2016年普通高等学校招生全国统一考试(山东卷)理(精校解析)
- 格式:wps
- 大小:1.24 MB
- 文档页数:34
绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷(选择题共126分)本卷共21小题,每小题6分,共126分。
可能用到的相对原子质量:一、选择题:本大题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 下列与细胞相关的叙述,正确的是A. 核糖体、溶酶体都是具有膜结构的细胞器B. 酵母菌的细胞核内含有DNA和RNA两类核酸C. 蓝藻细胞的能量来源于其线粒体有氧呼吸过程D. 在叶绿体中可进行CO2的固定但不能合成ATP2. 离子泵是一张具有ATP水解酶活性的载体蛋白,能利用水解ATP释放的呢量跨膜运输离子。
下列叙述正确的是A. 离子通过离子泵的跨膜运输属于协助扩散B. 离子通过离子泵的跨膜运输是顺着浓度阶梯进行的C. 动物一氧化碳中毒会降低离子泵扩膜运输离子的速率D. 加入蛋白质变性剂会提高离子泵扩膜运输离子的速率3. 若除酶外所有试剂均已预保温,则在测定酶活力的试验中,下列操作顺序合理的是A.加入酶→加入底物→加入缓冲液→保温并计时→一段时间后检测产物的量B. 加入底物→加入酶→计时→加入缓冲液→保温→一段时间后检测产物的量C. 加入缓冲液→加入底物→加入酶→保温并计时→一段时间后检测产物的量D. 加入底物→计时→加入酶→加入缓冲液→保温并计时→一段时间后检测产物的量4.下列与神经细胞有关的叙述,错误..的是A. ATP能在神经元线粒体的内膜上产生B. 神经递质在突触间隙中的移动消耗ATPC. 突触后膜上受蛋白体的合成需要消耗ATPD. 神经细胞兴奋后恢复为静息状态消耗ATP5. 在漫长的历史时期内,我们的祖先通过自身的生产和生活实践,积累了对生态方面的感性认识和经验,并形成了一些生态学思想,如:自然与人和谐统一的思想。
绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =(A )1+2i (B )1-2i(C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x==∈=-<R 则A B = (A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56(B )60 (C )120(D )140(4)若变量x ,y 满足则22x y 的最大值是(A )4 (B )9 (C )10 (D )12 (5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )1233+π(B )123+π(C )123+π(D )21+π (6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件(7)函数f (x )=3x +cos x )(3cos x –sin x )的最小正周期是 (A )2π(B )π (C )23π(D )2π (8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为(A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)=(A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =(A )1+2i (B )1-2i (C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60(C )120 (D )140(4)若变量x ,y 满足则22x y +的最大值是(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )1233+π(B )13+(C )13+(D )1+ (6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件(7)函数f (x )=x +cos x )(x –sin x )的最小正周期是(A )2π(B )π (C )23π(D )2π (8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为(A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号填写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件,A B 互斥,那么P (A+B )=P (A )+P (B );如果事件,A B 独立,那么P (AB )=P (A )·P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足其中i 为虚数单位,则z =( )A. 12i +B. 12i -C. 12i -+D. 12i --2. 设集合{}{}22,,10xA y y xB x x ==∈=-<R ,则AB =( )A. 1,1-()B. 0,1()C. 1,-+∞()D. 0,+∞()3. 某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5[,30],样本数据分组为17.5[,20),20,2[ 2.5),22.5[,25),25,2[7.5),27.5[,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A. 56B. 60C. 120D. 1404. 若变量x ,y 满足+2,2-39,0,x y x y x ⎧⎪⎨⎪⎩≤≤≥则22+x y 的最大值是( )A. 4B. 9C. 10D. 125. 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.12+33π B.12+33π C.12+36π D. 216π+6. 已知直线a ,b 分别在两个不同的平面αβ,内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 函数()(3sin cos )(3cos sin )f x x x x x =+-的最小正周期是( )A.2πB. πC. 32πD. 2π8. 已知非零向量m ,n 满足4|m |=3|n |,cos <m ,n >=13,若n ⊥(t m+n ),则实数t 的值为( )A. 4B. 4-C.94 D. 94-9. 已知函数()f x 的定义域为R .当0x <时,()1f x x -3=;当x -1≤≤1时,()f x -=()f x -;当12x >时,11(+)()22f x f x -=.则(6)f = ( )A. 2-B. 1-C. 0D. 210. 