小学五年级下奥数题
- 格式:doc
- 大小:115.00 KB
- 文档页数:17
五年级下册数学奥数题及答案一、选择题1.下列数中,哪一个不能整除30? A. 5 B. 6 C. 10 D. 15答案:A2.小明买了3双袜子,每双袜子花费5元,他还剩下多少元? A. 10 B.12 C. 15 D. 18答案:C3.一个长方形的长是8cm,宽是4cm,它的面积是多少平方厘米? A.16 B. 20 C. 30 D. 32答案:D4.下列数字中,哪一个是奇数? A. 10 B. 15 C. 20 D. 24答案:B5.如果一个三角形的三条边长度分别是3cm、4cm和5cm,那么它是什么三角形? A. 等边三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形答案:B二、填空题1. 5 × 6 = ____ 答案:302.下列数字中,最小的是____ 答案:03.7 ÷ 2 = ____ 答案:3.54. 2 + 4 × 3 = ____ 答案:145.12 ÷ 3 = ____ 答案:4三、解答题1. 计算题小明在商场购买了两本数学书,每本书的价格分别是35元和20元。
他付给售货员一张50元的钞票,请问他应该找给小明多少零钱?解答:两本书的总价格:35元+ 20元= 55元小明给了售货员50元的钞票,所以需要找给小明的零钱是:50元- 55元= -5元小明应该还需要给售货员5元。
2. 推理题一辆汽车前进了200公里,然后返回原点,再往前走100公里,最后又返回原点。
请问汽车最终所在的位置与原点的位置相比,是在原点的左边还是右边?解答:汽车前进了200公里,然后返回原点,所以汽车回到了原点。
再往前走100公里,又返回原点,所以汽车依然在原点。
因此,汽车最终所在的位置与原点的位置重合,即汽车最终位置与原点相同。
四、总结本文列出了五年级下册数学奥数题及答案。
选择题包括了求除数、数字判断、图形面积、奇偶数、三角形分类等题型。
填空题涵盖了乘法、最小数、除法以及复杂的运算顺序。
小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。
2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。
这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。
3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。
4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。
5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。
6. 一个合数至少有()个因数。
A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。
所以一个合数至少有3 个因数。
7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。
8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。
小学五年级下册奥数题精选1.小学五年级下册奥数题精选篇一1、一位少年短跑选手,顺风跑90米用了10秒钟。
在同样的风速下,逆风跑70米,也用了10秒钟。
问:在无风的时候,他跑100米要用多少秒?答案与解析:顺风时速度=90÷10=9(米/秒),逆风时速度=70÷10=7(米/秒)无风时速度=(9+7)×1/2=8(米/秒),无风时跑100米需要100÷8=12。
5(秒)2、李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛。
事先规定。
兄妹二人不许搭伴。
第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。
请你判断,小华、小红和小林各是谁的妹妹。
解答:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。
第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;第二种可能是:李明的妹妹是小林,王宁的妹妹是小红。
对于第一种可能,第二盘比赛是张虎和小林对李明和王宁的妹妹。
