计算机组成原理实验报告(加法运算)
- 格式:doc
- 大小:80.00 KB
- 文档页数:2
湖北汽车工业学院计算机组成原理实验报告一、实验目的本次实验旨在通过搭建和设计8位加法器电路,掌握计算机组成原理中加法器的基本原理和实现方法。
二、实验原理1.8位加法器8位加法器是一种用于执行二进制数相加的逻辑电路。
基本的8位加法器是由8个全加器组成的,在8个输入位和一个进位输入位中,通过逻辑门、逻辑电路互连、时钟信号等实现。
输出为一个8位的和,以及一个进位输出。
2.全加器全加器是指一个三输入二输出的逻辑电路,它可以实现两个二进制位的相加运算,并且能够接收来自前一位的进位。
全加器的输入包括三个二进制位,分别为两个相加的二进制位和来自前一位的进位,输出也是两个二进制位,分别为相加的结果和向后传递的进位。
三、实验步骤1.利用电线和逻辑门,按照电路原理图搭建8位加法器电路,并连接时钟信号。
2.在适当的位置输入两个8位的二进制数,并设置进位输入。
3.使用示波器来观察输出的和和进位。
四、实验结果五、实验分析1.实验结果验证了8位加法器的设计和搭建的正确性,能够准确地进行二进制数相加运算,并正确输出和进位结果。
2.通过使用示波器观察输出的和和进位,不仅可以直观地了解到加法器电路的工作原理,还可以帮助我们检验加法器的正确性。
六、实验总结通过本次实验,我深入了解了计算机组成原理中加法器的基本原理和实现方法,并通过实际搭建和设计电路的方式进行了验证。
通过观察实验结果和使用示波器测量输出,我对加法器电路的工作原理有了更加深入的理解。
此外,本次实验还加强了我与逻辑门、逻辑电路的熟悉,并提升了我分析和解决问题的能力。
通过实验过程中的调试和验证,我学会了容易出错的地方以及如何进行错误排查。
总之,本次实验在计算机组成原理的学习中起到了非常重要的作用,使我能够更好地理解和掌握课程知识。
实验三32位ALU设计实验一、实验目的学生理解算术逻辑运算单元(ALU)的基本构成,掌握Logisim 中各种运算组件的使用方法,熟悉多路选择器的使用,能利用前述实验完成的32位加法器、Logisim 中的运算组件构造指定规格的ALU 单元。
二、实验原理、内容与步骤实验原理、实验内容参考:1、32位加法功能的原理与设计1)设计原理1,被加数A(32位),2,被加数B(32位),3,前一位的进位CIN(1位),4,此位二数相加的和S(32位),5,此位二数相加产生的进位COUT(1位)。
要实现32位的二进制加法,一种自然的想法就是将1位的二进制加法重复32次(即逐位进位加法器)。
这样做无疑是可行且易行的,但由于每一位的CIN都是由前一位的COUT提供的,所以第2位必须在第1位计算出结果后,才能开始计算;第3位必须在第2位计算出结果后,才能开始计算,等等。
而最后的第32位必须在前31位全部计算出结果后,才能开始计算。
这样的方法,使得实现32位的二进制加法所需的时间是实现1位的二进制加法的时间的32倍。
2)电路设计32位加法功能2、32位减法功能的原理与实现1)变减法为加法的原理1.在Y引脚处使用求补器(32位),即可变减法为加法2.用构造好的32位加法器。
Y各位取反,C0取1,即可达到减法变加法。
无符号数的减法溢出,带加减功能的ALU的进位取反后表示,有符号数的减法溢出,仍然用最高位和符号位是否相等来判断2)电路设计32位减法功能3、加减溢出检测的设计(不考虑乘除法)1)有符号数溢出的设计有符号数溢出的设计2)无符号数溢出的设计无符号数溢出的设计4、移位的原理与设计1)逻辑移位逻辑移位2)算术移位算术移位5、逻辑运算功能的原理与设计2)与、或、异或、或非逻辑6、大于、等于、小于功能设计大于、等于、小于功能设计7、AluOP的控制原理与设计1)原理:AluOP的控制原理与设计8、总电路设计图算术逻辑运算单元ALU三、实验结论及分析(实验完成功能情况、存在问题分析或改进思路、自己的心得体会等。
