五年级100道奥数题讲解学习
- 格式:doc
- 大小:84.51 KB
- 文档页数:16
小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。
2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。
这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。
3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。
4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。
5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。
6. 一个合数至少有()个因数。
A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。
所以一个合数至少有3 个因数。
7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。
8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。
五年级奥数典型练习100例(详细解析)1 五年级奥数(几何问题)及答案:直角三角形【答案解析】2 五年级奥数(几何问题)及答案:三角形面积右图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积.三角形面积答案:这道题似乎缺少大正方形的边长这个条件,实际上本题的结果与大正方形的边长没关系.连接AD(见右上图),可以看出,三角形ABD 与三角形ACD 的底都等于小正方形的边长,高都等于大正方形的边长,所以面积相等.因为三角形AGD是三角形ABD与三角形ACD 的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,即三角形ABG与三角形GCD面积仍然相等.根据等量代换,求三角形ABC的面积等于求三角形BCD 的面积,等于4×4÷2=83 五年级奥数(几何问题)及答案:阴影面积计算如图,长方形ABCD的面积是2平方厘米,EC=2DE,F是DG的中点.阴影部分的面积是多少平方厘米?【答案解析】如下图,连接FC,△DBF、△BFG的面积相等,设为x平方厘米;△FGC、△DFC的面积相等,设为y平方厘米,那么△DEF的面积为y平方厘米比较②、①式,②式左边比①式左边多2x,②式右边比①式右边大0.5,有2x=0.5,即x=0.25,y=0.25.而阴影部分面积为y+ y= ×0.25= 平方厘米.4 五年级奥数(几何面积)及答案:梯形阴影面积图中ABCD是梯形,三角形ADE面积是1.8,三角形ABF的面积是9,三角形BCF的面积是27.那么阴影部分面积是多少?【答案解析】设△ADF的面积为上,△BCF的面积为下,△ABF的面积为左,△DCF的面积为右.左=右=9;上×下=左×右=9×9=81,而下=27,所以上=81÷27=3.△ADE的面积为1.8,那么△AEF的面积为1.2,则EF:DF= :=1.2:3=0.4.△CEF与△CDF的面积比也为EF与DF的比,所以有=0.4× =0.4×(3+9)=4.8.即阴影部分面积为4.8.5 五年级奥数(行程问题)及答案:外出时间某人下午六时多外出买东西,出门时看手表,发现表的时针和分针的夹角为1100,七时前回家时又看手表,发现时针和分针的夹角仍是1100.那么此人外出多少分钟?【答案解析】如下示意图,开始分针在时针左边1100位置,后来追至时针右边1100位置.6 五年级奥数(行程问题)及答案:发车间隔某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来.假设两个起点站的发车间隔是相同的,求这个发车间隔.【答案解析】设电车的速度为a,行人的速度为b,因为每辆电车之间的距离为定值,设为l.7 五年级奥数(约数与倍数)及答案:最大公约数A,B两数都仅含有质因数3和5,它们的最大公约数是75.已知数A有12个约数,数B有10个约数,那么A,B两数的和等于多少?【答案解析】由题意知A可以写成3×52×a,B可以写成3×52×6,其中a、b为整数且只含质因子3、5.