若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )A. y=sin xB. y=ln xC. x y=eD. 3y=x232i,z z +=--------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)第II 卷(共100分)二、选择题:本大题共5小题,每小题5分,共25分. 11. 执行如图所示的程序框图,若输入的a b ,的值分别为0和9,则输出的i 的值为 .12. 若251)ax x+(的展开式中5x 的系数是80-,则实数a =________.13. 已知双曲线2222y 100E a b a bx =>>-:(,).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是_______.14. 在[]1,1-上随机的取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相交”发生的概率为_______. 15. 已知函数2|| ()24 x x m x mx m x m f x ⎧⎨-+⎩=,≤,,>,其中0m >.若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是_______. 三、解答题:本大题共6小题,共75分. 16. (本小题满分12分)在ABC △中,角,,A B C 的对边分别为a,b,c ,已知2(tanA+tanB)=tanA tanB+cosB cosA. (Ⅰ)证明:2a b c +=; (Ⅱ)求cos C 的最小值.17. (本小题满分12分)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(Ⅰ)已知G,H 分别为EC,FB 的中点.求证:GH ∥平面ABC ;(Ⅱ)已知1232EF =FB =AC =,AB =BC ,求二面角F -BC -A 的余弦值.18. (本小题满分12分)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+. (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+,求数列{}n c 的前n 项和n T .19. (本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(Ⅰ)“星队”至少猜对3个成语的概率;(Ⅱ)“星队”两轮得分之和X 的分布列和数学期望EX .20. (本小题满分13分)已知221()(ln ),R x f x a x x a x -=-+∈. (Ⅰ)讨论()f x 的单调性; (Ⅱ)当1a =时,证明3()()2f x f x '>+对于任意的[]1,2x ∈成立.21. (本小题满分14分)平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的离心率是32,抛物线2:2E x y =的焦点F 是C 的一个顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点,A B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M .(ⅰ)求证:点M 在定直线上;(ⅱ)直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.2016年普通高等学校招生全国统一考试(山东卷)理科数学答案解析(0,A B=+∞【提示】求解指数函数的值域化简案.【考点】并集及其运算【答案】D【答案】B【解析】()n tm n⊥+,()0n tm n∴+=,2||||cos,||0t m n m n n∴<>+=,4||3||m n=,1,3m n<>=,231||||||043t n n n∴+=,104t∴+=,4t∴=-.【提示】若(π)n t n⊥+,则(π)0n t n+=,进而可得实数t的值.【考点】平面向量数量积的运算【答案】D12x>时,1122f x f x⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,11x-≤≤【解析】输入的数学试卷第7页(共18页)数学试卷第8页(共18页)数学试卷第9页(共18页)数学试卷 第10页(共18页)数学试卷 第11页(共18页)数学试卷 第12页(共18页)22232b c a =,即为a.2b24,x mx m x m-+>⎩x m >时,程()f x b =m ∴的取值范围是【提示】作出函数(Ⅱ)2a b +=22)b a b =+0b >,∴由余弦定理231cos 122c ab -≥sin tan cos A A A =cos cos A B +G 、H 为GQ EF ∴∥又EF BO ∥GQ BO ∴∥且∴平面GQH GH ⊂面GQH GH ∴∥平面(Ⅱ)AB BC =数学试卷 第13页(共18页)数学试卷 第14页(共18页)数学试卷 第15页(共18页),又OO '⊥面OA 为x 轴,建立空间直角坐标系,则(23,0,0)C -,(0,23,0)B 3,0),(23,3,FC =---(23,23,0)CB =,由题意可知面的法向量为(0,0,3)OO '=,设000(,,)n x y z FCB 的法向量,则00n FC n CB ⎧=⎪⎨=⎪⎩,即0=⎪⎩,取01x =,则1,2,n ⎛=-- ⎝7cos ,7||||OO n OO n OO n ''∴<>==-'二面角--F BC A 的平面角是锐角,二面角--F BC A 的余弦值为77n n a b =+1n n a b -∴=1n n a a -∴-11a b =+1112b =+14b ∴=,4n b ∴=+(Ⅱ)1)2nn C ,126[2232(1)2]n n T n ∴=++++…①,2316[22322(1)2]n n n n ++++++…②,②可得:231112222(1)2]2(12)6(1)212)232n n n n n n n n n ++++++++-+--+-=-…,232n n +.