运算器实验实验报告(计算机组成原理)西安财经学院信息学院《计算机组成原理》实验报告实验名称运算器实验实验室实验楼 418实验日期第一部分8 位算术逻辑运算实验一、实验目的 1、掌握算术逻辑运算器单元 ALU(74LS181)的工作原理。
2、掌握简单运算器的数据传送通路组成原理。
3、验证算术逻辑运算功能发生器 74LSl8l 的组合功能。
4、按给定数据,完成实验指导书中的算术/逻辑运算。
二、实验内容 1 、实验原理实验中所用的运算器数据通路如图 1-1 所示。
其中运算器由两片 74LS181以并/串形成 8 位字长的 ALU 构成。
运算器的输出经过一个三态门 74LS245(U33)到内部数据总线 BUSD0~D7 插座 BUS1~2 中的任一个(跳线器JA3 为高阻时为不接通),内部数据总线通过 LZD0~LZD7 显示灯显示;运算器的两个数据输入端分别由二个锁存器 74LS273(U29、U30)锁存,两个锁存器的输入并联后连至内部总线BUS,实验时通过 8 芯排线连至外部数据总线 E_D0~D7 插座E_J1~E_J3 中的任一个;参与运算的数据来自于 8 位数据开并KD0~KD7,并经过一三态门 74LS245(U51)直接连至外部数据总线 E_D0~E_D7,通过数据开关输入的数据由 LD0~LD7 显示。
图 1-1 中算术逻辑运算功能发生器 74LS181(U31、U32)的功能控制信号S3、S2、S1、S0、CN、M 并行相连后连至 6 位功能开关,以手动方式用二进制开关 S3、S2、S1、S0、CN、M 来模拟74LS181(U31、U32)的功能控制信号S3、S2、S1、S0、CN、M;其它电平控制信号 LDDR1、LDDR2、ALUB`、SWB`以手动方式用二进制开关 LDDR1、LDDR2、ALUB、SWB 来模拟,这几个信号姓名学号班级年级指导教师李芳有自动和手动两种方式产生,通过跳线器切换,其中ALUB`、SWB`为低电平有效,LDDR1、LDDR2 为高电平有效。
半加器、全加器、串行进位加法器以及超前进位加法器一、实验原理1.一位半加器A和B异或产生和Sum,与产生进位C2.一位全加器将一位半加器集成封装为halfadder元件,使用两个半加器构成一位的全加器3.4位串行进位加法器将一位全加器集成封装为Fulladder元件,使用四个构成串行进位加法器4.超前进位加法器(4位)⑴AddBlock产生并行进位链中的ti(即Cthis)和di(即Cpass),以及本位结果Sum⑵进位链(Cmaker)四位一组并行进位链,假设与或非门的级延迟时间为1.5ty,与非门的延迟时间为1ty,在di和ti产生之后,只需2.5ty就可产生所有全部进位⑶超前进位加法器将以上二者结合起来即可完成,A和B各位作为各个AddBlock的输入,低一位的进位Ci-1作为本位AddBlock的C-1的输入。
各个AddBlock输出的C_this和C_pass作为对应的Cmaker的thisi和passi的输入。
二、实验器材QuartusII仿真软件,实验箱三、实验结果1.串行进位加法器结果2.超前进位加法器结果四、实验结果分析1.实验仿真结果显示串行加法器比超前进位加法器快,部分原因应该是电路结构优化不到位。
另外由于计算的位数比较少,超前进位加法链结构较复杂,所以优势没体现出来,反倒运作的更慢一点。
当位数增加的时候,超前进位加法器会比串行的更快。
2.波形稳定之前出现上下波动,应该与“竞争冒险”出现的情况类似,门的延迟和路径的不同导致了信号变化时到达的时间有先有后,因此在最终结果形成前出现了脉冲尖峰和低谷;另外也可能部分原因由于电路结构优化的不到位所致。