王宁的妹妹是小林,这样就是张虎、李明和小林三人打混合双打,不符合实际,所以第一种可能是不成立的,只有第二种可能是合理的。
所以判断结果是:张虎的妹妹是小华;李明的妹妹是小林;王宁的妹妹是小红。
2.小学五年级下册奥数题精选篇二1、一个长方形的周长是24厘米,长与宽的比是2:1,这个长方形的面积是多少平方厘米?2、一个长方体棱长总和为96厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?3、小明看一本故事书,第一天看了全书的'1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是4∶3,男生有多少人?5、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?参考答案:1、S=(2/3×24/2)×(1/3×24/2)=32平方厘米2、V=(3/6×96/4)×(2/6×96/4)×(1/6×96/4)=384立方厘米3、24÷(1/5-1/9)=45×6=270页4、男=4/7×42=24(人)5、32+32×3/4÷80%=62(千克)3.小学五年级下册奥数题精选篇三1、有一批苹果,如果每天吃掉其中的三分之一,需要几天才能吃完?2、一辆车以每小时60公里的速度行驶,行驶了5个小时后,还剩下240公里的路程,这辆车一共要行驶多少公里?3、小明有10元钱,他要买5个苹果和3个橙子,苹果每个1元,橙子每个2元,他还需要多少钱?4、一种药品的说明书上写着,每次服用2粒,每天服用3次,一盒药共有30粒,这盒药可以服用几天?5、甲、乙两人同时从A地出发,分别向B地和C地行驶,甲的速度是每小时40公里,乙的速度是每小时60公里,B、C两地的距离是120公里,甲、乙两人同时到达B、C两地,求他们出发的时间。
小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。
答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。
第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。
此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。
题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。
每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。
题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。
一楼到六楼走5 层楼梯,用时5×9 = 45 秒。
五年级奥数题及答案5篇1.五年级奥数题及答案篇一1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?答案与解析:船顺水航行20小时行560千米,可知顺水速度,而静水中船速已知,那么逆水速度可得,逆水航行距离为560千米,船返回甲船头是逆水而行,逆水航行时间可求。
顺水速度:560÷20=28(千米/小时)逆水速度:24-(28-24)=20(千米/小时)返回甲码头时间:560÷20=28(小时)2、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。
现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是____分钟?答案与解析:甲行走45分钟,再行走70-45=25(分钟)即可走完一圈。
而甲行走45分钟,乙行走45分钟也能走完一圈。
所以甲行走25分钟的路程相当于乙行走45分钟的路程。
甲行走一圈需70分钟,所以乙需70÷25×45=126(分钟)。
即乙走一圈的时间是126分钟。
2.五年级奥数题及答案篇二1、一副纸牌共54张,最上面的一张是红桃K。
如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。
又因为每次移动12张牌,所以至少移动108÷12=9(次)。
2、爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。
”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁。
