最新数理统计试卷及答案
- 格式:doc
- 大小:548.00 KB
- 文档页数:8
数理统计学考试题及答案一、单项选择题(每题3分,共30分)1. 下列哪个选项是描述数据集中趋势的统计量?A. 方差B. 标准差C. 平均数D. 极差答案:C2. 假设检验中,若原假设为H0:μ=μ0,备择假设为H1:μ≠μ0,则该检验属于:A. 单尾检验B. 双尾检验C. 左尾检验D. 右尾检验答案:B3. 以下哪个分布是描述二项分布的?A. 正态分布B. t分布C. F分布D. 泊松分布答案:A4. 以下哪个选项是描述数据离散程度的统计量?A. 众数B. 中位数C. 极差D. 均值答案:C5. 以下哪个选项是描述数据分布形态的统计量?A. 偏度B. 方差C. 标准差D. 均值答案:A6. 以下哪个选项是描述数据分布集中趋势的统计量?A. 偏度B. 峰度C. 众数D. 标准差答案:C7. 以下哪个选项是描述数据分布离散程度的统计量?A. 偏度B. 峰度C. 标准差D. 均值答案:C8. 以下哪个选项是描述数据分布形态的统计量?A. 均值B. 方差C. 偏度D. 众数答案:C9. 以下哪个选项是描述数据分布集中趋势的统计量?A. 极差B. 标准差C. 均值D. 偏度答案:C10. 以下哪个选项是描述数据分布离散程度的统计量?A. 均值B. 众数C. 方差D. 偏度答案:C二、多项选择题(每题4分,共20分)1. 以下哪些统计量可以用来描述数据的集中趋势?A. 均值B. 中位数C. 众数D. 方差答案:ABC2. 以下哪些统计量可以用来描述数据的离散程度?A. 极差B. 方差C. 标准差D. 均值答案:ABC3. 以下哪些统计量可以用来描述数据的分布形态?A. 偏度B. 峰度C. 均值D. 方差答案:AB4. 以下哪些分布是描述连续型随机变量的?A. 正态分布B. 泊松分布C. 二项分布D. t分布答案:AD5. 以下哪些检验是用于检验总体均值的?A. t检验B. 方差分析C. 卡方检验D. F检验答案:A三、计算题(每题10分,共50分)1. 给定一组数据:2, 4, 6, 8, 10,求其平均数和标准差。
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
数理统计自考试题及答案一、单项选择题(每题2分,共20分)1. 以下哪个选项是描述数据集中趋势的度量?A. 方差B. 标准差C. 平均数D. 极差答案:C2. 假设检验中,如果p值小于显著性水平α,我们通常会:A. 拒绝零假设B. 接受零假设C. 无法确定D. 需要更多数据答案:A3. 以下哪个选项是描述数据离散程度的度量?A. 均值B. 中位数C. 众数D. 标准差答案:D4. 在简单线性回归分析中,回归系数β1表示:A. 自变量每变化一个单位,因变量的变化量B. 自变量每变化一个单位,因变量的平均变化量C. 自变量每变化一个单位,因变量的最小变化量D. 自变量每变化一个单位,因变量的最大变化量答案:B5. 以下哪个选项是描述数据分布形态的度量?A. 均值B. 方差C. 偏度D. 峰度答案:C6. 在统计学中,置信区间的宽度与以下哪个因素无关?A. 样本大小B. 置信水平C. 标准差D. 总体均值答案:D7. 以下哪个选项是描述数据分布集中趋势的度量?A. 极差B. 标准差C. 均值D. 方差答案:C8. 在假设检验中,如果零假设是正确的,但被错误地拒绝,这种情况称为:A. 第一类错误B. 第二类错误C. 正确拒绝D. 正确接受答案:A9. 以下哪个选项是描述数据分布集中趋势的度量?A. 极差B. 标准差D. 方差答案:C10. 在统计学中,以下哪个选项不是数据的预处理步骤?A. 数据清洗B. 数据转换C. 数据标准化D. 数据解释答案:D二、多项选择题(每题3分,共15分)11. 以下哪些是描述数据分布的度量?A. 均值B. 方差D. 峰度E. 极差答案:ABCD12. 在统计学中,以下哪些是假设检验的类型?A. 单尾检验B. 双尾检验C. 配对检验D. 方差分析E. 回归分析答案:ABCD13. 以下哪些是描述数据离散程度的度量?A. 极差B. 标准差D. 均值E. 四分位数间距答案:ABCE14. 在统计学中,以下哪些是数据的预处理步骤?A. 数据清洗B. 数据转换C. 数据标准化D. 数据解释E. 数据可视化答案:ABCE15. 以下哪些是描述数据分布形态的度量?A. 均值B. 方差D. 峰度E. 极差答案:CD三、填空题(每题3分,共30分)16. 如果一组数据的平均数是50,中位数是45,众数是40,则这组数据的偏度是________。