计算机组成原理加法器实验实训报告一、实验目的本次实验旨在通过实际操作加法器电路,加深对计算机组成原理中加法器的理解,掌握加法器的工作原理和实验操作技能。
二、实验内容1. 搭建基本加法器电路2. 进行加法器实验3. 分析实验结果并撰写实验报告三、实验器材和工具1. 电路实验箱2. 电源3. 电路连接线4. 示波器5. 多用途数字实验仪6. 逻辑门集成电路四、实验步骤1. 搭建基本加法器电路1) 将逻辑门集成电路插入电路实验箱中2) 连接逻辑门的输入端和输出端3) 接入电源并进行必要的调试2. 进行加法器实验1) 输入两个二进制数,并将其连接到逻辑门输入端2) 观察输出端的变化3) 调节输入信号,验证加法器的正确性和稳定性3. 分析实验结果1) 记录实验数据2) 分析实验结果,对比理论值和实际值的差异3) 总结实验中的经验和问题,并提出改进建议五、实验数据1. 输入数据:A = 1010B = 11012. 输出数据:Sum = xxxCarryout = 1六、实验结果分析通过实验,我们成功搭建了基本加法器电路,并进行了加法器实验。
实验结果表明,加法器能够正确地对两个二进制数进行加法运算,并输出正确的结果。
通过比对理论值和实际值,我们发现存在一定的偏差,可能是由于电路连接不良或逻辑门延迟等因素导致。
在今后的实验中,我们需要注意电路连接质量和信号延迟,以提高实验结果的准确性和稳定性。
七、实验总结通过本次加法器实验,我们加深了对计算机组成原理中加法器的理解,掌握了基本的加法器实验操作技能。
我们也发现了一些问题并提出了改进建议。
在今后的学习和实验中,我们将继续加强对计算机组成原理的学习,不断提升实验操作能力,为今后的科研工作和实际应用打下坚实的基础。
八、参考资料1. 《计算机组成原理》(第五版),唐朔飞,张善民,电子工业出版社2. 《数字逻辑与计算机设计》(第三版),David M. Harris,Sarah L. Harris,清华大学出版社以上是本次计算机组成原理加法器实验实训报告的全部内容,谢谢阅读。
计算机组成原理综合实验报告一、实验目的本次计算机组成原理综合实验旨在深入理解计算机组成的基本原理,通过实际操作和设计,巩固所学的理论知识,并培养实践动手能力和创新思维。
二、实验设备本次实验所使用的设备包括计算机硬件实验平台、数字逻辑实验箱、示波器、万用表等。
三、实验内容1、运算器实验设计并实现一个简单的运算器,能够完成加法、减法、乘法和除法运算。
通过实验,深入理解运算器的工作原理,包括数据的输入、运算过程和结果的输出。
2、控制器实验构建一个基本的控制器,实现指令的读取、译码和执行过程。
了解控制器如何控制计算机的各个部件协同工作,以完成特定的任务。
3、存储系统实验研究计算机的存储系统,包括主存和缓存的工作原理。
通过实验,掌握存储单元的读写操作,以及如何提高存储系统的性能。
4、输入输出系统实验了解计算机输入输出系统的工作方式,实现与外部设备的数据传输。
四、实验步骤1、运算器实验步骤(1)确定运算器的功能和架构,选择合适的逻辑器件。
(2)连接电路,实现加法、减法、乘法和除法运算的逻辑。
(3)编写测试程序,输入不同的数据进行运算,并观察结果。
2、控制器实验步骤(1)分析控制器的工作流程和指令格式。
(2)设计控制器的逻辑电路,实现指令的译码和控制信号的生成。
(3)编写测试程序,验证控制器的功能。
3、存储系统实验步骤(1)连接存储单元,设置地址线、数据线和控制线。
(2)编写读写程序,对存储单元进行读写操作,观察数据的存储和读取情况。
(3)通过改变缓存策略,观察对存储系统性能的影响。
4、输入输出系统实验步骤(1)连接输入输出设备,如键盘、显示器等。
(2)编写程序,实现数据的输入和输出。
(3)测试输入输出系统的稳定性和可靠性。
五、实验结果1、运算器实验结果通过测试程序的运行,运算器能够准确地完成加法、减法、乘法和除法运算,结果符合预期。