提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。
(60岁)3、某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。
五年级小学生奥数题3篇【篇一】五年级小学生奥数题1、有两条各长30厘米的纸条, 粘贴在一起长56厘米, 粘贴在一起的部分长()厘米。
2、一条直线能将平面分为两部分, 两条直线最多能将平面分为4部分, 那么5条直线最多能将平面划分成()部分。
3、小华参加数学竞赛, 共有10道赛题。
规定答对一题给十分, 答错一题扣五分。
小华十题全部答完, 得了85分。
小华答对了几题?4、图书室有连环画28本, 文艺书36本, 买来的故事书比连环画和文艺书的总和少50本。
图书室有故事书多少本?5、用数字0, 1, 2, 3, 4中的任意三个数相加可以得到多少个不同的和。
6、钟鼓楼的钟打点报时, 5点钟打5下需要4秒钟。
问中午12点是打12下需要多少秒钟?7、二(2)班有44个同学划船, 大船每条可以坐6人, 租金10元, 小船每条可以坐4人, 租金8元, 如果你是领队, 要使租金最少, 租多少条大船, 多少条小船, 租金多少元。
8、小青比小李大5岁, 小李比小风大2岁, 小风比小云小4岁, 他们4人(), ()最小。
的比最小的大()岁。
9、有一个卖茶叶蛋的老太太, 第一次卖去锅内茶叶蛋的一半多2个, 第二次又卖去余下的一半多2个, 锅内还有1个茶叶蛋, 这个老太太原来一共有多少个茶叶蛋?10、3个空汽水瓶可以换1瓶汽水, 小花买18瓶汽水, 可以喝到多少瓶汽水?【篇二】五年级小学生奥数题1、两组学生进行跳绳比赛, 平均每人跳152下, 甲, 组有6人, 平均每人跳140下, 乙组平均每人跳160下, 乙组有多少人?2、甲、乙、丙三人的平均年龄为22岁, 如果甲、乙的平均年龄是18岁, 乙、丙的平均年龄是25岁, 那么乙的年龄是多少岁?3、五个数排一排, 平均数是9, 如果前四个数的平均数是7, 后四个数的平均数是10, 那么, 第一个数和第五个数是多少?4、甲、乙两个码头相距144千米, 汽船从乙码头逆水行驶8小时到达甲码头, 已知汽船在静不中每小时行驶21千米。
五年级奥数题问题+答案1、一块草地,可供24匹马吃6天;20匹马吃10天。
多少马12天吃尽?2、一块草地,可供5只羊吃40天;6只羊吃30天。
如果4只羊吃30天后又增加2只羊一起吃,那么这块草地还可以再吃多少天?3、每小时有3000人到书店买书。
如果设一个售书口,每分钟可以让50人买完离开;如果设2个售书口,1小时后就没有人排队了。
那么如果设4个口,多长时间后就没有人排队了?4、一口井,用3部抽水机40分钟可以抽干;6部抽水机16分钟可以抽干。
那么5部同样的抽水机,多少分钟可以抽干?5、一个水池,池内除原有的水外,每天都流入同样多的水。
如果用池中的水每天浇50亩地,10天用完;如果每天浇45亩地,20天用完。
那么,用这些水浇多少亩地,正好可用25天?6、一个大水坑,每分钟从四周流掉一定数量的水。
如果用5台水泵,6小时抽干;用10台,4小时抽干。
现在要2小时抽干,要多少水泵?7、仓库装满水泥时,可用30天。
现在仓库是空的,用大车运水泥,除每天供工地使用外,要装5天才可装满;用小车,除每天供工地使用外,要装10天才可装满。
如果大车小车一起用,除每天供工地使用外,要装几天才可装满?8、甲、乙、丙、丁四人加工同样的零件,甲先加工了一段时间,然后乙、丙、丁三人一起参加加工,6小时后乙和甲加工的一样多;9小时后丙和甲加工的一样多,12小时后丁和甲加工的一样多。
又知乙每小时加工27个零件,丙每小时加工23个零件。
那么,丁每小时加工零件多少个?答案1、假设草地单位为“1”,所以24*6=144 20*10=200 (200-144)/4=14 因此每天草地长草14个单位“1” 200-14*10=60,因此草地原有草60个单位"1"。