即A:31+x×52+y,B=31+m×52+n,其中x、Y、m、n均为自然数(可以为0)由A有12个约数,所以[(1+x)+1]×[ (2+y)+1]=(2+x)×(3+y)=12,所以 .对应A为31+2×52=675,31+1×52+1=1125,或31+0×52+4=46875;由B有10个约数,所以[(1+m)+1]×[(2+n)+l]=(2+m)×(3+n):10,所以 .对应B为31+0×52+2=1875.只有(675,1875)=75,所以A=675,B=1875.那么A,B两数的和为675+1875=25508 五年级奥数(包含与排除)及答案:读故事书甲、乙、丙都在读同-一本故事书,书中有100个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了7.5个故事,乙读了60个故事,丙读了52个故事.那么甲、乙、丙3人共同读过的故事最少有多少个?【答案解析】只考虑甲乙两人情况,有甲、乙都读过的最少为:75+60-100=35个,此时甲单独读过的为75-35=40个,乙单独读过的为60-35=25个;欲使甲、乙、丙三人都读过的书最少时,应将丙读过的书尽量分散在某端,于是三者都读过书最少为52-40=12个.9 五年级奥数(包含与排除)及答案:剪绳子有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断.问绳子共被剪成了多少段?【答案解析】只需先计算剪了多少刀,再加上1即为剪成的段数.从一端开始,将绳上距离这个端点整数厘米数的点编号,并将距离长度作为编号.10 五年级奥数(整除问题)及答案:除数各数位数字是0、1或2,且能被除数25整除的最小自然数是多少?【答案解析】225=25×9,所以要求分别能被25和9整除,要能被25整除,所以最后两位就是00。
分析与解根据要求,第一排有10 个座位,可以坐5 个学生;第二排有11 个座位,可以坐6 个学生;第三排有12 个座位也可以坐6 个学生;第四排可以坐7个,第五排可以坐7 个;第六、七排都可以坐8 个;第八、九排都可以坐9个;??第20 排可以坐15 个。
这样一共可以坐学生:是错误的,因而“A得第二名”则是正确的。
在推导过程中没有出现矛盾,说明假设成立。
总之,推导的结论为:A 得第二名,B 得第四名,C 得第一名,D 得第三名。
这题还可以用列表的方式来解答。
这种方法比较直观,学生更容易接受。
这里提供的只是一种列表方式,把三位观众的原始估计显示在表内,再根据题中条件进行推理、判断,最后推出正确结果。
通过上表可以看出:五(1)班原有图书117 本,五(2)班原有图书63本,五(3)原有图书36 本。
为了保证解答正确,可根据题意,从最后求出的各班原有图书数量出发,按题目中三次分配办法进行计算,看看每班的图书是否最终都是72 本。
这样通过顺、逆两方面推导,可确保解题正确。
分析与解为了多做一些花,就需要尽量用3 张纸做1 朵花。
我们采用列表的方法找出用4 张纸做1 朵花的规律。
从上表不难看出,用4 张纸做花的朵数的规律是:1、2、0、1、2、0、1、2、0、……40÷3=13……1(1+2)×13+1=40(朵)分析与解当一个最简分数的分母只含2 和5 质因数时,这个分数就能化成有限小数。
所以,当分母是16、32、64、25、10、20、40、80、50 时,这样的分数都能化成有限小数。
20.在下面的数表中,上、下两行都是等差数列。
上、下对应的两个数字中,大数减小数的差最小是几?21.如图,正方形ABCD的边长是12,BE=2CE,DF=EF,三角形BEF的面积是()。
22.如图,已知正方形ABCD的边长是4,E、P、F分别是AD、CE、BP 的中点,△DBF的面积是()。
解答:如图,连接PD和BE。
小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。
答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。
第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。
此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。
题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。
