电工电子实验报告实验4.6 运算放大器的线性应用
- 格式:doc
- 大小:440.50 KB
- 文档页数:10
运算放大电路实验报告运算放大电路实验报告引言运算放大电路是电子工程领域中一种常见的电路,它广泛应用于信号放大、滤波、积分、微分等功能。
本实验旨在通过搭建运算放大电路并进行实际测试,探究其工作原理和特性。
实验目的1. 了解运算放大电路的基本原理和组成结构;2. 熟悉运算放大电路的实际搭建和调试方法;3. 掌握运算放大电路的特性参数测量方法。
实验器材1. 运算放大器(OP-AMP);2. 电阻、电容等元件;3. 示波器、函数发生器等测试仪器。
实验步骤1. 搭建基本的非反馈运算放大电路。
将运算放大器的正、负输入端分别连接到电压源和接地,输出端接入负载电阻。
根据实验要求选择适当的电阻值,并使用示波器检测输出信号。
2. 测试运算放大器的放大倍数。
将输入信号接入运算放大器的正输入端,通过函数发生器输入不同频率和幅度的信号,并测量输出信号的幅度。
根据测量结果计算得到运算放大器的放大倍数。
3. 探究运算放大器的输入阻抗和输出阻抗。
使用电压源作为输入信号,通过改变输入电阻的值,测量输入电压和输出电压之间的关系。
同样地,通过改变负载电阻的值,测量输出电压和负载电阻之间的关系。
分析测量结果,得出运算放大器的输入阻抗和输出阻抗。
4. 实现运算放大器的反相放大功能。
在基本的非反馈运算放大电路的基础上,引入反馈电阻,并调整电阻的值,使得输出信号与输入信号呈反相关系。
通过示波器观察和测量输入信号和输出信号的波形,验证反相放大的功能。
实验结果与分析1. 在搭建基本的非反馈运算放大电路后,通过示波器观察到输出信号与输入信号具有相同的波形,且幅度有所放大。
这表明运算放大器实现了信号的放大功能。
2. 在测试运算放大器的放大倍数时,发现输出信号的幅度与输入信号的幅度成正比。
根据测量数据计算得到的放大倍数与理论值相符合,说明运算放大器具有较好的放大性能。
3. 通过测量输入电压和输出电压之间的关系,得到运算放大器的输入阻抗约为几十兆欧姆,说明输入电阻较高,不会对输入信号产生较大的负载效应。
运算放大器的线性应用实验目的1.掌握检查运算放大器好坏的方法。
2.掌握运算放大器组成比例,求和运算,积分运算电路的工作原理以及运算功能。
3.掌握以上各种应用电路的组成及其测试方法。
实验仪器1.双踪示波器X12.函数发生器X13.数字万用表X14.直流稳压电源X15.运算放大器X1;面包板X1;电阻若干;导线若干实验原理1.运算放大器是一种包含许多晶体管的集成电路,其作用是把输入电压放大一定倍数后在输送出去,其输出电压与输入电压的比值称为电压的放大倍数。
2.在集成运放应用的电路中,运放的工作范围有两种:工作在线性区(指输入电压U0与输出电压Ud成正比时的输入电压范围)或工作在非线性区。
3.集成运放工作在线性区有两个特点:虚短:集成运放两个输入端之间的电压接近于零。
虚断:流入集成运放两个输入端的电流可视为零。
4. UM741的引脚图:实验内容:基本操作:将电源1,电源2分别调为12V,将电源1的黑色夹子接在放大器的引脚4(正电源端),将电源2的黑色夹子接在放大器的引脚11(负电源端),接着电源1,2的红色夹子接在一起(接地端),使电源输出±12V。
(1).运算放大器的好坏检测实验电路图:实验步骤:1.调节信号发生器,并将红色夹子接在放大器的引脚3(同相输入端),使其输入1kHz,1V峰峰值的正弦波信号Ui,黑色夹子接地。
2.将引脚2用导线接在引脚14(输出端口4),并将示波器的红色夹子接在引脚14上,黑色夹子接地。
3.观察示波器上显示的输出电压U0;比较Ui与U0的大小。
实验结果:(2)反相比例运算放大器实验电路图:实验步骤:1.如图连接电路,在反相输入端接入直流电压Ui。
2.根据下表内容进行测量,并完成表格,绘制传输特性。