60/12+14=19 19马12天吃尽2、同理,40*5=200 30*6=180 (200-180)/(40-30)=2[每天草地长草] 200-2*40=120[原有草] 120-(4-2)*30=60 60/(6-2)=15(天)3、30分钟{每分钟有100人来,3000/(200-100)}4、20分钟{3*40-6*16=24 24/24=1 120-40*1=80 80/4=20}5、44亩地{45*20-50*10=400 400/10=40 500-40*10=100100/25+40=44}8、21个 {9*23-6*27=45 45/3=15 162-15*6=72 72/12+15=21}五年级奥数题有关行程问题的答案一环行跑道周长为240米,甲乙同向,丙与他们背向,都从同地点出发,每秒钟甲跑8米,乙跑5米,丙跑7米,出发后三人第一次相遇时,丙跑了多少圈?解:由题得知:甲比乙快8-5=3米/秒,也就是240/3=80秒后,甲会比乙多跑1圈且追上乙第一次相遇;要使甲、乙、丙同时相遇,则三者所用的时间必须是80秒的位数。
五年级下册奥数题1、简算。
4544×37 2004×200367 73151×8141×39+43×25+426×133 353×2552+37.9×6522000÷200020012000199419921993119941993⨯⨯+- 〔972+792〕÷〔75+95〕练:20112010×2012 71×5761 5983÷1961×35+65×17 2003÷2003200420039696969618181818×351186548362362361548-⨯+⨯2、计算。
〔1〕〔1+21+31+41〕×〔21+31+41+51〕-〔1+21+31+41+51〕×〔21+31+41〕〔2〕211⨯+321⨯+431⨯+……+200920081⨯+201020091⨯+201120101⨯〔3〕20081+20082+20083+20084+……+20082006+20082007盈亏问题根本数量关系:〔盈+亏〕÷两次所分之差=人数〔盈-盈〕÷两次所分之差=人数〔亏-亏〕÷两次所分之差=人数1、一些铅笔奖给三好学生,每人分5支还多4支;每人分6支那么少4支。
有多少个三好学生?有多少支铅笔?2、一些铅笔奖给三好学生,每人分4支还多10支;每人分6支那么多2支。
有多少个三好学生?有多少支铅笔?3、一些铅笔奖给三好学生,每人分9支那么少21支;每人分7支那么少7支。
有多少个三好学生?有多少支铅笔?4、一筐桃子,每只猴子分6个,余12个;每只猴子分7个,少11个。
有几只猴子、几个桃子?5、一叠本子发给同学们,每人发4本还差2本,每人发6本就差20本。
求一共有多少个同学、多少个本子?6、一篮苹果分给小朋友,如果减少一人,每人正好分5个;如果增加一人,每人正好分4个。
【导语】奥数是奥林匹克数学竞赛的简称。
1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第⼀届国际数学奥林匹克竞赛。
以下是⽆忧考整理的《⼩学五年级奥数题五篇》相关资料,希望帮助到您。
1.⼩学五年级奥数题 22.5-(□×32-24×□)÷3.2=10在上⾯算式的两个⽅框中填⼊相同的数,使得等式成⽴。
那么所填的数应是多少? 答案与解析:22.5-(□×32-24×□)÷3.2 =22.5-□×(32-24)÷3.2 =22.5-□×8÷3.2 =22.5-□×2.5 因为22.5-□×2.5=10,所以□×2.5=22.5-10,□=(22.5-10)÷2.5=5 答:所填的数应是5。
2.⼩学五年级奥数题 某⼩学的六年级有⼀百多名学⽣。
若按三⼈⼀⾏排队,则多出⼀⼈;若按五⼈⼀⾏排队,则多出⼆⼈;若按七⼈⼀⾏排队,则多出⼀⼈。
该年级的⼈数是______。
答案与解析: 苏教版⼩学五年级奥数题及答案-排队:符合第⼀、第三条条件的⼈数为的最少⼈数为3×7+1=22⼈,经检验,22也符合第⼆个条件,所以22也是符合三个条件的最⼩值,但该⼩学有⼀百多名学⽣,所以学⽣总⼈数为22+3×5×7=127。
3.⼩学五年级奥数题 1、甲、⼄、丙、丁约定上午10时在公园门⼝集合.见⾯后,甲说:“我提前了6分钟,⼄是正点到的.” ⼄说:“我提前了4分钟,丙⽐我晚到2分钟.”丙说:“我提前了3分钟,丁提前了2分钟.”丁说:“我还以为我迟到了1分钟呢,其实我到后1分钟才听到收⾳机报北京时间10时整.” 请根据以上谈话分析,这4个⼈中,谁的表最快,快多少分钟? 2、甲、⼄、丙、丁4个同学同在⼀间教室⾥,他们当中⼀个⼈在做数学题,⼀个⼈在念英语,⼀个⼈在看⼩说,⼀个⼈在写信.已知: ①甲不在念英语,也不在看⼩说; ②如果甲不在做数学题,那么丁不在念英语; ③有⼈说⼄在做数学题,或在念英语,但事实并⾮如此; ④丁如果不在做数学题,那么⼀定在看⼩说,这种说法是不对的; ⑤丙既不是在看⼩说,也不在念英语. 那么在写信的是谁? 3、在国际饭店的宴会桌旁,甲、⼄、丙、丁4位朋友进⾏有趣的交谈,他们分别⽤了汉语、英语、法语、⽇语4种语⾔.