本科数理统计试题及答案一、选择题(每题2分,共20分)1. 以下哪项不是数理统计中的基本概念?A. 总体B. 样本C. 变量D. 常数2. 随机变量X的概率分布函数F(x)满足什么条件?A. 非负B. 单调递增C. 右连续D. 所有选项3. 以下哪个统计量是度量数据离散程度的?A. 均值B. 方差C. 众数D. 标准差4. 假设检验中,拒绝原假设的决策规则是基于什么?A. p值B. 置信区间C. 样本均值D. 样本方差5. 以下哪项不是参数估计的方法?A. 最大似然估计B. 贝叶斯估计C. 插值估计D. 矩估计6. 两个独立随机变量X和Y的协方差Cov(X,Y)为0意味着什么?A. X和Y是独立的B. X和Y是相同的C. X和Y的方差为0D. X和Y的均值相等7. 以下哪项是描述总体分布特征的参数?A. 样本均值B. 样本方差C. 总体均值D. 总体方差8. 在回归分析中,如果自变量和因变量之间存在线性关系,那么回归系数的符号表示什么?A. 正相关B. 负相关C. 无相关D. 强相关9. 以下哪项是描述数据集中趋势的统计量?A. 极差B. 四分位数C. 变异系数D. 标准差10. 以下哪项是假设检验中的两类错误?A. 第一类错误和第二类错误B. 系统误差和随机误差C. 抽样误差和非抽样误差D. 总体误差和样本误差二、填空题(每题2分,共20分)1. 统计学中的“大数定律”表明,随着样本量的增大,样本均值会______总体均值。
2. 如果随机变量X服从标准正态分布,则其概率密度函数为______。
3. 在统计学中,一个数据集的中位数是将数据集从小到大排列后位于______位置的数值。
4. 相关系数的取值范围是______。
5. 假设检验的原假设通常表示为______,备择假设表示为______。
6. 在回归分析中,如果回归系数为正,则表示自变量和因变量之间存在______关系。
7. 统计学中的“中心极限定理”说明,即使总体分布未知,只要样本量足够大,样本均值的分布将近似为______分布。
2023─2024学年第二学期《概率论与数理统计》课程考试试卷(A 卷)参考答案与评分标准一、填空题(每空3分,共30分)1.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加样本容量.2.设随机变量X 具有数学期望()E X μ=与方差2()D X σ=,则有切比雪夫不等式{}2P X μσ-≥≤14.3.设X 为连续型随机变量,a 为实常数,则概率{}P X a ==0.4.设X 的分布律为,{}1,2,k k P X x p k === ,2Y X =,若1nkk k xp ∞=∑绝对收敛(n为正整数),则()E Y =21kk k xp ∞=∑.5.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为17.6.设X 服从参数为λ的poisson 分布,则(2)E X =2λ.7.设(2,3)Y N ,则数学期望2()E Y =7.8.(,)X Y 为二维随机变量,概率密度为(,)f x y ,X 与Y 的协方差(,)Cov X Y 的积分表达式为(())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰.9.设X 为总体N (3,4)中抽取的样本14,,X X 的均值,则{}15P X ≤≤=2(2)1Φ-.(计算结果用标准正态分布的分布函数()x Φ表示)10.随机变量2(0,)X N σ ,n X X X ,,,21 为总体X 的一个样本,221()(1)ni i Y k X χ==∑ ,则常数k =21n σ.A 卷第1页共4页二、概率论试题(45分)1、(8分)题略解:用A B C 、、,分别表示三人译出该份密码,所求概率为P A B C ()(2分)由概率公式P A B C P ABC P A P B P C ()=1-()=1-()()()(4分)1-1-1-p q r =1-()()()(2分)2、(8分)设随机变量()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====,求数学期望()E X Y +与方差(23)D X Y -.解:(1)()E X Y +=E X E Y ()+()=1+3=4(3分)(2)(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-(3分)8361244XY ρ=+--(2分)3、(8分)某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,它们的寿命i T 相互独立,记161ii T T ==∑,用中心极限定理计算{1920}P T ≥的近似值(计算结果用标准正态分布的分布函数()x Φ表示).