【提示】(Ⅰ)求出数列{}n a 的通项公式,再求数列(Ⅱ)求出数列{}n c 的通项,利用错位相减法求数列【考点】数列的求和,数列递推式【答案】(Ⅰ)“星队”至少猜对22112233232211443433C ⎛⎫⎛⎫⎛⎫⎛⎫⎛-+-+ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭⎝队”两轮得分之和为X 可能为22321143144⎫⎛⎫--=⎪ ⎪⎭⎝⎭,22332322101111443433144⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯--+--=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦323232323232323225111111114343434343434343144⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+--+--+--= ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭3232114343144⎛⎫⎛⎫--=⎪ ⎪⎝⎭⎝⎭223322236011443334144⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-=⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦222363144⎛⎫= ⎪⎝⎭,的分布列如下图所示: 12346572 25144x 1)2x数学试卷 第16页(共18页)数学试卷 第17页(共18页)数学试卷 第18页(共18页)1a =32ln x x =-()F x f =0001122y FG x x =⎛⎫+= ⎪⎝⎭30000000022004441111424148x y x x x y PM x y x x +-⎛⎫-=+= ⎪++⎝⎭220220)(41)(21)x x x ++,令12x +22221(122)(1)(21)2122t t t t t t t t t -⎫++-⎪+-+-⎭===0001212FG x x y ⎛⎫+ ⎪⎝⎭=00414x y x x -+,整理可得t 的二次方程,进而得到最大值及此时【考点】椭圆的简单性质。
2016年普通高等学校招生全国统一考试〔山东卷〕数学〔理科〕第Ⅰ卷〔共50分〕一、选择题:本大题共10小题,每题5分,在每题给出的四个选项中,只有一项是符合题目要求的. 〔1〕【2016年山东,理1,5分】假设复数z 满足232i z z +=-,其中i 为虚数为单位,则z =〔 〕〔A 〕12i + 〔B 〕12i - 〔C 〕12i -+ 〔D 〕12i -- 【答案】B【解析】设(),,z a bi a b R =+∈,则2()i 23i 32i z z z z z a b a a b +=++=++=+=-,所以1,2a b ==-,故选B . 【点评】此题考查复数的代数形式混合运算,考查计算能力. 〔2〕【2016年山东,理2,5分】已知集合{}{}22,,10x A y y x R B x x ==∈=-<,则A B =〔 〕〔A 〕()1,1- 〔B 〕()0,1 〔C 〕()1,-+∞ 〔D 〕()0,+∞【答案】C【解析】由题意()0,A =+∞,()1,1B =-,所以()1,AB =-+∞,故选C .【点评】此题考查并集及其运算,考查了指数函数的值域,考查一元二次不等式的解法,是基础题. 〔3〕【2016年山东,理3,5分】某高校调查了200名学生每周的自习时间〔单位:小时〕,制成了如下图的频率分布直方图,其中自习时间的范围是[]17.5,30,样本数据分组为[)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5,[]27.5,30.根据直方图,这200名学生中每周的自习时间不少于小时的人数是〔 〕〔A 〕56 〔B 〕60 〔C 〕120 〔D 〕140 【答案】D【解析】由图可知组距为,每周的自习时间少于小时的频率为(0.020.1) 2.50.30+⨯=, 所以,每周自习时间不少于小时的人数是()20010.30140⨯-=人,故选D .【点评】此题考查的知识点是频率分布直方图,难度不大,属于基础题目.〔4〕【2016年山东,理4,5分】假设变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则22x y +的最大值是〔 〕〔A 〕4 〔B 〕9 〔C 〕10 〔D 〕12 【答案】C【解析】由22x y +是点(),x y 到原点距离的平方,故只需求出三直线的交点()()()0,2,0,3,3,1--,所以()3,1-是最优解,22x y +的最大值是10,故选C .【点评】此题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题. 〔5〕【2016年山东,理5,5分】有一个半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为〔 〕〔A 〕1233+π 〔B 〕1233+π 〔C 〕1236+π 〔D 〕216+π【答案】C【解析】由三视图可知,半球的体积为26π,四棱锥的体积为13,所以该几何体的体积为1236+π,故选C .【点评】此题考查的知识点是由三视图,求体积和外表积,根据已知的三视图,判断几何体的形状是解答的关键.〔6〕【2016年山东,理6,5分】已知直线,a b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的〔 〕〔A 〕充分不必要条件 〔B 〕必要不充分条件 〔C 〕充要条件 〔D 〕既不充分也不必要条件【答案】A【解析】由直线a 和直线b 相交,可知平面αβ、有公共点,所以平面α和平面β相交.又如果平面α和平面β相交,直线a 和直线b 不一定相交,故选A .【点评】此题考查的知识点是充要条件,空间直线与平面的位置关系,难度不大,属于基础题. 〔7〕【2016年山东,理7,5分】函数()()()3sin cos 3cos sin f x x xx x =+-的最小正周期是〔 〕〔A 〕2π〔B 〕π 〔C 〕32π 〔D 〕2π【答案】B【解析】由()2sin cos 3cos 22sin 23f x x x x x π⎛⎫=+=+ ⎪⎝⎭,所以,最小正周期是π,故选B .【点评】此题考查的知识点是和差角及二倍角公式,三角函数的周期,难度中档.〔8〕【2016年山东,理8,5分】已知非零向量,m n 满足143,cos ,3m n m n =<>= ,假设()n tm n ⊥+则实数t 的值为〔 〕〔A 〕4 〔B 〕4- 〔C 〕94 〔D 〕94-【答案】B【解析】因为21cos ,4nm m n m n n =⋅<>=,由()n tm n ⊥+,有()20n tm n tmn n +=+=,即2104t n ⎛⎫+= ⎪⎝⎭,4t =-,故选B .【点评】此题考查的知识点是平面向量数量积的运算,向量垂直的充要条件,难度不大,属于基础题. 〔9〕【2016年山东,理9,5分】已知函数()f x 的定义域为R ,当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则()6f =〔 〕〔A 〕2- 〔B 〕1- 〔C 〕0 〔D 〕2 【答案】D【解析】由1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,知当12x >时,()f x 的周期为1,所以()()61f f =.又当11x -≤≤时,()()f x f x -=-,所以()()11f f =--.