};{-,-|-|,-(-),-6.2%…};{π0,(-2)2,-(-)…};{-,(-3)3,-|-|,-6.2%…}.按照有理数的分类填写:有理数.本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.23.【答案】解:(π-3.14)0,=1,-|-3.14|=-3.14,(-2)2=4,-(-)=,如图所示:将这几个数用“<”连接起来为:(-2)2<-|-3.14|<-3<0<(π-3.14)0<-(-).【解析】先化简各数,在数轴上表示出来,再比较即可.本题考查了数轴和有理数的大小比较的应用,注意:在数轴上表示的数,右边的数总比左边的数大.24.【答案】解:设CD=x,∵点C分线段AB为2:1两部分,D点为线段CB的中点,∴BD=CD=x,BC=2x,AC=4x,∵AD=5,∴4x+x=5,∴x=1,∴AB=4x+2x=6答:线段AB的长为6.【解析】设CD=x,根据已知得出BD=CD=x,BC=2x,AC=4x,根据AD=5得出4x+x=5,求出x即可.本题考查了求两点之间的距离,能根据题意得出关于x的方程是解此题的关键.25.【答案】解:(1)根据题意得:手机有200台,占40%,则销售总量为200÷40%=500台;(2)根据题意可得:洗衣机销售的数量占总销量的百分比=50÷500×100%=10%;(3)根据题意可得:冰箱有500×20%=100台.∴条形统计图如图所示:根据题意可得:彩电的销量为150台,故150÷500=30%,∴扇形统计图如图所示:【解析】(1)根据手机有200台,占40%,可得四种家电销售的数量;(2)根据洗衣机销售的数量除以总销量,可得洗衣机销售的数量占总销量的百分比;(3)先求得冰箱的台数,再画出条形统计图,根据彩电的销量为150台,可得150÷500=30%,进而得出扇形统计图.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.【答案】2031120;【解析】解:(1)①若5个点在一条直线上,只能确定1条直线;②若只有4个点在一条直线上,则能确定5条直线;③若有两个3个点在一条直线上,则能确定6条直线;④若只有3点在一条直线上,则能确定8条直线;⑤若没有任何3点在一条直线上,则能确定10条直线.(2)设平面内有n(n为不小于2的整数)个点,过这n个点最多能作a n条直线,观察,发现规律:a2==1,a3==3,a4==6,a5==10,…,∴a n=.当n=2016时,a2016==2031120.故答案为:2031120;.(1)分五种情况考虑,画出草图,数出直线的条数即可得出结论;(2)设平面内有n(n为不小于2的整数)个点,过这n个点最多能作a n条直线,根据部分a n的变化找出变化规律“a n=”,依此即可得出结论.本题考查了直线、射线、线段以及规律型中数字的变化,解题的关键是:(1)分五种情况考虑;(2)找出变化规律“a n=”.。
泰安市泰山区2014-2015学年度第一学期期中学情检测
初一数学试题
(时间120分钟)
总分 等级
一、选择题(本大题共14个小题,每小题3分,共42分。
每小题给出的四个答案中,只有
1.有理数﹣3的相反数是( ) A .﹣3 B .3 C . D . ﹣ 2.如图是由4个大小相同的正方体搭成的几何体,其俯视图是( )
A .
B .
C .
D .
3.在
21
,0,—1,﹣这五个数中,最小的数为( ) A .
2
1 B .0
C .﹣
D .—1
4.下列图形中,能通过折叠围成一个三棱柱的是( )
A .
B .
C .
D .
5.下列计算结果正确的是( ) A .3—8=5 B .—4+7=—11 C .—6﹣9=—15 D .0﹣2=2
6.如图是一个正方体的表面展开图,则原正方体中与“祝”字所在的面相对的面上标的字是( )
A .考
B . 试
C . 顺
D . 利
7.用一个平面去截一个正方体,截面不可能是( ) A .三角形 B .正方形 C .五边形 D .八边形
8.算式(﹣2)÷3×
)3
1-(的结果等于( ) A .
92 B .—2 C .—92
D .2 9.如果由四舍五入得到的近似数75,那原数不可能是( )
A.74.48 B.74.53 C.74.87 D.75.49
10.在已知的数轴上,表示﹣2.75的点是()
A.点E B.点F C.点G D.点H
11.下列各组数中,运算结果相等的是()
A.(﹣3)2与﹣32B.(﹣3)3与﹣33
C.与D.34与43
12.质检员抽查某零件的质量,超过规定尺寸的部分记为正数,不足规定尺寸的部分记为负数,结果第一个0.13 mm,第二个﹣0.12 mm,第三个—0.1 mm,第四个0.15 mm,则质量最好的零件是()
A.第一个B.第二个C.第三个D.第四个
13.下列运算错误的是()
A.﹣8﹣2×6=﹣20 B.(﹣1)2014+(﹣1)2013=0
C.﹣(﹣3)2=﹣9 D.