实验结果:(3)积分电路实验电路图:操作步骤:1.如上图所示连接电路,并输入峰峰值为2V,f=1kHz的正弦信号。
2.观察并记录示波器上Ui,U0的波形,绘制波形。
实验结果:(4)积分电路操作步骤:1.如图连接电路,并输入峰峰值为2V ,f=1kHz的方波信号。
运算放大器的应用实验报告仪用运算放大器及其应用实验报告实验报告课程名称:电路与模拟电子技术实验指导老师:张冶沁成绩:__________________ 实验名称:仪用运算放大器及其应用实验类型:电路实验同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.了解仪表放大器与运算放大器的性能区别;2.掌握仪表放大器的电路结构及设计方法;3.掌握仪表放大器的测试方法; 4.学习仪表放大器在电子设计中的应用。
二、实验内容和原理1.用通用运算放大器设计一个仪表放大器(用LM358芯片)2.用INA128 精密低功耗仪器放大器设计一个仪表放大器仪表放大器是一种高增益放大器,其具有差分输入、单端输出、高输入阻抗及高共模抑制比等特点。
仪表放大器采用运算放大器构成,但在性能上与运算放大器有很大的差异。
标准运算放大器的闭环增益由反馈网络决定;而仪表放大器使用了一个与其信号输入端隔离的内部反馈电阻网络,因此具有很高的共模抑制比KCMR,在有共模信号的情况下也能放大很微弱的差分信号。
当前在数据采集、医疗仪器、信号处理等电子系统设计中普遍采用仪表放大器对弱信号进行高精度处理。
常用的仪表放大器可采用由三个运算放大器构成,也可直接选用单片仪表放大器。
单片仪表放大器具有高精度、低噪声、设计简单等特点以成为优选器件。
三、主要仪器设备LM358芯片INA128 精密低功耗仪器放大器四、操作方法和实验步骤两种仪表放大器的性能测量:一、电压增益和最大不失真输出,并计算出共模抑制比输入正弦波,改变输入信号幅度或频率,用示波器监测输出波形,在不失真的情况下,测量输入电压为最大或最小时的电压增益,及最大不失真输出电压,并计算共模抑制比。
二、输出端噪声电压输入为0,用示波器测量峰峰值。
运算放大器的应用实验报告运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子元件,在电子电路中有着广泛的应用。
本实验旨在通过实验操作,加深对运算放大器的工作原理和应用特性的理解,同时掌握运算放大器在电路中的具体应用。
一、实验目的。
1. 了解运算放大器的基本工作原理;2. 掌握运算放大器的基本参数测量方法;3. 学习运算放大器在电路中的应用,包括比较器、放大器、积分器和微分器等。
二、实验仪器与设备。
1. 示波器。
2. 直流稳压电源。
3. 示波器探头。
4. 运算放大器集成电路。
5. 电阻、电容等元件。
6. 实验电路板。
7. 万用表。
三、实验原理。
运算放大器是一种差动放大器,具有高输入阻抗、低输出阻抗、大增益和宽带宽等特点。
在实验中,我们将通过测量运算放大器的输入输出特性、电压增益、输入偏置电流等参数,来了解其基本特性。
运算放大器在电路中的应用非常广泛,比如在比较器电路中,当输入电压超过一定阈值时,输出电压会发生跳变;在放大器电路中,运算放大器可以放大微弱的信号;在积分器和微分器电路中,可以实现信号的积分和微分运算。
四、实验内容与步骤。
1. 搭建运算放大器的输入输出特性测量电路,通过改变输入电压,测量输出电压与输入电压的关系曲线;2. 测量运算放大器的电压增益,并分析其影响因素;3. 搭建运算放大器的比较器电路,观察输入电压与输出电压的关系;4. 搭建运算放大器的放大器电路,测量放大电路的电压增益;5. 搭建运算放大器的积分器和微分器电路,观察输入输出波形,并分析其特性。
五、实验数据与分析。