于是()()()()3611112f f f ⎡⎤==--=---=⎣⎦,故选D .【点评】此题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题. 〔10〕【2016年山东,理10,5分】假设函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.以下函数具有T 性质的是〔 〕〔A 〕sin y x = 〔B 〕ln y x = 〔C 〕x y e = 〔D 〕3y x = 【答案】A【解析】因为函数ln y x =,x y e =的图象上任何一点的切线的斜率都是正数;函数3y x =的图象上任何一点的切线的斜率都是非负数.都不可能在这两点处的切线互相垂直,即不具有T 性质,故选A .【点评】此题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档.第II 卷〔共100分〕二、填空题:本大题共5小题,每题5分 〔11〕【2016年山东,理11,5分】执行右边的程序框图,假设输入的的值分别为0和9,则输出i 的值为 . 【答案】3【解析】i 1=时,执行循环体后1,8a b ==,a b >不成立;i 2=时,执行循环体后3,6a b ==,a b >不成立;i 3=时,执行循环体后6,3a b ==,a b >成立;所以i 3=,故填 3.【点评】此题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.〔12〕【2016年山东,理12,5分】假设52ax ⎛+ ⎝的展开式中5x 的系数是80-,则实数a = .【答案】2-【解析】由()2322235555C C 80ax a x x ==-,得2a =-,所以应填2-.【点评】考查了利用二项式定理的性质求二项式展开式的系数,属常规题型.〔13〕【2016年山东,理13,5分】已知双曲线()2222:10,0x y E a b a b-=>>,假设矩形ABCD 的四个顶点在E 上,,AB CD 的中点为E 的两个焦点,且23AB BC =,则E 的离心率为 .【答案】2【解析】由题意BC 2c =,所以2AB 3BC =,于是点3,2c c ⎛⎫⎪⎝⎭在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==.【点评】此题考查双曲线的离心率的求法,注意运用方程的思想,正确设出A B C D ,,,的坐标是解题的关键,考查运算能力,属于中档题.〔14〕【2016年山东,理14,5分】在[]1,1-上随机的取一个数k ,则事件“直线y kx =与圆()2259x y -+=相交”发生的概率为 .【答案】34【解析】首先k 的取值空间的长度为2,由直线y kx =与圆22(5)9x y -+=相交,得事件发生时k 的取值空间为33,44⎡⎤-⎢⎥⎣⎦,其长度为32,所以所求概率为33224=. 【点评】此题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.〔15〕【2016年山东,理15,5分】在已知函数()2,24,x x mf x x mx m x m ⎧≤⎪=⎨-+>⎪⎩,其中0m >,假设存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是 .【答案】()3,+∞【解析】因为()224g x x mx m =-+的对称轴为x m =,所以x m >时()224f x x mx m =-+单调递增,只要b 大于()224g x x mx m =-+的最小值24m m -时,关于x 的方程()f x b =在x m >时有一根;又()h x x =在x m ≤,0m >时,存在实数b ,使方程()f x b =在x m ≤时有两个根,只需0b m <≤;故只需24m m m -<即可,解之,注意0m >,得3m >,故填()3+∞,. 【点评】此题考查根的存在性及根的个数判断,数形结合思想的运用是关键,分析得到24m m m -<是难点,属于中档题.三、解答题:本大题共6题,共75分.〔16〕【2016年山东,理16,12分】在ABC ∆中,角,,A B C 的对边分别为a,b,c ,已知()tan tan 2tan tan cos cos A BA B B A+=+. 〔1〕证明:2a b c +=; 〔2〕求cos C 的最小值.解:〔1〕由()tan tan 2tan tan cos cos A B A B B A +=+得sin sin sin 2cos cos cos cos cos cos C A BA B A B A B⨯=+,2sin sin sin C B C =+, 由正弦定理,得2a b c +=.〔2〕由()222222cos 22a b ab ca b c C ab ab +--+-==222333111122222c c ab a b =-≥-=-=+⎛⎫⎪⎝⎭.所以cos C 的最小值为12.【点评】考查切化弦公式,两角和的正弦公式,三角形的内角和为π,以及三角函数的诱导公式,正余弦定理,不等式222a b ab +≥的应用,不等式的性质.〔17〕【2016年山东,理17,12分】在如下图的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.〔1〕已知,G H 分别为,EC FB 的中点,求证://GH 平面ABC ;〔2〕已知123,2EF FB AC AB BC ====,求二面角F BC A --的余弦值.解:〔1〕连结FC ,取FC 的中点M ,连结,GM HM ,因为//GM EF ,EF 在上底面内,GM 不在上底面内,所以//GM 上底面,所以//GM 平面ABC ;又因为//MH BC ,BC ⊂平 面ABC ,MH ⊄平面ABC ,所以//MH 平面ABC ;所以平面//GHM 平面ABC ,由GH ⊂平面GHM ,所以//GH 平面ABC .〔2〕连结OB ,AB BC =OA OB ∴⊥,以为O 原点,分别以,,OA OB OO '为,,x y z 轴,建立空间直角坐标系.123,2EF FB AC AB BC ====,22()3OO BF BO FO '=--=,于是有()23,0,0A ,()23,0,0C -,()0,23,0B ,()0,3,3F ,可得平面FBC 中的向量()0,3,3BF =-, ()23,23,0CB =,于是得平面FBC 的一个法向量为()13,3,1n =-,又平面ABC 的 一个法向量为()20,0,1n =,设二面角F BC A --为θ, 则121217cos 77n n n n θ⋅===⋅.二面角F BC A --的余弦值为77. 【点评】此题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.