14.式子23+23+23+23的计算结果用幂的形式表示正确的是()
A.25B.29C.212D.216
二.填空题(本大题共8小题,每小题3分,共24分。
只要求填写最后结果)
15.﹣0.15的相反数是_______,绝对值是_______,倒数是_______.
16.比较,﹣,﹣的大小关系:______.
17.一个直棱柱有10个顶点,那么这个棱柱的底面是______边形.
18.一防洪大堤所标的警戒水位是37米,规定在记录每天水位时,高于警戒水位的部分记为正数,低于警戒水位的部分记为负数.若冬季某一天,水位记录为﹣7米,则这天的实际水位为_________米.
19.在数轴上,点A表示数5,点B到点A的距离为3,则点B表示的数是________.20.中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以我们为中国节水,为世界节水.若每人每天浪费水0.32L,那么100万人每天浪费的水,用科学记数法表示为_________L.
21.计算(—1)2013+(—0.125×8)2014=_________.
22.有一列数,按照下列规律排列:1,2,2,3,3,3,4,4,4,4,…这列数的第26个数是_________.
三.解答题(本大题共7小题,满分54分,写出必要的文字说明、证明过程或推演步骤)23.(本大题4分)
如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请画出这个几何体的主视图和左视图:(要求用直尺或三角板画图)
24.(本小题4分)把下列各数填在相应的大括号内:
20,0,—1,3
2
-
,|—1.32|,—(+6),3.14 负整数{ …}; 正分数{ …}; 24.计算下列各题(每小题4分,共20分)
(1)—8—(—1)—(+5) (2)
36)18
7
-9765-43(⨯+
(3)(—81)÷49×9
4÷(—36) (4)34×221)2-(2712
÷⨯+
(5)—14
—
6
1×[2—(—3)2
]
26.(本小题9分)
随着我国经济的发展,股市也得到迅速发展,小王上周五在股市以收盘价每股25元买进某公司的股票1000股,在接下来的一周交易日内,他记下该股票每日收盘价比前一天的涨跌情况(单位:元): 星期 一 二 三 四 五
每股涨跌 +2 ﹣0.5 +1.5 ﹣1.8
+0.8 请你根据此表回答下列问题:
(1)星期三收盘时,该股票每股多少元?
(2)本周内,该股票收盘时的最高价、最低价分别是多少?
(3)若小王在本周五以收盘价将全部股票卖出,如果不考虑其他费用。
则他的收益情况如何?
27.(本小题6分)
将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4cm 、宽为3cm 的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?(结果保留π) 28.(本小题5分)
已知海拔每升高1 000m ,气温下降6℃,某人乘热气球旅行,在地面时测得温度是8℃,当热气球升空后,测得高空温度是﹣1℃.求热气球的高度.
29.学习了有理数的运算后,王老师给同学们出了这样的一道题. 计算7115
16
×()-8,
解:=
)8-()16
1-72(⨯ =72×(—8)—
16
1
×(—8) =—576+
21 =2
1575
- 请你灵活运用王老师讲的解题方法计算:13
1262339
÷
2014-2015学年度第一学期期中学情检测
初一数学试题参考答案
二.填空题(本大题共8小题,每小题3分,共24分) 15. 0.15 0.15 20
3
-
16. ﹣_<﹣_<_ 17. 五 18. 30 19. 2或8 20. 3.2×105 21. 0 22. 7
三.解答题(本大题共7小题,满分54分) 23.(本大题4分)解:如图所示:
24.(本小题4分)
负整数{ —1,—(+6) …};正分数{ |—1.32|,3.14 …}; 25.(每小题4分,共20分)
(1)—12 (2)11 (3)1 (4)4 (5)
6
1 26. (本小题9分)(1)28(2)28、26.2(3)(27—25)×1000=2000(元)
27.(本小题6分)解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm 3
. 绕宽所在的直线旋转一周得到圆柱体积:π×42
×3=48πcm 3
. 28. (本小题5分)[6—(—3)]÷6×1000=1500米 29.(本小题6分)(40—263)×13=40×13—26
3×13=520—23=51821。