1. 输入输出特性曲线如图所示(图表略),通过测量得到的数据绘制曲线,可以看出运算放大器的输入输出特性呈线性关系;2. 测量得到的电压增益为100,经分析发现电阻值的选择对电压增益有一定影响,需要合理选择电阻值以满足设计要求;3. 比较器电路的实验结果表明,运算放大器在一定输入电压范围内输出电压保持稳定,一旦超过阈值,输出电压会发生跳变;4. 放大器电路的实验结果显示,运算放大器可以有效放大输入信号,且放大倍数与电阻值的选择有关;5. 积分器和微分器电路的实验结果表明,运算放大器可以实现信号的积分和微分运算,输出波形与输入波形呈现出相应的积分和微分关系。
电工电子实验报告实验46运算放大器的线性应用
实验目的:
1.了解运算放大器的基本原理和特性;
2.了解运算放大器在线性应用中的应用;
3.掌握运算放大器的性能参数的测试方法。
实验仪器和材料:
1.运算放大器集成电路;
2.函数发生器;
3.直流电源供电电路;
4.信号发生器;
5.锁相放大器;
6.示波器。
实验原理:
运算放大器是一种特殊的放大器,它的主要特点是输入电阻极大,输
出电阻极小,倍数稳定。
运算放大器一般由差动放大器、输入级、中间级、输出级和负反馈电路组成。
实验步骤:
1.将运算放大器集成电路插入插座中,接入电源电压;
2.使用函数发生器产生一个频率为1kHz的正弦信号,调整振幅为1V;
3.将信号源连接到运算放大器集成电路的非反相输入端,将运算放大器集成电路的输出端连接到示波器的通道1;
4.调整示波器的刻度,使正弦信号波形在示波器屏幕上显示完整;
5.调整函数发生器的频率,并观察示波器屏幕上信号波形的变化;
6.测量运算放大器的输入电阻、输出电阻。
实验结果:
通过实验可以观察到随着函数发生器频率的变化,示波器屏幕上信号波形的变化情况。
当频率较低时,波形显示完整;当频率逐渐增加时,波形开始变形,幅度逐渐减小。
实验总结:
通过本次实验,我们深入了解了运算放大器的基本原理和特性,学会了运算放大器在线性应用中的应用。
同时,我们还掌握了运算放大器的性能参数的测试方法,如输入电阻、输出电阻的测量方法。
运算放大器在电子电路中具有广泛的应用,对于电子工程专业的学生来说,掌握运算放大器的使用非常重要。
运算放大器的应用实验报告运算放大器的应用实验报告引言:运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子元器件,具有高增益、高输入阻抗和低输出阻抗等特点。
它在现代电子电路中有着广泛的应用。
本实验旨在通过实际操作和测量,探索运算放大器在不同电路中的应用,并验证其性能。
一、直流放大电路实验:1. 实验目的:通过搭建直流放大电路,观察运算放大器的放大效果,并测量其放大倍数。
2. 实验步骤:(1)搭建直流放大电路,将运算放大器的正、负输入端分别连接到输入信号源和地线。
(2)调节输入信号源的幅度,记录输出信号的幅度。
(3)改变输入信号的频率,观察输出信号的变化。
3. 实验结果和分析:通过实验数据的测量,我们得到了输入信号和输出信号的幅度数据,并计算了放大倍数。
结果显示,运算放大器能够将输入信号放大数倍,并且在一定频率范围内保持较好的线性放大特性。
二、反相放大电路实验:1. 实验目的:通过搭建反相放大电路,探索运算放大器的反相放大功能,并测量其放大倍数和频率响应。
2. 实验步骤:(1)搭建反相放大电路,将运算放大器的正输入端接地,负输入端连接到输入信号源。
(2)调节输入信号源的幅度,记录输出信号的幅度。
(3)改变输入信号的频率,观察输出信号的变化。
3. 实验结果和分析:实验数据显示,反相放大电路能够将输入信号进行反向放大,并且放大倍数与输入信号的幅度成反比。
此外,随着输入信号频率的增加,输出信号的幅度逐渐下降,表明运算放大器的频率响应存在一定的限制。
三、非反相放大电路实验:1. 实验目的:通过搭建非反相放大电路,研究运算放大器的非反相放大功能,并测量其放大倍数和频率响应。
2. 实验步骤:(1)搭建非反相放大电路,将运算放大器的正输入端连接到输入信号源,负输入端接地。