〔18〕【2016年山东,理18,12分】已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.〔1〕求数列{}n b 的通项公式;〔2〕令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T .解:〔1〕因为数列{}n a 的前n 项和238n S n n =+,所以111a =,当2n ≥时,221383(1)8(1)65n n n a S S n n n n n -=-=+----=+,又65n a n =+对1n =也成立,所以65n a n =+.又因为{}n b 是等差数列,设公差为d ,则12n n n n a b b b d +=+=+.当1n =时,1211b d =-;当2n =时,2217b d =-,解得3d =,所以数列{}n b 的通项公式为312n n a db n -==+. 〔2〕由111(1)(66)(33)2(2)(33)n n n n n n nn a n c n b n +++++===+⋅++,于是23416292122(33)2n n T n +=⋅+⋅+⋅+++⋅,两边同乘以2,得341226292(3)2(33)2n n n T n n ++=⋅+⋅++⋅++⋅,两式相减,得2341262323232(33)2n n n T n ++-=⋅+⋅+⋅++⋅-+⋅22232(12)32(33)212n n n +⋅-=⋅+-+⋅-2221232(12)(33)232n n n n T n n ++=-+⋅-++⋅=⋅.【点评】此题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题.〔19〕【2016年山东,理19,12分】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响.假设“星队”参加两轮活动,求: 〔1〕“星队”至少猜对3个成语的概率;〔2〕“星队”两轮得分之和X 的分布列和数学期望EX . 解:〔1〕“至少猜对3个成语”包括“恰好猜对3个成语”和“猜对4个成语”.设“至少猜对3个成语”为事件A ;“恰好猜对3个成语”和“猜对4个成语”分别为事件C B ,,则1122332131225()4433443312P B C C =⋅⋅⋅⋅+⋅⋅⋅⋅=;33221()44334P C =⋅⋅⋅=.所以512()()()1243P A P B P C =+=+=.〔2〕“星队”两轮得分之和X 的所有可能取值为0,1,2,3,4,6,于是11111(0)4343144P X ==⋅⋅⋅=;112212*********(1)4343434314472P X C C ==⋅⋅⋅+⋅⋅⋅==; 1211223311132125(2)443344334433144P X C ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=;123211121(3)434314412P X C ==⋅⋅⋅==; 12321231605(4)()43434314412P X C ==⋅⋅⋅+⋅==;3232361(6)43431444P X ==⋅⋅⋅==; XX 的数学期望01234614472144121241446EX =⨯+⨯+⨯+⨯+⨯+⨯==. 【点评】此题考查离散型随机变量的分布列和数学期望,属中档题.〔20〕【2016年山东,理20,13分】已知221()(ln ),x f x a x x a R x-=-+∈.〔1〕讨论()f x 的单调性; 〔2〕当1a =时,证明3()()2f x f x '>+对于任意的[1,2]x ∈成立. 解:〔1〕求导数3122()(1)x f x a x x'=---23(1)(2x ax x =--),当0a ≤时,x ∈(0,1),()0f x '>,()f x单调递增, x +∞∈(1,),()0f x '<,()f x 单调递减当0a >时,()()()233112()a x x x x ax f x x x⎛-+ --⎝⎭⎝⎭'== ①当02a <<1>,x ∈(0,1)或x ⎫+∞⎪⎪⎭∈,()0f x '>,()f x单调递增,x ⎛ ⎝∈,()0f x '<,、()f x 单调递减;②当a =21=, x ∈+∞(0,),()0f x '≥,()f x 单调递增, ③当a >2时,01<,x ⎛∈ ⎝或()x ∈+∞1,,()0f x '>,()f x 单调递增,x ⎫∈⎪⎪⎭1,()0f x '<, ()f x 单调递减.〔2〕当1a =时,221()ln x f x x x x=+--,2323(1)(212()1x x f x x x x x '==+--)2--, 于是2232112()()ln 1)x f x f x x x x x x x '=++-2---(--23312ln 1x x x x x =--++-,[1,2]x ∈令()g ln x x x =-,2332h()x x x x=-++-11,[1,2]x ∈,于是()()g(()f x f x x h x '-=+), 1g ()10x x x x-'=-=≥1,()g x 的最小值为()11g =;又22344326326()x x h x x x x x --+'=--+=,设()2326x x x θ=--+,[1,2]x ∈,因为()11θ=,()210θ=-,所以必有0[1,2]x ∈,使得()00x θ=,且01x x <<时,()0x θ>,()h x 单调递增;02x x <<时,()0x θ<,()h x 单调递减;又()11h =,()122h =,所以()h x 的最小值为()122h =.所以13()()g(()g(1(2)122f x f x x h x h '=+>+=+=))-. 即3()()2f x f x '>+对于任意的[1,2]x ∈成立. 【点评】此题考查利用导数加以函数的单调性,考查了利用导数求函数的最值,考查了分类讨论的数学思想方法和数学转化思想方法,是压轴题.〔21〕【2016年山东,理21,14分】平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>,抛物线2:2E x y =的焦点F 是C 的一个顶点. 〔1〕求椭圆C 的方程;〔2〕设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点,A B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . 〔i 〕求证:点M 在定直线上;〔ii 〕直线l 与y 轴交于点G ,记PFG ∆的面积为1S ,PDM ∆的面积为2S ,求12SS 的最大值及取得最大值时点P 的坐标.解:〔1,有224a b =,又抛物线22x y =的焦点坐标为10,2F ⎛⎫⎪⎝⎭,所以12b =,于是1a =,所以椭圆C 的方程为2241x y +=.