并且还知道: ①甲、⼄、丙各会两种语⾔,丁只会⼀种语⾔; ②有⼀种语⾔4⼈中有3⼈都会; ③甲会⽇语,丁不会⽇语,⼄不会英语; ④甲与丙、丙与丁不能直接交谈,⼄与丙可以直接交谈; ⑤没有⼈既会⽇语,⼜会法语. 请根据上⾯的情况,判断他们各会什么语⾔? 4、甲、⼄、丙3个学⽣分别戴着3种不同颜⾊的帽⼦,穿着3种不同颜⾊的⾐服去参加⼀次争办奥运的活动.已知: ①帽⼦和⾐服的颜⾊都只有红、黄、蓝3种: ②甲没戴红帽⼦,⼄没戴黄帽⼦; ③戴红帽⼦的学⽣没有穿蓝⾐服: ④戴黄帽⼦的学⽣穿着红⾐服: ⑤⼄没有穿黄⾊⾐服. 试问:甲、⼄、丙3⼈各戴什么颜⾊的帽⼦,穿什么颜⾊的⾐服? 5、5位学⽣A,B,C,D,E参加⼀场⽐赛.某⼈预测⽐赛结果的顺序是ABCDE,结果没有猜对任何⼀个名次,也没有猜中任何⼀对相邻的名次(意即某两个⼈实际上名次相邻,⽽在此⼈的猜测中名次也相邻,且先后顺序相同);另⼀个⼈预测⽐赛结果为DAECB,结果猜对了两个名次,同时还猜中了两对相邻的名次.求这次⽐赛的结果。
小学五年级奥数题及答案6篇1.小学五年级奥数题及答案一排椅子只有15个座位, 部分座位已有人就座, 乐乐来后一看, 他无论坐在哪个座位, 都将与已就座的人相邻。
问: 在乐乐之前已就座的最少有几人?将15个座位顺次编为1:15号。
如果2号位、5号位已有人就座, 那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。
根据这一想法, 让2号位、5号位、8号位、11号位、14号位都有人就座, 也就是说, 预先让这5个座位有人就座, 那么乐乐无论坐在哪个座位, 必将与已就座的人相邻。
因此所求的答案为5人。
2.小学五年级奥数题及答案1.某工车间共有77个工人, 已知每天每个工人平均可加工甲种部件5个, 或者乙种部件4个, 或丙种部件3个。
但加工3个甲种部件, 一个乙种部件和9个丙种部件才恰好配成一套。
问应安排甲、乙、丙种部件工人各多少人时, 才能使生产出来的甲、乙、丙三种部件恰好都配套?解: 设加工后乙种部件有x个。
3/5X+1/4X+9/3X=77x=20甲: 0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)2.哥哥现在的年龄是弟弟当年年龄的三倍, 哥哥当年的年龄与弟弟现在的年龄相同, 哥哥与弟弟现在的年龄和为30岁, 问哥哥、弟弟现在多少岁?解: 设哥哥现在的年龄为x岁。
x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)3.小学五年级奥数题及答案对任意两个不同的自然数, 将其中较大的数换成这两数之差, 称为一次变换。
如对18和42可进行这样的连续变换: 18, 42→18, 24→18, 6→12, 6→6, 6。
直到两数相同为止。
问: 对12345和54321进行这样的连续变换, 最后得到的两个相同的数是几?为什么?如果两个数的公约数是a, 那么这两个数之差与这两个数中的任何一个数的公约数也是a。
小学五年级奥数题修改版一、小数的巧算(一)填空题1. 计算 ++=_____。
2. 计算 +++++++++=_____。
3. 计算⨯⨯。
4. 计算⨯⨯⨯。
5. 计算⨯⨯。
6. 计算⨯+⨯=_____。
7. 计算⨯+⨯⨯。
(二)解答题8. 计算⨯⨯。
9.。
10.计算 ++++++++。
二、数的整除性(一)填空题1. 四位数“3AA1”是9的倍数,那么A=_____。
2. 在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____。
3. 能同时被2、3、5整除的最大三位数是_____。
4. 能同时被2、5、7整除的最大五位数是_____。
5. 1至100以内所有不能被3整除的数的和是_____。
6. 所有能被3整除的两位数的和是______。
7. 已知一个五位数□691□能被55整除,所有符合题意的五位数是_____。
(二)解答题8. 173□是个四位数字,数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除。
”问:数学老师先后填入的3个数字的和是多少?9.在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?三质数与合数(一)填空题1. 在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____。