2、控制器实验结果控制器能够正确地译码指令,并生成相应的控制信号,使计算机各个部件按照指令的要求协同工作。
加法器实验报告加法器实验报告概述:本次实验旨在设计和实现一个加法器电路,通过对电路的搭建和测试,验证加法器的正确性和可行性。
加法器是计算机中最基本的算术运算器之一,其在数字逻辑电路中扮演着重要的角色。
1. 实验背景加法器是一种基本的数字逻辑电路,用于实现数字的加法运算。
在计算机中,加法器被广泛应用于算术逻辑单元(ALU)和中央处理器(CPU)等部件中,用于进行各种数值计算和逻辑运算。
因此,了解和掌握加法器的工作原理和设计方法对于理解计算机原理和数字电路设计具有重要意义。
2. 实验目的本次实验的主要目的是通过设计和实现一个4位二进制加法器电路,验证加法器的正确性和可行性。
具体要求如下:- 设计并搭建一个4位二进制加法器电路;- 对电路进行测试,验证其加法运算的正确性;- 分析电路的性能和优化空间。
3. 实验原理加法器是通过逻辑门电路实现的。
在本次实验中,我们将使用全加器电路来实现4位二进制加法器。
全加器是一种能够实现两个二进制位相加并考虑进位的电路。
通过将多个全加器连接起来,可以实现更高位数的二进制加法器。
4. 实验步骤4.1 设计加法器电路的逻辑功能首先,我们需要确定加法器电路的逻辑功能。
在这个实验中,我们需要实现两个4位二进制数的相加运算,并输出结果。
具体的逻辑功能可以通过真值表或逻辑表达式来描述。
4.2 搭建电路根据逻辑功能的要求,我们可以使用逻辑门电路来搭建加法器。
在本次实验中,我们将使用多个全加器电路来实现4位二进制加法器。
通过将多个全加器连接起来,可以实现更高位数的二进制加法器。
4.3 进行电路测试在搭建完电路后,我们需要对电路进行测试,以验证其加法运算的正确性。
可以通过输入一些测试用例,并比较输出结果与预期结果是否一致来进行测试。
5. 实验结果与分析通过对加法器电路的测试,我们可以得到加法器的输出结果。
通过比较输出结果与预期结果,可以验证加法器的正确性。
同时,我们还可以分析电路的性能和优化空间,例如进一步提高加法器的速度和减少功耗等。
实验2 运算器实验报告一、实验目的本次实验的主要目的是深入了解运算器的工作原理和功能,通过实际操作和观察,掌握运算器在计算机系统中的重要作用,提高对计算机硬件结构的理解和认识。
二、实验设备本次实验使用了以下设备:1、计算机一台,配置为_____处理器、_____内存、_____硬盘。
2、实验软件:_____。
三、实验原理运算器是计算机中执行算术和逻辑运算的部件。
它主要由算术逻辑单元(ALU)、寄存器、数据通路和控制电路等组成。
算术逻辑单元(ALU)能够进行加、减、乘、除等算术运算,以及与、或、非、异或等逻辑运算。
寄存器用于暂存操作数和运算结果,数据通路负责在各个部件之间传输数据,控制电路则根据指令控制运算器的操作。
在运算过程中,数据从寄存器或内存中读取,经过 ALU 处理后,结果再存回寄存器或内存中。
四、实验内容与步骤(一)加法运算实验1、打开实验软件,进入运算器实验界面。
2、在操作数输入框中分别输入两个整数,例如 5 和 10。
3、点击“加法”按钮,观察运算结果显示框中的数值。
4、重复上述步骤,输入不同的操作数,验证加法运算的正确性。
(二)减法运算实验1、在实验界面中,输入被减数和减数,例如 15 和 8。
2、点击“减法”按钮,查看结果是否正确。
3、尝试输入负数作为操作数,观察减法运算的处理方式。
(三)乘法运算实验1、输入两个整数作为乘数和被乘数,例如 3 和 7。
2、启动乘法运算功能,检查结果的准确性。
3、对较大的数值进行乘法运算,观察运算时间和结果。
(四)除法运算实验1、给定被除数和除数,如 20 和 4。
2、执行除法运算,查看商和余数的显示。