〔2〕〔i 〕设P 点坐标为()2,02m P m m ⎛⎫> ⎪⎝⎭,由22x y =得y x '=,所以E 在点P 处的切线l 的斜率为m ,因此切线l 的方程为22m y mx =-,设()()1122,,,A x y B x y ,()00,D x y ,将22m y mx =-代入2241x y +=,得()223214410m x m x m +-+-=.于是3122414m x x m +=+,312022214x x m x m +==+, 又()220022214m m y mx m -=-=+,于是直线OD 的方程为14y x m =-. 联立方程14y x m =-与x m =,得M 的坐标为1,4M m ⎛⎫- ⎪⎝⎭.所以点M 在定直线14y =-上.〔ii 〕在切线l 的方程为22m y mx =-中,令0x =,得22m y =-,即点G 的坐标为20,2m G ⎛⎫- ⎪⎝⎭,又2,2m P m ⎛⎫ ⎪⎝⎭,10,2F ⎛⎫ ⎪⎝⎭,所以211(1)24m m S m GF +=⨯=;再由()32222,41241m m D m m ⎛⎫- ⎪ ⎪++⎝⎭,得 ()()22232222112122441841m m m m m S m m +++=⨯⨯=++于是有 ()()()221222241121m m S S m ++=+.令221t m =+, 得()12221211122t t S S t t t ⎛⎫-+ ⎪⎝⎭==+-,当112t =时,即2t =时,12S S 取得最大值94.此时212m =,2m =,所以P点的坐标为14P ⎫⎪⎪⎝⎭.所以12S S 的最大值为94,取得最大值时点P的坐标为14P ⎫⎪⎪⎝⎭. 【点评】此题考查椭圆的方程的求法,注意运用椭圆的离心率和抛物线的焦点坐标,考查直线和抛物线斜的条件,以及直线方程的运用,考查三角形的面积的计算,以及化简整理的运算能力,属于难题.。
绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =(A )1+2i (B )1-2i (C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B = (A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60(C )120 (D )140(4)若变量x ,y 满足则22x y +的最大值是(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )1233+π(B )133+π(C )136+π(D )16+π (6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件(7)函数f (x )=x +cos x )x –sin x )的最小正周期是(A )2π(B )π (C )23π(D )2π(8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为(A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2016山东理一、选择题(共10小题;共50分)1. 若复数z满足2z+z=3−2i其中i为虚数单位,则z= A. 1+2iB. 1−2iC. −1+2iD. −1−2i2. 设集合A=y y=2x,x∈R,B=x x2−1<0,则A∪B= A. −1,1B. 0,1C. −1,+∞D. 0,+∞3. 某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20,20,22.5,22.5,25,25,27.5,27.5,30.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是 A. 56B. 60C. 120D. 1404. 若变量x,y满足x+y≤2,2x−3y≤9,x≥0,则x2+y2的最大值是 A. 4B. 9C. 10D. 125. 一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为 A. 13+23π B. 13+23π C. 13+26π D. 1+26π6. 已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 函数f x=3sin x+cos x 3cos x−sin x 的最小正周期是 A. π2B. π C. 3π2D. 2π8. 已知非零向量m,n满足4m=3n,cos<m,n>=13.若n⊥tm+n,则实数t的值为 A. 4B. −4C. 94D. −949. 已知函数f x的定义域为R.当x<0时,f x=x3−1;当−1≤x≤1时,f−x=−f x;当x>12时,f x+12=f x−12.则f6= A. −2B. −1C. 0D. 210. 若函数y=f x的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f x具有T性质.下列函数中具有T性质的是 A. y=sin xB. y=ln xC. y=e xD. y=x3二、填空题(共5小题;共25分)11. 执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为.12. 若 ax2x 5的展开式中x5的系数是−80,则实数a=.13. 已知双曲线E1:x2a2−y2b2=1a>0,b>0,若矩形ABCD的四个顶点在E1上,AB,CD的中点为E1的两个焦点,且2 AB =3 BC ,则E1的离心率是.14. 在−1,1上随机地取一个数k,则事件“直线y=kx与圆x−52+y2=9相交”发生的概率为.15. 已知函数f x= x ,x≤m,x2−2mx+4m,x>m,其中m>0,若存在实数b,使得关于x的方程f x=b有三个不同的根,则m的取值范围是.三、解答题(共6小题;共78分)16. 在△ABC中,角A,B,C的对边分别为a,b,c,已知2tan A+tan B=tan Acos B +tan Bcos A.(1)证明:a+b=2c;(2)求cos C的最小值.17. 在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆Oʹ的直径,FB是圆台的一条母线.(1)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(2)已知EF=FB=12AC=23,AB=BC.求二面角F−BC−A的余弦值.18. 已知数列a n的前n项和S n=3n2+8n,b n是等差数列,且a n=b n+b n+1.(1)求数列b n的通项公式;(2)令c n=a n+1n+1b n+2,求数列c n的前n项和T n.19. 甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和为X的分布列和数学期望EX.20. 