解:i i ET D T E T D T 2()=100,()=100,()=1600,()=160000(3分){1920}0.8}1P T P ≥=≈-Φ(0.8)(5分)(4分)4、(10分)设随机变量X 具有概率密度11()0x x f x ⎧-≤≤=⎨⎩,,其它,21Y X =+.(1)求Y 的概率密度()Y f y ;(2)求概率312P Y ⎧⎫-<<⎨⎩⎭.解:(1)12Y Y y F y y F y ≤>时()=0,时()=1(1分)A 卷第2页共4页212,{}{1}()d Y y F y P Y y P X y f x x<≤≤=+≤=()=(2分)02d 1x x y ==-(2分)概率密度函数2()=Y Y y f y F y ≤⎧'⎨⎩1,1<()=0,其它(2分)(2)3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222.(3分)5、(11分)设随机变量(,)X Y 具有概率分布如下,且{}1103P X Y X +===.XY-101013p114q112(1)求常数,p q ;(2)求X 与Y 的协方差(,)Cov X Y ,并问X 与Y 是否独立?解:(1)1111134123p q p q ++++=+=,即(2分)由{}{}{}{}{}101011010033P X Y X P Y X pP X Y X P X P X p +====+========+,,(2分)可得16p q ==(1分)X 01Y -11P1212P7121614(2)EX 1()=2,E Y 1()=-3,E XY 1()=-6(3分),-Cov X Y E XY E X E Y ()=()()()=0(2分)由..ij i j P P P ≠可知X 与Y 不独立(1分)三、数理统计试题(25分)1、(8分)题略.A 卷第3页共4页证明:222(1)(0,1),(1)X n S N n χσ-- ,22(1)X n S σ-相互独立(4分)2(1)Xt n - ,即(1)X t n - (4分)2、(10分)题略解:似然函数2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑(4分)由2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑可得221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑为2,μσ的最大似然估计(2分)由221ˆˆ(),()n nE E μμσσ-==可知11ˆni i x n μ==∑为μ的无偏估计量,2211ˆ()ni i x n σμ==-∑为2σ的有偏估计量(4分)3、(7分)题略解:01: 4.55: 4.55H H μμ=≠(2分)检验统计量x z =,拒绝域0.025 1.96z z ≥=(2分)而0.185 1.960.036z ==>(1分)因而拒绝域0H ,即不认为总体的均值仍为4.55(2分)A 卷第4页共4页。
1、 离散型随机变量X 的分布律为P (X=x i )=p i ,i=1.2…..,则11=∑=ni i p2、 设两个随机变量X ,Y 的联合分布函数F (x ,y ),边际分布Fx (x ),Fy (y ),则X 、Y相互独立的条件是)()(),(y F x F y x F Y X ∙=3、 X 1,X 2,….X 10是总体X~N (0,1)的样本,若2102221X X X +⋅⋅⋅++=ξ,则ξ的上侧分位数025.0ξ=解:因为X~N (0,1),所以2102221X X X +⋅⋅⋅++=ξ~)10(2χ,查表得025.0ξ=20.54、 设X~N (0,1),若Φ(x )=0.576,则Φ(-x )= 解:Φ(-x )=1-Φ(x )=1-0.576=0.4245、设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=n i iXY 122)(1μσ,则EY=n解:∑=-=n i iXY 122)(1μσ~)(2n χ,E 2χ=n ,D 2χ=2n二、设设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=6122)(51i iX X s ,试求)5665.2(22σ≤s P 。