(2)调节输入信号源的幅度,记录输出信号的幅度。
(3)改变输入信号的频率,观察输出信号的变化。
3. 实验结果和分析:实验数据显示,非反相放大电路能够将输入信号进行非反向放大,并且放大倍数与输入信号的幅度成正比。
运算放大器的实验报告运算放大器的实验报告引言:运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子器件,广泛应用于电路设计和信号处理中。
本实验旨在通过实际搭建电路和测量数据,深入了解运算放大器的原理和特性,并验证其在电路设计中的应用。
一、实验目的本实验的主要目的有以下几个方面:1. 理解运算放大器的基本工作原理;2. 掌握运算放大器的输入输出特性;3. 熟悉常见的运算放大器电路应用。
二、实验仪器和材料1. 运算放大器芯片;2. 电阻、电容等基本电子元件;3. 示波器、函数信号发生器等实验设备。
三、实验步骤1. 搭建基本的运算放大器电路,包括反馈电阻、输入电阻等;2. 连接示波器和函数信号发生器,调节函数信号发生器的频率和振幅;3. 测量运算放大器的输入电压和输出电压,并记录数据;4. 分析实验数据,绘制输入输出特性曲线和增益曲线。
四、实验结果与分析通过实验测量得到的数据,我们可以得出以下结论:1. 运算放大器具有很高的输入阻抗和很低的输出阻抗,能够有效放大输入信号;2. 在线性范围内,运算放大器输出电压与输入电压成正比,增益稳定;3. 当输入信号超出运算放大器的工作范围时,输出电压将出现失真。
五、实验应用运算放大器在电路设计中有广泛的应用,以下是几个常见的例子:1. 比较器:利用运算放大器的输入特性,可以将其作为比较器使用,用于判断两个电压的大小关系;2. 滤波器:通过调整运算放大器的反馈电阻和电容,可以搭建低通、高通、带通等滤波器电路;3. 信号放大器:将运算放大器作为信号放大器使用,可以放大微弱信号,提高信号质量。
六、实验总结通过本次实验,我们深入了解了运算放大器的原理和特性,掌握了运算放大器的基本应用。
实验结果表明,在电路设计中,运算放大器是一种非常重要且常用的器件,能够实现信号放大、滤波、比较等功能。
然而,我们也要注意运算放大器的工作范围和输入输出特性,避免出现失真和不稳定的情况。
实验4.6 运算放大器的线性应用一、实验目的1.进一步理解运算放大器线性应用电路的结构和特点。
2.掌握电子电路设计的步骤,学会先用电子设计软件进行电路性能仿真和优化设计,再进行实际器件构成电路的连接与测试方法。
3.掌握运算放大器线性应用电路的设计及测试方法。
二、实验仪器与器件1.双路稳压电源1台2.示波器1台3. 数字万用表1台4. 集成运算放大器μA741 2块5. 定值电阻若干6.电容若干7.DC信号源3块8.电位器2只三、实验原理及要求运算放大器是高放大倍数的直流放大器。
当其成闭环状态时,其输入输出在一定范围内为线性关系,称之为运算放大器的线性应用。
运放线性应用时选择合理的电路结构和外接器件,可构成各种信号运算电路和具有各种特定功能的应用电路。
选择适当个数的运算放大器和阻容元件构成电路实现以下功能:1. U o=Ui2.U O= 5U i1+U i2(R f=100k);3.U O= 5U i2-U i1(R f=100k);4.U O= - (0.1ui+1000∫u idt)(C f=0.1μF);5.用运放构成一个输出电压连续可调的恒压源(要求用一个运放实现);6.用运放构成一个恒流源(要求用一个运放实现);7. 用运放构成一个RC正弦波振荡器(振荡频率为500Hz)。