已知f x=a x−ln x+2x−1x2,a∈R.(1)讨论f x的单调性;(2)当a=1时,证明f x>fʹx+32对于任意的x∈1,2成立.21. 平面直角坐标系xOy中,椭圆C:x2a +y2b=1a>b>0的离心率是32,抛物线E:x2=2y的焦点F是C的一个顶点.(1)求椭圆C的方程;(2)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB 的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求S1的最大值及取得S2最大值时点P的坐标.答案第一部分 1. B 【解析】设z =a +b i ,则2z +z =3a +b i =3−2i ,故a =1,b =−2,则z =1−2i . 2. C 【解析】A = y y >0 ,B = x −1<x <1 ,则A ∪B = x x >−1 .3. D 【解析】由频率分布直方图知,自习时间不少于22.5小时的有200× 0.16+0.08+0.04 ×2.5=140人.4. C 【解析】不等式组表示的可行域是以A 0,−3 ,B 0,2 ,C 3,−1 为顶点的三角形区域,x 2+y 2表示点 x ,y 到原点距离的平方,最大值必在顶点处取到,经验证最大值 OC 2=10.5. C【解析】由三视图可知,上面是半径为 22的半球,体积为V 1=12×43π×223=2π6,下面是底面积为1,高为1得四棱锥,体积V 2=13×1×1=13.6. A 【解析】直线a 与直线b 相交,则α,β一定相交,若α,β相交,则a ,b 可能相交,也可能平行.7. B 【解析】f x =2sin x +π6 ×2cos x +π6 =2sin 2x +π3 ,故最小正周期T =2π2=π.8. B【解析】由4 m =3 n ,可设 m =3k , n =4k k >0 ,又n ⊥ tm +n ,所以n ⋅ tm +n =n ⋅tm +n ⋅n=t m ⋅ n cos <m ,n >+ n2=t ×3k ×4k ×13+ 4k2=4tk 2+16k 2=0,所以t =−4. 9. D【解析】当x >12时,由f x +12 =f x −12 ,得f x +1 =f x ,所以当x >12时,f x 是周期为1的周期函数, 从而f 6 =f 1 .又因为当−1≤x ≤1时,f −x =−f x , 所以f 1 =−f −1 =− −1 3−1 =2. 10. A【解析】当y =sin x 时,yʹ=cos x ,cos0⋅cos π=−1,所以在函数y =sin x 图象存在两点x =0,x =π使条件成立,则 A 正确;函数y =ln x ,y =e x ,y =x 3的导数值均非负,不符合题意. 第二部分 11. 3【解析】第一次循环:a =1,b =8;第二次循环:a =3,b =6;第三次循环:a =6,b =3;满足条件,结束循环,此时,i =3. 12. −2【解析】因为T r+1=C5r ax25−rx r=C5r a5−r x10−5r,所以由10−52r=5⇒r=2,因此C52a5−2=−80⇒a=−2.13. 2【解析】易得A c,b 2a ,B c,−b2a,所以 AB =2b2a, BC =2c,由2 AB =3 BC ,c2=a2+b2得离心率e=2或e=−12(舍去),所以离心率为2.14. 34【解析】直线y=kx与圆x−52+y2=9相交,需要满足圆心到直线的距离小于半径,d=1+k2<3,解得−34<k<34,而k∈−1,1,所以发生的概率322=34.15. 3,+∞【解析】由题意画出函数图象如下图,要满足存在实数b,使得关于x的方程f x=b有三个不同的根则4m−m2<m解得m>3,即3,+∞.第三部分16. (1)由题意知2sin Acos A +sin Bcos B=sin Acos A cos B+sin Bcos A cos B,化简得2sin A cos B+sin B cos A=sin A+sin B,即2sin A+B=sin A+sin B.因为A+B+C=π,所以sin A+B=sinπ−C=sin C.从而sin A+sin B=2sin C.由正弦定理得a+b=2c.(2)由1知c=a+b2,所以cos C=a 2+b2−c22ab=a2+b2− a+b222ab=38ba+ab−14≥12,当且仅当a=b时,等号成立.故cos C的最小值为12.17. (1)设FC的中点为I,连接GI,HI,在△CEF中,因为G是CE的中点,所以GI∥EF,又EF∥OB,所以GI∥OB,在△CFB中,因为H是FB的中点,所以HI∥BC,又HI∩GI=I,BC,OB交于点B,所以平面GHI∥平面ABC,因为GH⊂平面GHI,所以GH∥平面ABC.(2)解法一:连接OOʹ,则OOʹ⊥平面ABC,又AB=BC,且AC是圆O的直径,所以BO⊥AC.以O为坐标原点,建立如图所示的空间直角坐标系O−xyz,由题意得B 0,23,0,C −23,0,0,过点F作FM垂直OB于点M,所以FM= FB2−BM2=3,可得F 0,3,3.故BC= −23,−23,0,BF=0,−3,3.设m=x,y,z是平面BCF的一个法向量.由m⋅BC=0, m⋅BF=0,可得−23x−23y=0,−3y+3z=0,可得平面BCF的一个法向量m= −1,1,33.因为平面ABC的一个法向量n=0,0,1,所以cos⟨m,n ⟩=m ⋅nm n =77.所以二面角F−BC−A的余弦值为77.解法二:连接OOʹ,过点F作FM⊥OB于点M,则有FM∥OOʹ,又OOʹ⊥平面ABC,所以FM⊥平面ABC,可得FM=2−BM2=3,过点M作MN垂直BC于点N,连接FN,可得FN⊥BC,从而∠FNM为二面角F−BC−A的平面角.又AB=BC,AC是圆O的直径,所以MN=BM sin45∘=62,从而FN=422,可得cos∠FNM=77.所以二面角F−BC−A的余弦值为77.18. (1)当n≥2时,a n=S n−S n−1=6n+5.当n=1时,a1=S1=11,代入上式适合,所以a n=6n+5n∈N∗;设数列b n的公差为d,则a1=b1+b2, a2=b2+b3,即11=2b1+d, 17=2b1+3d,解得b1=4, d=3,所以b n=3n+1.(2)由1知c n=a n+1n+1b n+2n=3n+1⋅2n+1.由T=c1+c2+c3+⋯+c n,得T n=32×22+3×23+4×24+⋯+n+12n+1,所以2T n=32×23+3×24+4×25+⋯+n+12n+2.以上两式两边相减,得−T n=32×22+23+24+⋯+2n+1−n+12n+2=34+42n−1−n+12n+2=−3n⋅2n+2.所以T n=3n⋅2n+2.19. (1)记事件A:“甲第一轮猜对”,记事件B:“乙第一轮猜对”,记事件C:“甲第二轮猜对”,记事件D:“乙第二轮猜对”,记事件E:“星队至少猜对3个成语”.