解:因为),(~2σμN X ,所以有)5(~)(126122χσ∑=-i iX X,则⎪⎪⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎪⎪⎭⎫⎝⎛≤-=≤=≤∑∑==8325.12)(5665.25)()5665.2()5665.2(261226122222σσσσi i i i X X P X X P sP s P 查2χ分布表得=≤)5665.2(22σs P ⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=8325.12)(2612σi i X X P =1-α=1-0.0248=0.9752三.设总体X 的概率密度为f(x)=(1),(01)0a x x α⎧+<<⎨⎩,其他,其中α>0,求参数α的矩估计和极大似然估计量。
数理统计试题及答案一、选择题1. 在一次试验中,事件A和事件B是互斥事件,概率分别为0.4和0.3。
则事件“A或B”发生的概率是多少?A. 0.1B. 0.2C. 0.3D. 0.7答案:D. 0.72. 一批产品的重量服从正态分布,均值为100g,标准差为5g。
若随机抽取一件产品,其重量大于105g的概率是多少?A. 0.6827B. 0.1587C. 0.3413D. 0.0228答案:B. 0.15873. 一家量化投资公司共有1000名员工,调查结果显示,有700人拥有股票,400人拥有债券,300人既拥有股票又拥有债券。
随机选择一名员工,问其既拥有股票又拥有债券的概率是多少?A. 0.3B. 0.4C. 0.2D. 0.15答案:A. 0.34. 设X和Y为两个随机变量,已知X的期望为2,方差为4;Y的期望为5,方差为9,且X与Y的协方差为6。
则X + Y的期望为多少?A. 5B. 7C. 6D. 9答案:B. 7二、计算题1. 一箱产品中有10个次品,从中随机抽取3个,求抽到1个次品的概率。
解答:总共的可能抽取组合数为C(10,3) = 120。
抽取到1个次品的组合数为C(10,1) * C(90,2) = 4005。
所以,抽到1个次品的概率为4005/120 = 33.375%。
2. 已知某城市的男性身高服从正态分布,均值为172cm,标准差为5cm;女性身高也服从正态分布,均值为160cm,标准差为4cm。
问男性身高高于女性身高的概率是多少?解答:需要计算男性身高大于女性身高的概率,可以转化为计算两个正态分布随机变量之差的概率。
设随机变量X表示男性身高,Y表示女性身高,则X - Y服从正态分布,其均值为172cm - 160cm = 12cm,方差为5cm^2 + 4cm^2 =41cm^2。
要计算男性身高高于女性身高的概率,即计算P(X - Y > 0)。
首先,标准化X - Y,得到标准正态分布的随机变量Z:Z = (X - Y - 12) / sqrt(41)所以,P(X - Y > 0) = P(Z > (0 - 12) / sqrt(41)) = P(Z > -2.464)查标准正态分布表可知,P(Z > -2.464) ≈ 0.9937所以,男性身高高于女性身高的概率约为99.37%。
数理统计考试试卷一、填空题(本题15分,每题3分)1、总体)3,20(~N X 的容量分别为10,15的两独立样本均值差~Y X -________;2、设1621,...,,X X X 为取自总体)5.0,0(~2N X 的一个样本,若已知0.32)16(201.0=χ,则}8{1612∑=≥i i X P =________;3、设总体),(~2σμN X ,若μ和2σ均未知,n 为样本容量,总体均值μ的置信水平为α-1的置信区间为),(λλ+-X X ,则λ的值为________;4、设n X X X ,..,,21为取自总体),(~2σμN X 的一个样本,对于给定的显著性水平α,已知关于2σ检验的拒绝域为χ2≤)1(21--n αχ,则相应的备择假设1H 为________;5、设总体),(~2σμN X ,2σ已知,在显著性水平0.05下,检验假设00:μμ≥H ,01:μμ<H ,拒绝域是________。
1、)210(,N ; 2、0.01; 3、nS n t )1(2-α; 4、202σσ<; 5、05.0z z -≤。
二、选择题(本题15分,每题3分)1、设321,,X X X 是取自总体X 的一个样本,α是未知参数,以下函数是统计量的为()。