每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。
题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。
一楼到六楼走5 层楼梯,用时5×9 = 45 秒。
五年级奥数题100题(附答案)1. 765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。
五年级奥数题100题(附答案)五年级奥数题100题(附答案)1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000(500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/422.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。
小学五年级数学奥数题100道附完整答案题目1:一个数除以4 余3,除以5 余4,除以6 余5,这个数最小是多少?答案:这个数加上1 就能被4、5、6 整除,4、5、6 的最小公倍数是60,所以这个数最小是59。
题目2:有三根铁丝,长度分别是120 厘米、180 厘米和300 厘米。
现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?答案:每小段的长度是120、180、300 的最大公因数,即60 厘米。
一共可以截成:(120 + 180 + 300) ÷60 = 10 段。
题目3:一间教室长8 米,宽6 米,高4 米。
要粉刷教室的天花板和四周墙壁,除去门窗和黑板面积25.4 平方米,粉刷的面积是多少平方米?答案:天花板面积:8×6 = 48 平方米,四周墙壁面积:2×(8×4 + 6×4) = 112 平方米,总面积:48 + 112 = 160 平方米,粉刷面积:160 - 25.4 = 134.6 平方米。
题目4:一个长方体玻璃缸,从里面量长40 厘米,宽25 厘米,缸内水深12 厘米。
把一块石头浸入水中后,水面升到16 厘米,求石块的体积。
答案:升高的水的体积就是石块的体积,40×25×(16 - 12) = 4000 立方厘米。
题目5:甲、乙两数的最大公因数是12,最小公倍数是180,甲数是36,乙数是多少?答案:180×12÷36 = 60,乙数是60。
题目6:有一筐苹果,无论是平均分给8 个人,还是平均分给18 个人,结果都剩下3 个,这筐苹果至少有多少个?答案:8 和18 的最小公倍数是72,72 + 3 = 75 个,这筐苹果至少有75 个。
题目7:一个长方体的棱长总和是80 厘米,长10 厘米,宽7 厘米,高是多少厘米?答案:高:80÷4 - 10 - 7 = 3 厘米。
小学五年级精选奥数题及解析1、算薪水有两个人在一家工地做工,由于一个是学徒,一个是技工,所以他们的薪水是不一样的。
技工的薪水比学徒的薪水多20美元,但两人的薪水之差是21美元。
你觉得他俩的薪水各是多少?2、100面彩旗某街道从东往西按照五面红旗、三面黄旗、四面绿旗、两面粉旗的规律排列,共悬挂1995面彩旗,你能算出从西往东数第100面彩旗是什么颜色的吗?3、时钟表盘时钟的表盘上按标准的方式标着1, 2, 3,…,11, 12这12个数,在其上任意做n 个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同. 如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.4、两头猪有4头猪,这4头猪的重量都是整千克数,把这4头猪两两合称体重,共称5次,分别是99、113、125、130、144,其中有两头猪没有一起称过。
那么,这两头猪中重量较重那头有多重?5、三张卡片有三张卡片,它们上面各写着数字2, 3, 4,从中抽出一张、二张、三张, 按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.6、数学竞赛要求的三个自然数分别是32、35和38。