2. 最小的质数与最接近100的质数的乘积是_____。
3.两个自然数的和与差的积是41,那么这两个自然数的积是_____。
4. 在下式□中分别填入三个质数,使等式成立。
□+□+□=505. 三个连续自然数的积是1716,这三个自然数是_____、_____、_____。
6. 找出1992所有的不同质因数,它们的和是_____。
7. 如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____。
(二)解答题8.2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数。
已知一个长方形的长和宽都是质数个单位,并且周长是36个单位。
问这个长方形的面积至多是多少个平方单位?9. 把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等。
10. 学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?四约数与倍数1.28的所有约数之和是_____。
2. 用105个大小相同的正方形拼成一个长方形,有_____种不同的拼法。
3. 一个两位数,十位数字减个位数字的差是28的约数,十位数字与个位数字的积是24.这个两位数是_____。
4. 李老师带领一班学生去种树,学生恰好被平均分成四个小组,总共种树667棵,如果师生每人种的棵数一样多,那么这个班共有学生_____人。
5. 两个自然数的和是50,它们的最大公约数是5,则这两个数的差是_____。
6. 现有梨36个,桔108个,分给若干个小朋友,要求每人所得的梨数,桔数相等,最多可分给_____个小朋友,每个小朋友得梨_____个,桔_____个。
7. 一块长48厘米、宽42厘米的布,不浪费边角料,能剪出最大的正方形布片_____块。
8.写出小于20的三个自然数,使它们的最大公约数是1,但两两均不互质,请问有多少组这种解?9.和为1111的四个自然数,它们的最大公约数最大能够是多少?10.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳214米,黄鼠狼每次跳432米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔8312米设有一个陷井,当它们之中有一个掉进陷井时,另一个跳了多少米?五 带余数除法(一)填空题1.小东在计算除法时,把除数87写成78,结果得到的商是54,余数是8.正确的商是_____,余数是_____。
答案:48,44。
2. a ÷24=121……b ,要使余数最大,被除数应该等于_____。
3. 一个三位数被37除余17,被36除余3,那么这个三位数是_____。
4. 393除以一个两位数,余数为8,这样的两位数有_____个,它们是_____。
5. 3⨯⨯57的积,除以4的余数是_____。
6. 888……8乘以666……6的积,除以7余数是_____。
50个8 50个67. 如果时针现在表示的时间是18点整,那么分针旋转1990圈之后是_____点钟。
(二)解答题8.幼儿园某班学生做游戏,如果每个学生分得的弹子一样多,弹子就多12颗,如果再增加12颗弹子,那么每个学生正好分得12颗,问这班有多少个学生?原有多少颗弹子?9.已知:a=……1991,问:a除以13,余数是几?1991个199110.100个7组成的一百位数,被13除后,问:(1)余数是多少?(2)商数中各位数字之和是多少?六中国剩余定理(一)填空题1. 有一个数,除以3余数是1,除以4余数是3,这个数除以12余数是_____。
2. 一个两位数,用它除58余2,除73余3,除85余1,这个两位数是_____。
3. 学习委员收买练习本的钱,她只记下四组各交的钱,第一组元,第二组元,第三组元,第四组元,又知道每本练习本价格都超过1角,全班共有_____人。
4. 五年级两个班的学生一起排队出操,如果9人排一行,多出一个人;如果10人排一行,同样多出一个人.这两个班最少共有_____人。
5. 一个数能被3、5、7整除,若用11去除则余1,这个数最小是____。
6. 同学们进行队列训练,如果每排8人,最后一排6人;如果每排10人,最后一排少4人,参加队列训练的学生最少有_____人。
7. 把几十个苹果平均分成若干份,每份9个余8个,每份8个余7个,每份4个余3个.这堆苹果共有_____个。