3、尝试除数为 0 的情况,观察系统的处理方式。
(五)逻辑运算实验1、分别进行与、或、非、异或等逻辑运算,输入相应的操作数。
2、观察逻辑运算的结果,理解不同逻辑运算的特点和用途。
五、实验结果与分析(一)加法运算结果通过多次输入不同的操作数进行加法运算,结果均准确无误。
加法器实验报告加法器实验报告一、实验背景加法器是计算机中最基础的逻辑电路之一,它的主要作用是将两个二进制数进行加法运算,并输出一个二进制数作为结果。
在计算机中,加法器的存在极为重要,因为它是所有计算的起点。
二、实验目的本实验的主要目的是通过制作加法器电路,掌握加法器的基本原理和操作方法。
通过实验,我们可以深入了解加法器的实现原理,在实践中体验二进制数的加法运算及其结果。
三、实验器材本次实验所需的器材如下:1.电路板2.电源线3.开关4.三枚LED灯5.四个按键6.电阻7.逻辑门SN74008.引线等四、实验步骤1.将电路板和电源线取出并清洗干净。
2.将电阻固定在电路板上。
3.将逻辑门SN7400安装到电路板上,并连接引线。
4.安装开关、LED灯和按键。
5.进行电路连接,注意避免短路和错接。
6.检查出错情况,重新调整电路连接。
7.开启电源并进行测试。
五、实验结果经过多次调整,我们成功地制作出了加法器电路,并进行了测试。
实验的结果显示:当我们同时按下两个按键时,相应的LED灯会点亮,从而输出结果。
六、实验误差及分析在实验过程中,我们发现有时LED灯不能很好地显示结果,这可能是由于电路连接不良或电阻的阻值不准确造成的。
在检查出错情况时,我们需要细心认真,尤其是对于电路连接的质量非常重要。
七、实验心得通过本次实验,我们深入了解了加法器的基本原理和操作方法。
同时,我们也掌握了电路连接和调试的技巧,认识到了实验中心细节的重要性。
通过实践,我们加深了对计算机逻辑电路的理解和应用,也提升了我们的创新能力和动手实践能力。
总之,本次实验让我们得到了很大的收获,不仅增强了我们对计算机逻辑电路的认识,也提高了我们的实验技能和科学素质。
我们相信,在今后的学习和实践中,这次实验的经验和教训将对我们有很大的帮助。
池州学院数学计算机科学系实验报告
专业:计算机科学与技术班级:11计本(2)班实验课程:计算机组成原理姓名:惠昊学号:110312210 实验室:硬件实验室同组同学:邓晓煜刘广东时应东于小波黄震朱斌斌钟建强王凤侠王敏
实验时间:2013年3月20日指导教师签字:何向荣成绩:
基本运算器实验:加法运算
一实验目的和要求
1.了解运算器的组成结构。
2.掌握运算器的工作原理。
二实验环境
PC机一台,TD-CMA 实验系统一套
三实验步骤及实验记录
(1)按图连接电路,并检查无误。
(2)将时序与操作台单元的开关KK2 置为‘单拍’档, 开关KK1 、KK3 置为‘运行’档。
(3) 打开电源开关,然后按动CON单元的CLR 按钮,将运算器的A、B 和FC、FZ清零。
(4) 用输入开关向暂存器A 置数
①拨动CON单元的SD27…SD20 数据开关,形成二进制数,数据显示亮为‘1 ’,灭为‘0 ’。
②置LDA=1,LDB=0,连续按动时序单元的 ST 按钮,产生一个 T4上沿,则将二进制数置入暂存器 A 中,暂存器A 的值通过ALU单元的A7…A0八位 LED 灯显示。
(5) 用输入开关向暂存器B 置数。
①拨动CON单元的SD27…SD20 数据开关,形成二进制数。
②置LDA=0,LDB=1,连续按动时序单元的 ST 按钮,产生一个T4上沿,则将二进制数置入暂存器B 中,暂存器 B 的值通过 ALU单元的B7…B0八位LED 灯显示
(6)改变运算器的功能设置,观察运算器的输出。
置ALU_B=0、LDA=0、LDB=0,置 S3、S2、S1、S0为1001 ,运算器作加法运算
四实验结果与分析。