9、答案与解析:此题需要求抽屉的数量,反用抽屉原理和最”坏”情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,那么(1123-10)4-9=123......6 ,因此最多有:123+1=124个学校(处理余数很关键,如果有125个学校那么不能保证至少有10名同学来自同一个学校)10、答案与解析:120:2=60, 90:2=45,每两棵树之间的距离是它们的最大公约数。
(120, 60, 90, 45)=15, 一共要:(120+90)x24-15=28(棵)。
11、答案与解析:方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42, 48]=336的倍数.因为乙班的平均成绩高于80分,所以总成绩应高于48x80=3840分.乂因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42x100=4200分.在3840〜4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032 分.那么甲班的平均分为40324-42=96分,乙班的平均分为4032+48=84分.所以甲班的平均分比乙班的平均分高96-84=12分.方法二:甲班平均分x42=乙班平均分x48,即甲班平均分x7二乙班平均分x8, 因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,乂因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.所以甲班的平均分比乙班的平均分高12x(8-7)=12分.12、答案与解析:小于20的质数有2, 3, 5, 7, 11, 13, 17, 19,其中5+19=7+17=11+13.每个木块掷在地上后向上的数可能是六个数中的任何一个,三个数的和最小是5+5+5=15,最大是19+19+19=57,经试验,三个数的和可以是从15到57的所有奇数,所有可能的不同值共有22个。
(完整版)⼩学五年级奥数题及答案(附精讲)⼩学五年级奥训练题及答案(精讲)⼀、⼯程问题1.⼀件⼯作,甲、⼄合做需4⼩时完成,⼄、丙合做需5⼩时完成。
现在先请甲、丙合做2⼩时后,余下的⼄还需做6⼩时完成。
⼄单独做完这件⼯作要多少⼩时?2.修⼀条⽔渠,单独修,甲队需要20天完成,⼄队需要30天完成。
如果两队合作,由于彼此施⼯有影响,他们的⼯作效率就要降低,甲队的⼯作效率是原来的五分之四,⼄队⼯作效率只有原来的⼗分之九。
现在计划16天修完这条⽔渠,且要求两队合作的天数尽可能少,那么两队要合作⼏天?3.甲⼄两个⽔管单独开,注满⼀池⽔,分别需要20⼩时,16⼩时.丙⽔管单独开,排⼀池⽔要10⼩时,若⽔池没⽔,同时打开甲⼄两⽔管,5⼩时后,再打开排⽔管丙,问⽔池注满还是要多少⼩时?4.⼀项⼯程,第⼀天甲做,第⼆天⼄做,第三天甲做,第四天⼄做,这样交替轮流做,那么恰好⽤整数天完⼯;如果第⼀天⼄做,第⼆天甲做,第三天⼄做,第四天甲做,这样交替轮流做,那么完⼯时间要⽐前⼀种多半天。
已知⼄单独做这项⼯程需17天完成,甲单独做这项⼯程要多少天完成?5.师徒俩⼈加⼯同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.⼀批树苗,如果分给男⼥⽣栽,平均每⼈栽6棵;如果单份给⼥⽣栽,平均每⼈栽10棵。
单份给男⽣栽,平均每⼈栽⼏棵?7.⼀个池上装有3根⽔管。
甲管为进⽔管,⼄管为出⽔管,20分钟可将满池⽔放完,丙管也是出⽔管,30分钟可将满池⽔放完。
现在先打开甲管,当⽔池⽔刚溢出时,打开⼄,丙两管⽤了18分钟放完,当打开甲管注满⽔是,再打开⼄管,⽽不开丙管,多少分钟将⽔放完?8.某⼯程队需要在规定⽇期内完成,若由甲队去做,恰好如期完成,若⼄队去做,要超过规定⽇期三天完成,若先由甲⼄合作⼆天,再由⼄队单独做,恰好如期完成,问规定⽇期为⼏天?9.两根同样长的蜡烛,点完⼀根粗蜡烛要2⼩时,⽽点完⼀根细蜡烛要1⼩时,⼀天晚上停电,⼩芳同时点燃了这两根蜡烛看书,若⼲分钟后来点了,⼩芳将两⽀蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?⼆.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数⽐兔的腿数少28条,,问鸡与兔各有⼏只?三.数字数位问题1.把1⾄2005这2005个⾃然数依次写下来得到⼀个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是⼩于100的两个⾮零的不同⾃然数。