(二)解答题8.有一盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个。
这盒乒乓球至少有多少个?9. 求被6除余4,被8除余6,被10除余8的最小整数。
七奇数与偶数(一)填空题1. 2,4,6,8,……是连续的偶数,若五个连续的偶数的和是320,这五个数中最小的一个是______。
2. 有两个质数,它们的和是小于100的奇数,并且是17的倍数.这两个质数是_____。
3. 100个自然数,它们的和是10000,在这些数里,奇数的个数比偶数的个数多,那么,这些数里至多有_____个偶数。
4. 下图是一张靶纸,靶纸上的1、3、5、7、9表示射中该靶区的分数.甲说:我打了六枪,每枪都中靶得分,共得了27分.乙说:我打了3枪,每枪都中靶得分,共得了27分。
已知甲、乙两人中有一人说的是真话,那么说假话的是_____。
5. 一次数学考试共有20道题,规定答对一题得2分,答错一题扣1分,未答的题不计分。
考试结束后,小明共得23分。
他想知道自己做错了几道题,但只记得未答的题的数目是个偶数。
请你帮助小明计算一下,他答错了_____道题。
6. 有一批文章共15篇,各篇文章的页数分别是1页、2页、3页……14页和15页的稿纸,如果将这些文章按某种次序装订成册,并统一编上页码。
那么每篇文章的第一页是奇数页码的文章最多有_____篇。
7. 一本书中间的某一张被撕掉了,余下的各页码数之和是1133,这本书有_____页,撕掉的是第_____页和第_____页。
(二)解答题9.如下图,从0点起每隔3米种一棵树。
如果把3块“爱护树木”的小木牌分别挂在3棵树上,那么不管怎么挂,至少有两棵挂牌树之间的距离是偶数(以米为单位)。
试说明理由。
0369121518212413.如图所示,一个圆周上有9个位置,依次编为1~9号.现在有一个小球在1号位置上。
第一天顺时针前进10个位置,第二天逆时针前进14个位置。
以后,第奇数天与第一天相同,顺时针前进10个位置,第偶数天与第二天相同,逆时针前进14个位置。
问:至少经过多少天,小球又回到1号位置。
八 周期性问题(一)填空题1. 某年的二月份有五个星期日,这年六月一日是星期_____。
2. 1989年12月5日是星期二,那么再过十年的12月5日是星期_____。
3.按下面摆法摆80个三角形,有_____个白色的。
……4.节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯,小明想第73盏灯是_____灯。
5. 时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是____。
6. 1992”在_____列。
7. 把分数74化成小数后,小数点第110位上的数字是_____。
(二)解答题8. 紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8⨯9=72,在9后面写2,9⨯2=18,在2后面写8,……得到一串数字:1 9 8 92 8 6……这串数字从1开始往右数,第1989个数字是什么?9. 1991个1990相乘所得的积与1990个1991相乘所得的积,再相加的和末两位数是多少?14.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?九 图形的计数(一)填空题1.下图中一共有()条线段。
2. 如下图,O为三角形A1A6A12的边A1A12上的一点,分别连结OA2,OA3,…OA11,这样图中共有_____个三角形。
3. 下图中有_____个三角形。
4. 下图中共有_____个梯形。
5. 数一数(1)一共有( )个长方形。
6. 在下图中,所有长方形的个数是______。
7. 一块相邻的横竖两排距离都相等的钉板,上面有4 4个钉(如右图)。
以每个钉为顶点,你能用皮筋套出正方形和长方形共_____个。
(二)解答题8. 右图中共有7比。
12. 下图中,AB、CD、EF、MN互相平行,则图中梯形个数与三角形个数的差是多少?13.现在都是由边长为1厘米的红色、白色两种正方形分别组成边长为2厘米、4厘米、8厘米、9厘米的大小不同的正方形、它们的特点都是正方形的四边的小正方形都是涂有红颜色的小正方形,除此以外,都是涂有白色的小正方形,要组成这样4个大小不同的正方形,总共需要红色正方形多少个?白色正方形多少个?。