(A ))(321X X X ++α (B )321X X X ++ (C )3211X X X α(D )231)(31α-∑=i i X2、设n X X X ,...,,21为取自总体),(~2σμN X 的样本,X 为样本均值,212)(1X X n S i n i n -=∑=,则服从自由度为1-n 的t 分布的统计量为( )。
(A )σμ)-X n ( (B )n S X n )(μ- (C )σμ)--X n (1 (D )n S X n )(1μ--3、设n X X X ,,,21 是来自总体的样本,2)(σ=X D 存在, 212)(11X X n S i ni --=∑=, 则( )。
一、填空题(本题15分,每题3分)1、总体)3,20(~N X 的容量分别为10,15的两独立样本均值差~Y X -________;2、设1621,...,,X X X 为取自总体)5.0,0(~2N X 的一个样本,若已知0.32)16(201.0=χ,则}8{1612∑=≥i i X P =________;3、设总体),(~2σμN X ,若μ和2σ均未知,n 为样本容量,总体均值μ的置信水平为α-1的置信区间为),(λλ+-X X ,则λ的值为________;4、设n X X X ,...,,21为取自总体),(~2σμN X 的一个样本,对于给定的显著性水平α,已知关于2σ检验的拒绝域为χ2≤)1(21--n αχ,则相应的备择假设1H 为________;5、设总体),(~2σμN X ,2σ已知,在显著性水平0.05下,检验假设00:μμ≥H ,01:μμ<H ,拒绝域是________。
1、)210(,N ; 2、0.01; 3、nS n t )1(2-α; 4、202σσ<; 5、05.0z z -≤。
二、选择题(本题15分,每题3分)1、设321,,X X X 是取自总体X 的一个样本,α是未知参数,以下函数是统计量的为()。
(A ))(321X X X ++α (B )321X X X ++ (C )3211X X X α(D )231)(31α-∑=i i X2、设n X X X ,...,,21为取自总体),(~2σμN X 的样本,X 为样本均值,212)(1X X n S i n i n -=∑=,则服从自由度为1-n 的t 分布的统计量为( )。
(A )σμ)-X n ( (B )n S X n )(μ- (C )σμ)--X n (1 (D )n S X n )(1μ--3、设n X X X ,,,21 是来自总体的样本,2)(σ=X D 存在, 212)(11X X n S i ni --=∑=, 则( )。
安徽大学2011—2012学年第一学期 《数理统计》考试试卷(B 卷)(闭卷 时间120分钟)院/系 年级 专业 姓名 学号一、选择题(本大题共5小题,每小题2分,共10分)1、设总体~(1,9)X N ,129(,,,)X X X L 是X 的样本,则( ).(A )1~(0,1)1X N -; (B )1~(0,1)3X N -; (C )1~(0,1)9X N -; (D~(0,1)X N . 2、设n X X X ,...,,21为取自总体),(~2σμN X 的样本,X 为样本均值,212)(1X X n S i n i n-=∑=,则服从自由度为1-n 的t 分布的统计量为( )。
(A )σμ)-X n ( (B )n S X n )(1μ-- (C )σμ)--X n (1 (D )n S X n )(μ-3、若总体X ~),(2σμN ,其中2σ已知,当样本容量n 保持不变时,如果置信度1α-减小,则μ的置信区间( ).(A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能.4、在假设检验中,分别用α,β表示犯第一类错误和第二类错误的概率,则当样本容量n 一定时,下列说法中正确的是( ).(A )α减小时β也减小; (B )α增大时β也增大; (C ),αβ其中一个减小,另一个会增大; (D )(A )和(B )同时成立.5、在多元线性回归分析中,设ˆβ是β的最小二乘估计,ˆˆ=-εY βX 是残差向量,则( ).(A )ˆn E ()=0ε; (B )1ˆ]σ-''-εX X 2n Cov()=[()I X X ; (C )ˆˆ1n p '--εε是2σ的无偏估计; (D )(A )、(B )、(C )都对.