小学五年级数学奥数单选题100道及答案解析1. 有三个连续偶数,中间一个是a,那么另外两个分别是()A. a - 2 和a + 2B. a - 1 和a + 1C. 2a 和2(a + 1)答案:A解析:因为是连续偶数,每两个相邻偶数之间相差2,中间一个是a ,那么前一个是 a - 2 ,后一个是a + 2 。
2. 把一个长方形框架拉成一个平行四边形,周长()A. 变大B. 变小C. 不变答案:C解析:把长方形框架拉成平行四边形,每个边的长度不变,所以周长不变。
3. 一个三角形的面积是24 平方厘米,底是8 厘米,高是()厘米。
A. 3B. 6C. 12答案:C解析:三角形面积= 底×高÷2,所以高= 面积×2÷底= 24×2÷8 = 6 厘米。
4. 小明今年a 岁,爸爸的年龄比他的3 倍大b 岁,爸爸今年()岁。
A. 3a + bB. 3a - bC. (a + b)÷3答案:A解析:小明a 岁,爸爸年龄是他的 3 倍大 b 岁,即3a + b 岁。
5. 下面式子中,()是方程。
A. 5x + 3B. 1.5x + 27 = 36C. 3x + 9 < 12答案:B解析:方程是含有未知数的等式,选项A 不是等式,选项C 是不等式,选项B 是方程。
6. 与3.75×1.6 结果相同的算式是()A. 0.375×0.16B. 37.5×16C. 37.5×0.16答案:C解析:3.75×1.6 = 37.5×0.16,一个因数扩大,另一个因数缩小相同的倍数,积不变。
7. 一个两位小数精确到十分位是5.0,这个数最小是()A. 4.99B. 5.01C. 4.95答案:C解析:“四舍”得到的 5.0 最大是5.04,“五入”得到的5.0 最小是4.95。
8. 一个等腰直角三角形的一条直角边是5 厘米,它的面积是()平方厘米。
五年级暑假数学思维训练100题班级_______ 姓名_________得分______1、765×213÷27+765×327÷27 2、(101+103+...+199)-(90+92+ (188)3、9×17+91÷17-5×17+45÷17 4、(9999+9997+...+9001)-(1+3+ (999)5、9039030÷430436、 (873×477-198)÷(476×874+199)7、12+16+112+120+130+1428、99999×22222+33333×333349、11×2+12×3+13×4+…..+199×10010、1000+999-998+997+996-995+…+106+105-104+103+102-10111、两个整数相除,商是4,余数是8。
已知被除数比除数大59,求被除数。
12、一个整数除以15余2,被除数、商和余数的和是100,求被除数和商。
13、减数、被减数与差三者之和除以被减数,商是多少?14、甲、乙两数之和加上甲数是220,加上乙数是170,甲、乙两数之和是多少?15、两个自然数相除,商是4,余数是15,被除数、除数、商、余数之和是129。
请写出这个带余数的除法算式。
16、一个两位数除以一个一位数,商仍是两位数,余数是8。
问:被除数、除数、商及余数之和是多少?17、两个数的和是94,有人计算时将其中一个加数个位上的0漏掉了,结果算出的和是31。
求这两个数。
18、小明做两个整数的加法,他把万位上的8看成了3,百位上的7看成了9,个位上的5看成了6,算得的结果是49920。
问:正确的结果是多少?19、在一个减法算式中,被减数是120,减数是差的3倍,减数是几?20、某数除以87,商5余5,这个数除以5的商是多少?21、有三根钢管,分别长200,240和360厘米。
现在要把这三根钢管截成尽可能长而且又相等的小段,一共能截成多少段?22、两根铁丝分别长65米和91米,用一根木尺分别去丈量它们,都恰好量完而无剩余。
这根木尺最多有多长?23、将22块橡皮和33支铅笔平均分给参加打扫教室卫生的同学,结果橡皮多1块,铅笔少2支,参加打扫卫生的同学有多少名?24、甲数比乙数大5,乙数比丙数也大5,三个数的乘积是6384,求这三个数。
25、某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。