四、实验电路图及实验数据1. U o=Ui2.U O= 5U i1+U i2(R f=100k)Ui1(V) 0.3 0.3 -0.3 Ui2(V) -0.1 0.1 0.1计算Uo(V) 1.4 1.6 -1.4 测量Uo(V) 1.407 1.608 -1.3963.U O= 5U i2-U i1(R f=100k);Ui1(V) 0.3 0.3 -0.3 Ui2(V) -0.1 0.1 0.1计算Uo(V) 1.6 1.4 -1.6测量Uo(V) 1.735 1.533 -1.7034.U O= - (0.1ui+1000∫u idt)(C f=0.1μF);5.用运放构成一个输出电压连续可调的恒压源(要求用一个运放实现);6.用运放构成一个恒流源(要求用一个运放实现);7. 用运放构成一个RC正弦波振荡器(振荡频率为500Hz)五. 分析实验数据和波形可知:电路仿真得到的结果要比实测结果更接近于理论计算值,可能原因有1. 实验室中的电子元件有误差 2. 一些电阻在实验室中没有,遂用阻值接近的电阻代替六. 试验中遇到的故障:在实物搭建第二个电路的时候输入正确的电压值却得不到应得的输出电压,经检查发现第二个运算放大器未接15V的电源七. 心得体会在进行电子电路设计的时候,应首先用电子设计软件进行电路性能仿真和优化设计,再进行实际器件构成电路的链接与测试,以缩短设计时间,减少设计成本,并提高成功率。
集成运放的基本应用一. 实验目的学习集成运放的基本线性应用,了解集成运放使用中的有关问题,进一步熟悉运算放大器的特性。
二. 实验仪器设备1.实验箱2. 万用表1、 加法运算2、减法运算i u1i u 2i u1i uKR KR KR KR 1010020202F1211====oKR KR KR KR 10010020203F21====)(211Fi i ou u RRu +-=3. 用运放设计运算电路,画出设计电路图)(121Fi i ou u RRu -=12105o I I V V V =-完成下列思考题(1)将理论值和实际值作比较,计算误差,分析一下理论值和实际值产生误差的原因。
理想的运放的放大倍数是无穷大的,输入电流是无穷小的。
但是实际上的运放的放大倍数有限,输入电流也不会是无穷小,所以实际的输出电压会低于理论值。
(2)什么是理想运放,指标参数有什么特点。
理想的运放的放大倍数是无穷大的,输入电流是无穷小的,123224o I I I V V V V =+-即有“虚断”(0i i +-== )的特性。
只有工作在线性放大区即存在负反馈时才有“虚短”(u u +-= )的特性。
当u u +-> 时,(sat)o o u U =+ ;当u u +-<时,(sat)o o u U =-,此时输入电流也等于零有“虚断”但是没有“虚短”特性。
(3)为什么理想运放工作在线性区时会有“虚短”、“虚断”的特点?简述“虚短”、“虚断”的含义 。
因运放具有极高的开环增益,不用负反馈技术的话运放难以稳定工作,所以就有了负反馈,在负反馈下,运放输入信号处在很小的范围内,相差很小,近似相等(u u +-=),电压相等了就相当于把那两点短接了,但实际又没短接,所以称虚短,虚短是因为运放的输入电阻很大,接近1兆欧,所以认为进入其中的电流很小了,好像是断了一样,所以称虚断(0i i +-==)。
实验总结:。
运算放大器实验报告运算放大器实验报告引言运算放大器(Operational Amplifier,简称OP-AMP)是一种广泛应用于电子电路中的集成电路元件。
它具有高增益、高输入阻抗和低输出阻抗的特点,被广泛用于信号放大、滤波、积分、微分等各种电路中。
本实验旨在通过实际操作,深入了解运算放大器的基本原理和应用。
实验目的1. 了解运算放大器的基本原理和特性;2. 熟悉运算放大器的实际应用;3. 掌握运算放大器的参数测量方法。
实验装置和材料1. 运算放大器实验箱;2. 直流电源;3. 电阻、电容等基本元件;4. 示波器、信号发生器等测试仪器。
实验步骤1. 搭建基本的运算放大器电路,并接通电源;2. 测量运算放大器的输入和输出电压,并计算增益;3. 将运算放大器用于反相放大电路,并测量增益;4. 将运算放大器用于非反相放大电路,并测量增益;5. 将运算放大器用于比例积分放大器电路,并测量增益和相位延迟;6. 将运算放大器用于差分放大器电路,并测量增益和共模抑制比。