由题意,E=ABCD++++由事件的独立性和互斥性,P E=P ABCD+P ABCD +P ABCD +P ABCD +P ABCD=P A P B P C P D+P A P B P C P D+P A P B P C P D+P A P B P C P D+P A P B P C P D=34×23×34×23+2×14×23×34×23+×34×13×34×23=2 3 .所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X的可能取值为0,1,2,3,4,6.由事件的独立性与互斥性得P X=0=14×13×14×13=1144,P X=1=2×34×13×14×13+14×23×14×13=10144=572,P X=2=34×13×34×13+34×13×14×23×+14×23×34×13×+14×23×14×23=25144,P X=3=34×23×14×13+14×13×34×23=112,P X=4=2×34×23×34×13+34×23×14×23=512,P X=6=34×23×34×23=14,可得随机变量X的分布列为x012346P1525151所以数学期望EX=0×1144+1×572+2×25144+3×112+4×512+6×14=236.所以EX=236.20. (1)f x的定义域为0,+∞;fʹx=a−ax −2x+2x=ax2−2⋅x−1x,(1)当a≤0时,若x∈0,1,fʹx>0,函数f x单调递增;x∈1,+∞,fʹx<0,函数f x单调递减.(2)当a>0时,fʹx=a x−1 x+ax−ax3.若0<a<2,则2a >1,所以当x∈0,1或2a,+∞ 时,fʹx>0,函数f x单调递增;当1,2a时,fʹx<0,函数f x单调递减;若a=2时,2a=1,fʹx≥0,函数f x单调递增;若a>2,则0<2a <1,所以当x∈0,2a或1,+∞时,fʹx>0,函数f x单调递增;当2a,1时,fʹx<0,函数f x单调递减.综上所述:当a≤0时,函数f x在0,1上单调递增;函数f x在1,+∞上单调递减.当0<a<2时,函数f x在0,1和2a ,+∞ 上单调递增;函数f x在1,2a上单调递减;当a=2时,函数f x在0,+∞上单调递增;当a>2,函数f x在0,2a 和1,+∞上单调递增;函数f x在2a,1上单调递减.(2)由(1)知a=1时,f x−fʹx=x−ln x+2x−12−1−1−22+23=x−ln x+3x+1x2−2x3−1, x∈1,2,令g x=x−ln x, x=3x +1x2−2x3−1,则f x−fʹx=g x+ x,由gʹx=x−1x≥0,可得g x≥g1=1,当且仅当x=1时取等号;又 ʹx=−3x 2−2x+6x4,设φx=−3x2−2x+6,则φx在1,2上单调递减,且φ1=1,φ2=−10,所以在1,2上存在x0使得x∈1,x0时,φx>0;x∈x0,2时,φx<0;所以函数 x在1,x0上单调递增;在x0,2上单调递减;由于 1=1, 2=12,因此 x≥ 2=12,当且仅当x=2取等号,所以f x−fʹx>g1+ 2=32,即f x>fʹx+32对于任意的x∈1,2恒成立.21. (1)由题意知: a2−b2a =32,解得a=2b.普通高等学校招生全国统一考试高考数学教师精校版含详解完美版 因为抛物线E 的焦点为F 0,12 ,所以a =1,b =12, 所以椭圆的方程为x 2+4y 2=1.(2)(i )设P m ,m 22 m >0 ,由x 2=2y 可得yʹ=x ,所以直线l 的斜率为m ,其直线方程为y −m 22=m x −m ,即y =mx −m 22. 设A x 1,y 1 ,B x 2,y 2 ,D x 0,y 0 ,联立方程组y =mx −m 22,x 2+4y 2=1. 消去y 并整理可得4m 2+1 x 2−4m 3x +m 4−1=0,故由其判别式Δ>0,可得0<m < 2+ 5且x 1+x 2=4m 34m +1, 故x 0=x 1+x 22=2m 34m 2+1,代入y =mx −m 22可得y 0=−m 224m +1, 因为y 0x 0=−14m ,所以直线OD 的方程为y =−14m x .联立 y =−14m x ,x =m ,可得点M 的纵坐标为y =−14, 即点M 在定直线y =−14上. (ii )由(i )知直线l 的方程为y =mx −m 22, 令x =0得y =−m 22,所以G 0,−m 22 , 又P m ,m 22 ,F 0,12 ,D 2m 34m +1,−m 224m +1 ,所以 S 1=12 GF m =14m m 2+1 , S 2=12 PM ⋅ m −x 0 =m 2m 2+1 28 4m 2+1 , 所以S 12=2 4m 2+1 m 2+1 2 2, 令t =2m 2+1,则S 1S 2= 2t−1 t +1 t 2=−1t 2+1t +2, 因此当1t =12,即t =2时,S1S 2最大,其最大值为94,此时m = 22满足Δ>0, 所以点P 的坐标为22,14 ,因此S 1S 2的最大值为94,此时点P 的坐标为 22,14 .。
高中数学学习材料(灿若寒星精心整理制作)绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).如果事件A,B独立,那么P(AB)=P(A)·P(B)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =( )(A )1+2i (B )1-2i (C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( ) (A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()(A )56(B )60 (C )120(D )140(4)若变量x ,y 满足2,239,0,x y x y x ì+?ïïïï-?íïï锍ïî则22x y +的最大值是( ) (A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π(B )1233+π(C )1236+π(D )216+π (6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件(B )必要不充分条件学.科.网(C )充要条件(D )既不充分也不必要条件(7)函数f (x )=(3sin x +cos x )(3cos x –sin x )的最小正周期是( )(A )2π(B )π (C )23π(D )2π (8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,学科.网使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。