26、一袋糖不足60块,如果把它平均分给几个孩子,则每人恰好分得6块;如果只分给这几个孩子中的男孩,则每个男孩恰好分得10块。
这几个孩子中有几个女孩?27、某公共汽车站有三条线路的公共汽车,分别每隔 5,6和8分钟发车一次。
三条线路在同一时间发车后,再过多少时间又同时发车?28、文化补习班的教材不够,暂时每两人用一本语文课本,每三人用一本数学课本,每四人用一本外语课本,全班共用了91本课本。
问:全班有多少人?29、有一篮子鸡蛋,按每四个一堆分多一个,按每五个一堆分也多一个,按每六个一堆分还是多一个,这篮鸡蛋至少有多少个?30、有一种电子钟,每到正点响一次铃,每过九分钟亮一次灯。
如果中午12点整它既响铃又亮灯,那么下一次既响铃又亮灯是什么时间?31、规定a*b=(b+a)×b,求(2*3)*5。
32、如果a△b表示(a-2)×b,那么3△4=?33、有7个数,它们的平均数是18。
去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。
求去掉的两个数的乘积。
34、某五个数的平均值为20,若把其中一个数改为40,则平均值变为25。
求这个数。
35、有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。
求第三个数。
36、小玲练习跳绳,她已经跳了若干次,准备最后再跳一次,如果最后这次跳48个,那么平均每次跳56个;如果最后这次跳68个,那么平均每次跳60个。
小玲已经跳了几次?37、小明上学期语文得78分,地理得82分,历史得80分,物理得60分。
又知数学成绩比平均分多12分,外语成绩比平均分少4分。
小明上学期这六科的平均成绩是多少分?38、五年级一班数学考试平均成绩是91.5分,事后复查发现,计算成绩时将一位同学的98分误作89分计算了。
经重新计算后,五年级一班的平均成绩是91.7分。
五年级一班有多少名学生?39、某厂一周生产的机器台数的统计表破损了(见下图),根据这张统计表,星期三、星期四的产量各是多少台?40、A,B,C是三个互不相同的自然数,并且满足求A+B+C41、某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分。
小华参加了这次竞赛,得了64分。
问:小华做对几道题?42、小明给班里买了甲、乙两种电影票共50张,甲票每张2元,乙票每张1.4元,共花了78.4元,问:买甲票花的钱是买乙票花的钱的几分之几?43、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。
现有这三种小虫16只,共有110条腿和14对翅膀。
问:每种小虫各几只?44、某人要到高层建筑的 10层去,他从1层走到 5层用了100秒,如果用同样的速度走到10层,则还需要多少秒?45、甲、乙二人比赛爬楼梯,甲跑到4层时,乙恰好跑到3层,照这样计算,甲跑到16层时,飞跑到几层?46、有一个报时钟,每敲响一下,声音可持续3秒。
如果敲响6下,那么从敲响第一下到最后一下持续声音结束,一共需要43秒。
现在敲响12下,从敲响第一下到最后一下持续声音结束,一共需要多长时间?47、甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。
问:两人每秒各跑多少米?48、甲、乙二人上午8时同时从东村骑车到西村去,甲每时比乙快6千米,中午12时甲到达西村后立即返回东村,在距西村15千米处遇到乙。
问:东、西两村相距多远?49、甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙。
求A,B两地的距离。
50、甲、乙二人分别从A ,B 两地同时出发,若两人同向而行,则甲26分赶上乙;若两人相向而行,则6分可相遇。
已知乙每分行50米,求A ,B 两地的距离。
51、小红从家到火车站赶乘火车,如果每时行4千米,那么火车开时她还离车站1千米;如果每时行5千米,那么她就早到车站12分。
小红家离火车站多少千米?52、从家里骑摩托车到火车站赶乘火车。
若每时行30千米,则早到15分;若每时行20千米,则迟到5分。
如果打算提前5分到,那么摩托车的速度应是多少?53、甲、乙两人同时从两地出发相向而行,相遇后继续前进,当两人相距2.5千米时,甲走了全程的32,乙走了全程的43,两地相距多少千米?54、甲、乙两站相距不到500千米,A ,B 两列火车从甲、乙两站相对开出,A 车行至210千米处停车,B 车行至270千米处也停车,这时两车相距正好是甲、乙两站距离的91,甲、乙两站的距离是多少?55、客车和货车同时从甲、乙两地相向开出,客车行完全程需10时,货车行完全程需15时。