实验结果与分析1. 在基本的运算放大器电路中,输入电压为1V,输出电压为10V,计算得到增益为10。
这符合运算放大器的基本特性,即输出电压等于输入电压乘以增益。
2. 在反相放大电路中,输入电压为1V,输出电压为-10V,计算得到增益为-10。
反相放大电路可以将输入信号进行180度的相位翻转,并放大到一定倍数。
3. 在非反相放大电路中,输入电压为1V,输出电压为10V,计算得到增益为10。
非反相放大电路可以将输入信号放大到一定倍数,但不改变其相位。
4. 在比例积分放大器电路中,输入为正弦波信号,通过测量输出电压和输入电压的相位差,计算得到增益和相位延迟。
增益和相位延迟与输入信号频率呈正相关关系。
5. 在差分放大器电路中,输入为两个不同的信号,通过测量输出电压和输入电压的差值,计算得到增益和共模抑制比。
差分放大器电路可以将两个输入信号的差值放大到一定倍数,并抑制它们的共同模式信号。
实验报告课程名称:电子电路设计与仿真实验名称:集成运算放大器的运用班级:计算机18-4班姓名:祁金文学号:5011214406实验目的1.通过实验,进一步理解集成运算放大器线性应用电路的特点。
2.掌握集成运算放大器基本线性应用电路的设计方法。
3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。
集成运算放大器放大电路概述集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。
集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。
集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。
反相比例放大电路输入输出关系: 输入电阻: Ri=R1反相比例运算电路反相加法运算电路反相比例放大电路仿真电路图io V R R V 12-=i R o V R R V R R V 1212)1(-+=压输入输出波形图同相比例放大电路输入输出关系: 输入电阻: Ri=∞ 输出电阻: Ro=0同相比例放大电路仿真电路图电压输入输出波形图i o V R R V )1(12+=R o V R RV R R V 12i 12)1(-+=差动放大电路电路图差动放大电路仿真电路图五:实验步骤:1.反相比例运算电路(1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。
(2)输入f=1kHz、ui=100mV的正弦交流信号,测量相应的uo,并用示波器观察uo和ui的波形和相位关系,记录输入输出波形。
测量放大器实际放大倍数。
(3)保持ui=30mV不变,测量放大的上截止频率,并在上截止频率,并在上截止频率点时在同一坐标系中记录输入输出信号的波形。
模拟电子线路实验实验三集成运算放大器的线性应用【实验名称】集成运算放大器的线性应用【实验目的】1.熟悉集成运算放大器的使用方法,进一步了解其主要特性参数意义;2.掌握由集成运算放大器构成的各种基本运算电路的调试和测试方法;3.了解运算放大器在实际应用时应考虑的一些问题。
【预习要点】1.复习课件中集成运放线性应用部分内容。
2.在由集成运放组成的各种运算电路中,为什么要进行调零?【实验仪器设备】【实验原理】集成运算放大器是一种高放大倍数、高输入阻抗、低输出阻抗的直接耦合多级放大电路,具有两个输入端和一个输出端,可对直流信号和交流信号进行放大。
外接负反馈电路后,运放工作在线性状态,其输出电压V o与输入电压V i的运算关系仅取决于外接反馈网络与输入端阻抗的连接方式,而与运算放大器本身无关。
改变反馈网络与输入端外接阻抗的形式和参数,即能对V i进行各种数字运算。
本实验采用的集成运放型号为HA17741,引脚排列如图3-1(a)所示。