二、填空题(本大题共5小题,每小题2分,共10分)6、设总体X 和Y 相互独立,且都服从正态分布2(0,3)N ,而129(,,)X X X L 和129(,,)Y Y Y L 是分别来自X 和Y的样本,则U =服从的分布是_______ .7、设1ˆθ与2ˆθ都是总体未知参数θ的估计,且1ˆθ比2ˆθ有效,则1ˆθ与2ˆθ的期望与方差满足_______ ______________.8、设总体),(~2σμN X ,2σ已知,n 为样本容量,总体均值μ的置信水平为α-1的置信区间为),(λλ+-X X ,则λ的值为________.9、设n X X X ,...,,21为取自总体),(~2σμN X 的一个样本,对于给定的显著性水平α,已知关于2σ检验的拒绝域为χ2≤)1(21--n αχ,则相应的备择假设1H 为________;10、多元线性回归模型=+Y βX ε中,β的最小二乘估计是ˆβ=_______ ________.三、计算题(本大题共5小题,每小题10分,共50分)11、已知总体X 的概率密度函数为1, 0(),0, xe xf x θθ-⎧>⎪=⎨⎪⎩其它其中未知参数0θ>,12(,,,)n X X X L 为取自总体的一个样本,求θ的矩估计量,并证明该估计量是无偏估计量.12、设n X X X ,,,21Λ是来自总体X ~)(λP 的样本,0λ>未知,求λ的最大似然估计量.13、已知两个总体X 与Y 独立,211~(,)X μσ,222~(,)Y μσ,221212, , , μμσσ未知,112(,,,)n X X X L 和212(,,,)n Y Y Y L 分别是来自X 和Y 的样本,求2122σσ的置信度为1α-的置信区间.14、合格苹果的重量标准差应小于0.005公斤.在一批苹果中随机取9个苹果称重, 得其样本修正标准差为007.0=S 公斤, 试问:(1)在显著性水平05.0=α下, 可否认为该批苹果重量标准差达到要求? (2)如果调整显著性水平0.025α=,结果会怎样? (023.19)9(2025.0=χ, 919.16)9(205.0=χ, 535.17)8(2025.0=χ, 507.15)8(205.0=χ)15、设总体X ~)1,(a N ,a 为未知参数,R a ∈,n X X X ,,,21Λ为来自于X 的简单随机样本,现考虑假设:00:a a H =,01:a a H ≠(0a 为已知数)取05.0=α,试用广义似然比检验法检验此假设(写出拒绝域即可).(96.1025.0=u ,65.105.0=u ,024.5)1(2025.0=χ,841.3)1(205.0=χ)四、证明题(本大题共2小题,每小题10分,共20分)16、设总体X 服从(1,)B p 分布,12(,,)n X X X L 为总体的样本,证明X 是参数p 的一个UMVUE .17、设1,,n X X L 是来自两参数指数分布()/1(;,),,0x p x e x μθθμμθθ--=>>的样本,证明(1)(,)X X 是(,)μθ充分统计量.五、综合分析题(本大题共10分)18、现收集了16组合金钢中的碳含量X 及强度Y 的数据,求得162116162110.125,45.788,()0.3024,()()25.5218,()2432.4566.ii ii ii i x y xx xx y y yy =====-=--=-=∑∑∑(1)建立Y 关于X 的一元线性回归方程x y 10ˆˆˆββ+=; (2)对Y 与X 的线性关系做显著性检验(05.0=α,60.4)14,1(05.0=F , 1448.2)14(025.0=t ,7613.1)14(05.0=t ).安徽大学2011—2012学年第一学期《数理统计》(B 卷)考试试题参考答案及评分标准一、选择题(每小题2分,共10分)1、A2、D3、C4、C5、B二、填空题(每小题2分,共10分)6、)9(t7、1212ˆˆˆˆ()(), ()()E E D D θθθθ=< 8、2/αμσn9、202σσ< 10、1ˆσ-'2Cov(β)=()X X三、计算题(本大题共5小题,每小题10分,共50分)11、解:(1)()101()x v E X xf x dx xe dx θθθ-∞∞-∞====⎰⎰,用111n i i v X X n ===∑$代替,所以∑===ni iX Xn11ˆθ. ………………5分(2)11ˆ()()()()ni i E E X E X E X n θθ=====∑,所以该估计量是无偏估计. (10)分12、解: 总体X 的分布律为{}(,),1,2,!xp x P X x e x x λλλ-====L设12(,,,)n x x x L 为样本12(,,,)n X X X L 的一个观察值,似然函数111()(),!!iixxnnnn i i i i i i L P X x eex x λλλλλ--=======∏∏∏ …………………………4分对数似然函数[]1ln ()ln ln(!)ni i i L n x x λλλ==-+-∑,1111ˆ(ln ())0,0,n ni i i i d L n x x d n λλλλ===-+==∑∑ 2221ˆ1(ln ())0n ii x d nL x d x λλλλ===-⋅=-<∑, 所以ˆx λ=是λ的最大似然估计值,λ的最大似然估计量为ˆX λ=. …………10分 13、解:设布定理知的样本方差,由抽样分,分别表示总体Y X S S 2221 ,[]/2121/212(1,1)(1,1)1P F n n F F n n ααα---<<--=-, 则222221211221/2122/212//1(1,1)(1,1)S S S S P F n n F n n αασασ-⎛⎫<<=- ⎪----⎝⎭, 所求2221σσ的置信度为α-1的置信区间为222212121/212/212//, (1,1)(1,1)S S S S F n n F n n αα-⎛⎫ ⎪----⎝⎭.………10分14、解:(1)()()2222021:0.005,~8n S H σχχσ-≤=,则应有:()()2220.050.0580.005,(8)15.507P χχχ>=⇒=,具体计算得:22280.00715.6815.507,0.005χ⨯==>所以拒绝假设0H ,即认为苹果重量标准差指标未达到要求. ………………5分(2)新设 20:0.005,H σ≤ 由2220.025280.00717.535,15.6817.535,0.005χχ⨯=⇒==< 则接受假设,即可以认为苹果重量标准差指标达到要求. ………………10分15、解:似然函数为∑==--ni i a X n n e a x x L 12)(212/1)2(1);,,(πΛ, 从而 ∑==--ni i a X n n e a x x L 120)(212/01)2(1);,,(πΛ又参数a 的极大似然估计为X ,于是∑==--∈ni i X X n n Ra e a x x L 12)(212/1)2(1);,,(sup πΛ得似然比函数为})(2ex p{);,,();,,(sup ),,(200111a X na x x L a x x L x x n n R a n -==∈ΛΛΛλ, ………………5分给定05.0=α,得)ln 2)(()|),,((05.00200001λλλ>-==>=a X n P a a x x P n Λ,因为当0H 成立时,20)(a X n -~)1(2χ,此即0205.0ln 284.3)1(λχ==,从而上述问题的拒绝域是}84.3)({200>-=a X n W . ………………10分四、证明题(本大题共2小题,每小题10分,共20分)16、证明:X 的分布律为1(;)(1),0,1x x f x p p p x -=-=.容易验证(;)f x p 满足正则条件,于是21()ln (;)(1)I p E f x p p p p ⎡⎤∂==⎢⎥∂-⎣⎦. ………………5分另一方面1(1)1Var()Var()()p p X X n n nI p -===,即X 得方差达到C-R 下界的无偏估计量,故X 是p 的一个UMVUE . ………………10分17、证明 样本的联合密度函数为1(1)(1)()111(,,;,)()().ni i x nx n nnn x x P x x eI eI μμθθμμθμθθ=----->>∑==L ………………5分取(1)(1)11(,),(;)(),(,,)1,2nx n n x n t x x g t eI h x x μθμθθ-->===L 故由因子分解定理,(1)(,)X X 是(,)μθ充分统计量. ………………10分 五、综合分析题(本大题共10分)18、解: (1)根据已知数据可以得到回归系数的估计为1611162101()()25.521884.3975,0.3024()45.78884.39750.12535.2389.ii i ii xx y y xx y x βββ==--===-=-=-⨯=∑∑)))故Y对X的回归方程为ˆ35.238984.3975.=+yx . ………………………5分 (2)该问题即需要检验假设0:10=βH 由于4805.278ˆ1=-=xyyy l l Q β, 从而 9761.2153=-=Q l U yy于是 2863.108)2/(=-=n Q UF ,又 60.4)14,1(05.0=F ,可见 )14,1(05.0F F >,因此拒绝原假设,即回归效果显著。