两车在中途相遇后,客车又行了90千米,这时客车行完了全程的80%,求甲、乙两地的距离。
56、若干个同学去划船,他们租了一些船,若每船4人则多5人,若每船5人则船上有4个空位。
问:有多少个同学?多少条船?57、学校给参加夏令营的同学租了几辆大轿车,若每辆车乘28人则有13名同学上不了车,若每辆车乘32人则还有3个空座。
问:有多少名同学?多少辆车?58、全班同学去划船,如果减少一条船,那么每条船正好坐9人;如果增加一条船,那么每条船正好坐6人。
问:全班有多少人?59、李五拿一根绳子在一个圆柱上绕,绕了2圈时,绳子还余 2.86米,但要绕5圈还差1.85米。
问:这根绳子多长?树的周长是多少?60、用一根绳子测井台到井水面的深度,把绳对折后垂到井水面,绳子超过井台9米;把绳子三折后垂到井水面,绳子超过井台2米。
求绳长和井深。
61、甲车每时行 40千米,乙车每时行 60千米,甲车从 A地、乙车从B地同时出发相向而行,两车相遇后4.5时,甲车到达B地,A,B两地相距多少千米?62、A,B两村相距 2800米,小明从 A村步行出发 5分后,小军骑车从B村出发,又经过10分两人相遇。
已知小军骑车比小明步行每分多行130米,小明步行每分行多少米?63、甲、乙同时从 A, B两地相向走来。
甲每时走 5千米,两人相遇后,乙再走10千米到A地,甲再走1.6时到B地。
乙每时走多少千米?64、甲、乙两车同时从A,B两地相向而行,它们相遇时距A,B两地中心处8千米,已知甲车速度是乙车的1.2倍,求A,B两地的距离。
65、有一列数,第一个数是100,第二个数是90,从第三个数开始,每个数都是它前面两个数的平均数.第三十个数的整数部分是多少?66、今年小宁9岁,妈妈33岁,再过多少年小宁的岁数是妈妈岁数的一半?67、父亲今年44岁,儿子今年16岁,当父亲的年龄是儿子的8倍时,父子的年龄和是多少岁?68、父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现年多少岁?69、学生问老师多少岁,老师说:“当我像你这么大时你刚1岁,当你像我这么大时我已经40岁了。
”你知道老师多少岁吗?70、汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地。
求该车的平均速度。
71、有一堆桃,第一个猴子拿走了这堆桃的一半加半个桃子,第二个猴子又拿走了剩下桃的一半加半个,第三个猴子拿走了最后剩下的桃的一半加半个,桃子正好被拿光。
问:这堆桃子原来有几个?72、袋子里有若干个球,小明每次拿出其中的一半再放回一个球,一共这样做了五次,袋中还有3个球。
问:原来袋中有多少个球?74、袋子里有若干个球,小明每次拿出其中的一半再放回一个球,一共这样做了五次,袋中还有3个球。
问:原来袋中有多少个球?75、某游乐场在开门前有400人排队等待,开门后每分钟来的人数是固定的.一个入口每分钟可以进入10个游客.如果开放4个入口20分钟就没有人排队,现在开放6个入口,那么开门后多少分钟就没有人排队?76、甲、乙、丙三人进行百米赛跑,甲到终点时乙离终点5米,丙离终点10米,那么乙到终点时,丙离终点还有多少米?77、铁路旁每隔50米有一棵树,晶晶在火车上从第一棵树数起,数到第55棵为止,恰好过了3分钟,火车每小时的速度是多少千米?78、 算式(762367762367 )×123123的得数的尾数是多少?79、有10箱桔子,最少的一箱装了50个,如果每两箱中放的桔子都不一样多,那么这10只箱子一共至少装了多少个桔子?80、一些2分和5分硬币,共值2.99元,其中2分硬币个数是5分硬币个数的4倍.5分硬币有多少个?81、 12加上24,减20;再加上24,再减20;…如此下去,至少经过多少次运算才能得到52?82、有1991粒纽扣,两个人轮流从中取几粒,但每人至少取1粒,最多取4粒,谁取到最后一粒,就算谁输.问:保证一定获胜的对策是什么?83、小明读《西游记》,第一天读83页,第二天读74页,第三天读71页,第四天读64页,第五天读的页数比五天中平均读的页数还多3.2页.那么,小明第五天读了多少页?84、如左下图,在长方形ABCD中,EFGH是正方形。