它是八脚双列直插式组件,②脚和③脚为反相和同相输入端,⑥脚为输出端,⑦脚和④脚为正,负电源端,①脚和⑤脚为失调调零端,①⑤脚之间可接入一只几十K 的电位器并将滑动触头接到负电源端。
⑧脚为空脚。
(a ) (b )图3-1为了补偿运放自身失调量的影响,提高运算精度,在运算前,应首先对运放进行调零,即保证输入为零时,输出也为零。
图3-1(b )是调零电位器连接示意图,使用时必须正确使用引脚才能确保电路正常工作。
所谓调零并不是对独立运放进行调零,而是对运放的应用电路调零,即将运放应用电路输入端接地(使输入为零),调节调零电位器,使输出电压等于零。
如图3-2所示。
+-△+R 2v i2oR 1v i1+12V-12VR wR1542367+-△+R 2v i2oR 1v i1+12V-12VR wR1542367图3-2集成运算放大器按照输入方式可分为同相、反相、差动三种接法。
按照运算关系可分为比例、加法、减法、积分、微分等,利用输入方式与运算关系的组合,可接成各种运算电路。
实验4.6 运算放大器的线性应用
一、实验目的
1.进一步理解运算放大器线性应用电路的结构和特点。
2.掌握电子电路设计的步骤,学会先用电子设计软件进行电路性能仿真和优化设计,再进行实际器件构成电路的连接与测试方法。
3.掌握运算放大器线性应用电路的设计及测试方法。
二、实验仪器与器件
1.双路稳压电源1台
2.示波器1台
3. 数字万用表1台
4. 集成运算放大器μA741 2块
5. 定值电阻若干
6.电容若干
7.DC信号源3块
8.电位器2只
三、实验原理及要求
运算放大器是高放大倍数的直流放大器。
当其成闭环状态时,其输入输出在一定范围内为线性关系,称之为运算放大器的线性应用。
运放线性应用时选择合理的电路结构和外接器件,可构成各种信号运算电路和具有各种特定功能的应用电路。
选择适当个数的运算放大器和阻容元件构成电路实现以下功能:
1. U o=Ui
2.U O= 5U i1+U i2(R f=100k);
3.U O= 5U i2-U i1(R f=100k);
4.U O= - (0.1ui+1000∫u idt)(C f=0.1μF);
5.用运放构成一个输出电压连续可调的恒压源(要求用一个运放实现);
6.用运放构成一个恒流源(要求用一个运放实现);
7. 用运放构成一个RC正弦波振荡器(振荡频率为500Hz)。
四、实验电路图及实验数据
1. U o=Ui
2.U O= 5U i1+U i2(R f=100k)
Ui1(V) 0.3 0.3 -0.3 Ui2(V) -0.1 0.1 0.1
计算Uo(V) 1.4 1.6 -1.4 测量Uo(V) 1.407 1.608 -1.396
3.U O= 5U i2-U i1(R f=100k);
Ui1(V) 0.3 0.3 -0.3 Ui2(V) -0.1 0.1 0.1
计算Uo(V) 1.6 1.4 -1.6
测量Uo(V) 1.735 1.533 -1.703
4.U O= - (0.1ui+1000∫u idt)(C f=0.1μF);
5.用运放构成一个输出电压连续可调的恒压源(要求用一个运放实现);
6.用运放构成一个恒流源(要求用一个运放实现);
7. 用运放构成一个RC正弦波振荡器(振荡频率为500Hz)
五. 分析实验数据和波形可知:电路仿真得到的结果要比实测结果更接近于理论计算值,可能原因有1. 实验室中的电子元件有误差 2. 一些电阻在实验室中没有,遂用阻值接近的电阻代替
六. 试验中遇到的故障:在实物搭建第二个电路的时候输入正确的电压值却得不到应得的输出电压,经检查发现第二个运算放大器未接15V的电源
七. 心得体会
在进行电子电路设计的时候,应首先用电子设计软件进行电路性能仿真和优化设计,再进行实际器件构成电路的链接与测试,以缩短设计时间,减少设计成本,并提高成功率。